

# VSML2512S2 Series, Current Sensor Resistor (Lead / Halogen Free)

### Features / Applications :

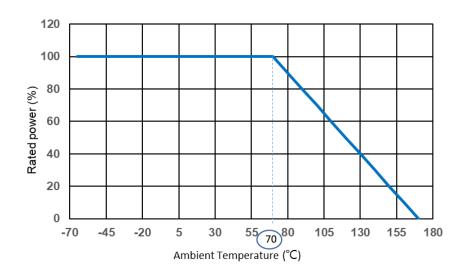
- High power rating is up to 2W
- Welding construction; excellent long-term stability
- Automotive applications & Current Sensor Resistor
- Ideal for all types of current sensing, voltage division and pulse applications
- RoHS compliant and AECQ-200 qualified

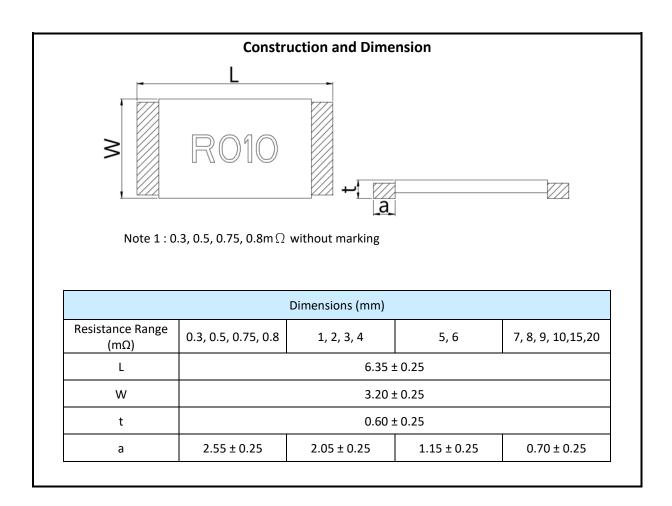


### **Electrical Specifications:**

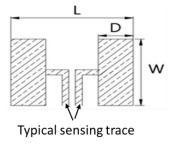
| Characteristics <sup>1</sup>                     | Feature               |  |
|--------------------------------------------------|-----------------------|--|
| Power Rating <sup>2</sup>                        | 2 W                   |  |
| Resistance Value                                 | 0.3 to 20 m $\Omega$  |  |
| Temperature Coefficient of Resistance (25/125°C) | From 50 ppm/°C        |  |
| Operation Temperature Range                      | -65°C∼ +170°C         |  |
| Resistance Tolerance                             | ± 1%                  |  |
| Maximum Working Voltage (V)                      | ( P*R) <sup>1/2</sup> |  |

- 1. For detail information refer to the table on page 3 P/N list
- 2. For resistors are operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.





Figure 1. : Power derating curve at ambient temperature

DOCUMENT: CYNP-199-015


Page: 1



## Outline Drawing:



#### Recommended PCB Pin Hole Dimensions



| Resistance Range | Dimensions |        |        |
|------------------|------------|--------|--------|
| mΩ               | W (mm)     | D (mm) | L (mm) |
| 0.3 to 4         |            | 3.2    |        |
| 5 to 6           | 3.7        | 2.1    | 7.35   |
| 7 to 20          |            | 1.65   |        |

DOCUMENT: CYNP-199-015

Page: 2



## Type Designation:

V S M L 2512 S 2 — — — —

(1) (2) (3) (4) (5) (6)

Note:

(1) Series No.

(2) Size

(3) Terminal Type : S = Short terminal

(4) Power Rating: 2 = 2W

(5) Resistance value :  $R003 = 0.003\Omega$ ,  $OM50 = 0.0005\Omega$ 

(6) Tolerance :  $F = \pm 1\%$ ,  $G = \pm 2\%$ ,  $J = \pm 5\%$ 

## P/N list:

| D/N              | R value | TCR     | Power Rating | Tolerance |    |    |
|------------------|---------|---------|--------------|-----------|----|----|
| P/N              | (mΩ)    | (ppm/K) | (W)          | 1%        | 2% | 5% |
| VSML2512S2-0M30* | 0.3     | ±125    | 2            | <b>√</b>  |    |    |
| VSML2512S2-0M50* | 0.5     | ±100    | 2            | ✓         |    |    |
| VSML2512S2-0M75* | 0.75    | ±100    | 2            | <b>√</b>  |    |    |
| VSML2512S2-0M80* | 0.8     | ±100    | 2            | <b>√</b>  |    |    |
| VSML2512S2-R001* | 1.0     | ±75     | 2            | ✓         |    |    |
| VSML2512S2-R002* | 2.0     | ±75     | 2            | <b>√</b>  |    |    |
| VSML2512S2-R003* | 3.0     | ±75     | 2            | <b>✓</b>  |    |    |
| VSML2512S2-R004* | 4.0     | ±75     | 2            | ✓         |    |    |
| VSML2512S2-R005* | 5.0     | ±50     | 2            | <b>√</b>  |    |    |
| VSML2512S2-R006* | 6.0     | ±50     | 2            | ✓         |    |    |
| VSML2512S2-R007* | 7.0     | ±50     | 2            | ✓         |    |    |
| VSML2512S2-R008* | 8.0     | ±50     | 2            | <b>√</b>  |    |    |
| VSML2512S2-R009* | 9.0     | ±50     | 2            | ✓         |    |    |
| VSML2512S2-R010* | 10.0    | ±50     | 2            | ✓         |    |    |
| VSML2512S2-R015* | 15.0    | ±50     | 2            | ✓         |    |    |
| VSML2512S2-R020* | 20.0    | ±50     | 2            | ✓         |    |    |

<sup>\*</sup> Note : Other values and tolerance would be available, please contact Cyntec.

DOCUMENT: CYNP-199-015

Page: 3



## Characteristics:

### Electrical

| Item                          | Specification and Requirement                                                                  | Test Method                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Temperature Coefficient (TCR) | As follow specification                                                                        | JIS-C-5201<br>+25°C/ +125°C.                                         |
| Short Time Overload           | $\triangle R$ : $\pm$ 0.5%<br>Without damage by flashover, spark, arcing, burning or breakdown | JIS-C-5201-1 4.13 2.5 x rated power for 5 seconds.                   |
| ESD                           | $\triangle R$ : $\pm$ 1%<br>Without damage by flashover, spark, arcing, burning or breakdown   | AEC-Q200-002<br>Human body, 8KV.                                     |
| Insulation Resistance         | Over 100 M $\Omega$ on Overcoat layer face up                                                  | JIS-C-5201-1 4.6<br>100V <sub>DC</sub> for 60 +10/-0 seconds         |
| Voltage Proof                 | $\triangle$ R: $\pm$ 1% Without damage by flashover, spark, arcing, burning or breakdown       | JIS-C-5201-1 4.7<br>400V <sub>AC</sub> (rms.) for 60 +10/ -0 seconds |

#### Mechanical

| Item                         | Specification and Requirement                                                                 | Test Method                                                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Solderability                | The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder | J-STD-002 Method B category 3<br>245±5°C for 5±0.5 seconds.                                  |
| Resistance to Solder<br>Heat | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance                               | MIL-STD-202 Method 210 $260 \pm 5 ^{\circ}\text{C} \ \text{ for } 10 \pm 1 \text{ seconds}.$ |
| Board Flex                   | $\triangle$ R: $\pm$ 1.0% Without mechanical damage such as break.                            | AEC-Q200-005  Bending value: 2 mm for 60 ± 1 seconds.                                        |

DOCUMENT: CYNP-199-015

Page: 4

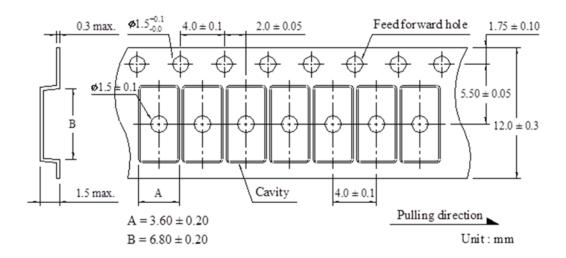


| Vibration               |                                                                  | MIL-STD-202 Method 204                                                               |  |
|-------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|                         | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance  | 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10-                 |  |
|                         |                                                                  | 2000Hz.                                                                              |  |
| Mechanical Shock        | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance  | MIL-STD-202 Method 213<br>100G's peak value, 6ms,<br>Half-sine waveform, 12.3ft/sec. |  |
| Terminal Strength (SMD) | $\triangle$ R: $\pm$ 1% Without mechanical damage such as break. | AEC-Q200-006 Force of 1.8Kg for 60 seconds.                                          |  |

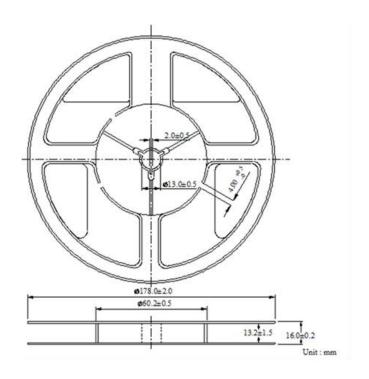
#### Endurance

| Item                     | Specification and Requirement                                    | Test Method                                                                                    |
|--------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Temperature Cycling      | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance  | JESD22 Method JA-104 -55°C to 150°C /1000cycle 30 min maximum dwell time at each temperature.  |
| Biased Humidity          | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance  | MIL-STD-202 Method 103<br>1000 hours, 85°C/85%R.H,<br>applied for 10% rated power.             |
| Operational Life         | $\triangle R$ : $\pm$ 1.0% Without distinct damage in appearance | MIL-STD-202 Method 108 70°C, 100% rated power 1.5 hours ON, 0.5 hours Off For total 1000 hours |
| High Temperature Storage | $\triangle$ R: $\pm$ 1.0% Without distinct damage in appearance  | MIL-STD-202 Method 108<br>170°C for 1000 hours.                                                |
| Moisture Resistance      | $\triangle$ R: $\pm$ 0.5% Without distinct damage in appearance  | MIL-STD-202 Method 106<br>65°C /90-100%RH, unpowered, 7b<br>not required                       |

Note : Measurement at 24 $\pm$ 4 hours after test conclusion for all reliability tests-parts.


DOCUMENT: CYNP-199-015

Page: 5



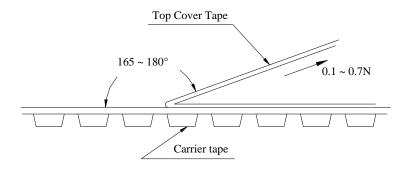

### PACKAGING DESCRIPTIONS:

#### Dimensions:



#### Reel dimensions:




DOCUMENT: CYNP-199-015

Page: 6



#### Peel Strength of Top Cover Tape:

The peel speed shall be about 300mm/min and the peel force of top cover tape shall between 0.1 to 0.7N



### Number of Taping:

2,000 pieces / reel

#### Label Marking:

The following items shall be marked on tray

- (1) Description
- (2) Quantity
- (3) Part No.
- (4) Tapping No.

DOCUMENT: CYNP-199-015

Page: 7



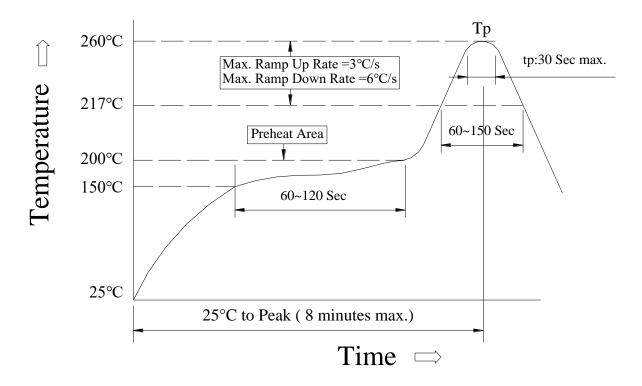
#### Care Note:

#### Care note for storage

- (1) Chip resistor shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity < 60% RH) However, a humidity keep it low, as it is possible.
- (3) Chip resistor shall be stored as direct sunshine doesn't hit on it.
- (4) Chip resistor shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen)

#### Care note for operating and handling

- (1) Protect the edge and coating of the sensors from mechanical stress.
- (2) Avoid bending of printing circuit board (PCB) when cutting and fixing it on support body to reduce mechanical stress on sensors.
- (3) Sensor should be used within the condition of specification.
  Note: When a voltage higher than specified value is loaded to the sensor, this may damage the sensor material due to temperature rise.
- (4) The loaded voltage should consult terminal temperature of the sensor according to the derating curve.
- (5) When applying a high current exceeding suggested specification (pulse current, shock current) to the sensor, it is necessary to re-evaluate the operating condition before using it in the system.


DOCUMENT: CYNP-199-015

Page:8



## Reflow profile:

#### Recommended Reflow Profile



#### (1) Reflow Soldering Method:

| Reflow Soldering              | Tp:255~260°C   | Max.30 seconds ( tp ) |
|-------------------------------|----------------|-----------------------|
|                               | 217°C          | 60~150 seconds        |
| Pre-Heat                      | 150 ~ 200°C    | 60~120 seconds        |
| Time 25°C to peak temperature | 8 minutes max. |                       |

Reference: JEDEC J-STD-020D

DOCUMENT: CYNP-199-015

Page: 9