OPA210, OPA2210 **REVISED AUGUST 2021** # OPAx210 2.2nV/√Hz 精密低功耗 36V 运算放大器 # 1 特性 精密超级 ß 输入性能: - 低失调电压:5µV(典型值) - 超低温漂: 0.1µV/°C(典型值) - 低输入偏置电流: 0.3nA(典型值) 超低噪声: - 0.1Hz 至 10Hz 低噪声: 90nV_{PP} - 低电压噪声: 1kHz 时为 2.2nV/ √Hz • 高 CMRR: 132dB(最小值) • 增益带宽积:18MHz • 压摆率: 6.4 V/µs • 低静态电流: 2.5mA/每通道(最大值) • 短路电流:±65 mA 宽电源电压范围: ±2.25V 至 ±18V 无相位反转 轨到轨输出 • 业界通用封装 #### 2 应用 - 超声波扫描仪 - 多参数患者监护仪 - 商用网络和服务器 PSU - 半导体测试 - 频谱分析仪 - 实验室和现场仪表 - 数据采集 (DAQ) - 专业麦克风和无线系统 OPAx210 0.1Hz 至 10Hz 噪声 ## 3 说明 OPA210 和 OPA2210 (OPAx210) 是 OPAx209 运算放 大器的新一代产品。OPAx210 精密运算放大器基于 TI 的精密超级 ß 互补双极半导体工艺进行构建,可提供 超低闪烁噪声、低失调电压和低失调电压温漂。 OPAx210 可实现很低的电压噪声密度 (2.2nV/ √ Hz), 同时每个放大器仅消耗 2.5mA(最大值)的电流。这 两款器件还提供轨到轨输出摆幅,有助于更大限度地扩 大动态范围。 在精密数据采集应用中, OPAx210 可实现精度达 16 位的快速稳定时间,即使输出摆幅为 10V 也是如此。 出色的交流性能、仅 35µV (最大值)的失调电压和 0.6μV/°C(最大值)的温漂使 OPAx210 非常适用于高 速、高精度应用。 OPAx210 可在 ±2.25V 至 ±18V 的双电源宽电压范围 或 4.5V 至 36V 的单电源宽电压范围内运行,并且具有 - 40°C 至 +125°C 的额定工作温度范围。 #### 哭件信息 | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸 (标称值) | | | | |---------|-------------------|-----------------|--|--|--| | OPA210 | SOIC (8) | 2.90mm × 1.60mm | | | | | | SOT-23 (5) | 2.90mm × 1.60mm | | | | | | VSSOP (8) | 3.00mm × 3.00mm | | | | | | SOIC (8) | 4.90mm × 3.91mm | | | | | OPA2210 | VSSOP (8) | 3.00mm × 3.00mm | | | | | | WSON (8) | 3.00mm × 3.00mm | | | | (1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。 OPAx210 失调电压温漂分布图 ## **Table of Contents** | 1 特性 | 1 | 8 Application and Implementation | 19 | |--|------------|---|----------------| | 2 应用 | 1 | 8.1 Application Information | | | 3 说明 | | 8.2 Typical Application | | | 4 Revision History | | 8.3 System Example | | | 5 Pin Configuration and Functions | | 9 Power Supply Recommendations | | | 6 Specifications | | 10 Layout | | | 6.1 Absolute Maximum Ratings | | 10.1 Layout Guidelines | | | 6.2 ESD Ratings | 4 | 10.2 Layout Example | | | 6.3 Recommended Operating Conditions | 4 | 11 Device and Documentation Support | | | 6.4 Thermal Information: OPA210 | 5 | 11.1 Device Support | | | 6.5 Thermal Information: OPA2210 | | 11.2 Documentation Support | | | 6.6 Electrical Characteristics | | 11.3 接收文档更新通知 | | | 6.7 Typical Characteristics | | 11.4 支持资源 | | | 7 Detailed Description | | 11.5 Trademarks | | | 7.1 Overview | | 11.6 Electrostatic Discharge Caution | | | 7.2 Functional Block Diagram | | 11.7 术语表 | 26 | | 7.3 Feature Description | | 12 Mechanical, Packaging, and Orderable Information | | | - Device i directorial medec | | | | | 4 Revision History
注:以前版本的页码可能与当前版本的页码不同 | 司 | | | | Changes from Revision G (April 2021) to Re | | · · · | Page | | • 将 OPA210 DBV (SOT-23-5) 和 DGK (VSS | OP-8) 封湖 | 表从预告信息(预发布)更改为量产数据(正在 | 主供货) 1 | | Changes from Revision F (January 2021) to | | | Page | | • 将 OPA210 D (SOIC-8) 封装从预告信息 (引 | 预发布) 更 | [改为量产数据(正在供货) | 1 | | | | 息(预发布) | | | Changes from Revision E (Novembver 2020 | 0) to Revi | sion F (January 2021) | Page | | • 添加了采用 D 和 DGK 封装的 OPA210 器件 | ‡,作为预 | 告信息(预发布) | 1 | | Changes from Revision D (January 2020) to | o Revisio | n E (November 2020) | Page | | • 将 OPA2210 DRG 封装从预告信息(预发布 | 币)更改为 | 量产数据(正在供货) | | | Changes from Revision C (September 2019 |) to Revis | sion D (January 2020) | Page | | • 向数据表添加了 OPA2210 DRG 封装,作为 | 为预告信息 | (预发布) | 1 | | Changes from Revision B (March 2019) to I | Revision (| C (September 2019) | Page | | | | 级 ß),以便于搜索 | | | Changes from Revision A (December 2018) | to Revis | ion B (February 2019) | Page | | • Changed "OPAx145" to "OPA2210" | | | 19 | Submit Document Feedback **Page** • 首次发布量产数据数据表......1 Changes from Revision * (September 2018) to Revision A (December 2018) # **5 Pin Configuration and Functions** 图 5-2. OPA210: DBV (5-Pin SOT-23) Package, Top View 图 5-1. OPA210: D (8-Pin SOIC) and DGK (8-Pin VSSOP) Packages, Top View 表 5-1. Pin Functions: OPA210 | | PIN | | I/O | DESCRIPTION | | | |------|-------------|--------|-----|---------------------------------|--|--| | NAME | SOIC, VSSOP | SOT-23 | 1/0 | DESCRIPTION | | | | - IN | 2 | 4 | I | Inverting input | | | | +IN | 3 | 3 | I | Noninverting input | | | | NC | 1, 5, 8 | _ | _ | No internal connection | | | | OUT | 6 | 1 | 0 | Output | | | | V - | 4 | 2 | _ | Negative (lowest) power supply | | | | V+ | 7 | 5 | _ | Positive (highest) power supply | | | 图 5-3. OPA2210: D (SOIC-8), DGK (VSSOP-8), and DRG (WSON-8) Packages, Top View 表 5-2. Pin Functions: OPA2210 | P | PIN | I/O | DESCRIPTION | | | | |--------|-----|-----|---------------------------------|--|--|--| | NAME | NO. | 1/0 | DESCRIPTION | | | | | - IN A | 2 | I | Inverting input, channel A | | | | | +IN A | 3 | I | Noninverting input, channel A | | | | | - IN B | 6 | I | Inverting input, channel B | | | | | +IN B | 5 | I | Noninverting input, channel B | | | | | OUT A | 1 | 0 | Output, channel A | | | | | OUT B | 7 | 0 | Output, channel B | | | | | V - | 4 | _ | Negative (lowest) power supply | | | | | V+ | 8 | _ | Positive (highest) power supply | | | | Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |-------------|--|--------------|------------|-----|------| | Voltage | Supply voltage, V _S = (V+) - (V -) | | 40 | | | | | Signal input pins ⁽²⁾ | (V -) - 0.5 | (V+) + 0.5 | V | | | | Signal input pins | Differential | | 1 | | | Current | Signal input pins ⁽²⁾ | - 10 | 10 | mA | | | Current | Output short circuit ⁽³⁾ | Continuo | us | | | | Tomporatura | Junction, T _J | | 150 | °C | | | Temperature | Storage temperature, T _{stg} | - 65 | 150 | ٠. | | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the de vice. Theseare stress ratings only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability - (2) For input voltages beyond the power-supply rails, voltage orcurrent must be limited. - (3) Short circuit to ground, one amplifier per package. # 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | V = -44-4idib | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±4000 | V | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±1500 | | - (1) JEDEC document JEP155 states that 500-V HBM allows safemanufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safemanufacturing with a standard ESD control process. ## **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | MIN | MAX | UNIT | |---------------------------------------|-------|-----|------| | Specified voltage, V _S | ±2.25 | ±18 | V | | Specified temperature | - 40 | 125 | °C | | Operating temperature, T _A | - 55 | 150 | °C | Submit Document Feedback ## 6.4 Thermal Information: OPA210 | | | | OPA210 | | | | | |---------------------------|--|----------|-------------|--------------|------|--|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DGK (VSSOP) | DBV (SOT-23) | UNIT | | | | | | 8 PINS | 8 PINS | 5 PINS | | | | | R ₀ JA | Junction-to-ambient thermal resistance | 131.2 | 171.3 | 180.4 | °C/W | | | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 71.6 | 64.7 | 67.9 | °C/W | | | | R ₀ JB | Junction-to-board thermal resistance | 74.6 | 92.4 | 102.1 | °C/W | | | | Ψ ЈТ | Junction-to-top characterization parameter | 22.4 | 10.4 | 10.4 | °C/W | | | | Ψ ЈВ | Junction-to-board characterization parameter | 73.8 | 90.9 | 100.3 | °C/W | | | | R _{θ JC(bottom)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | °C/W | | | ⁽¹⁾ For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application report. ### 6.5 Thermal Information: OPA2210 | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DGK (VSSOP) | DRG (SON) | UNIT | |------------------------|--|----------|-------------|-----------|------| | | | 8 PINS | 8 PINS | 8 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 126.1 | 132.7 | 52.1 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 65.7 | 38.5 | 51.8 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 69.5 | 52.1 | 24.8 | °C/W | | ψ JT | Junction-to-top characterization parameter | 17.4 | 2.4 | 1.1 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 68.9 | 52.8 | 24.8 | °C/W | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | n/a | n/a | 9.0 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # **6.6 Electrical Characteristics** at $V_S = \pm 15$ V, $T_A = 25$ °C, $R_L = 10$ k Ω connected to midsupply, and $V_{CM} = V_{OUT} =$ midsupply (unless otherwise noted) | | PARAMETER | TEST COND | ITIONS | MIN | TYP | MAX | UNIT | |----------------------|---|--|---|--------------|------------------------|------------|--------------------| | OFFSET | VOLTAGE | | | | | | | | V _{OS} | Input offset voltage | V _S = ±15 V, V _{CM} = 0 V | | | ±5 | ±35 | μV | | dV _{OS} /dT | Input offset voltage drift | T _A = -40°C to 125°C | | | ±0.1 | ±0.5 | μV/°C | | V _{OS} - | Input offset voltage matching | | | ±5 | ±35 | μV | | | 2022 | | V .0.05.V/ | T _A = 25°C | | 0.05 | 0.5 |
| | PSRR | vs power supply | $V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V}$ | T _A = -40°C to 125°C | | | ±1 | μV/V | | | Channel separation | DC | | | ±0.1 | | μV/V | | INPUT BI | IAS OPERATION | | | | | | | | | | | T _A = 25°C | | ±0.3 | ±2 | | | I _B | Input bias current | V _{CM} = 0 V | T _A = -40°C to 85°C | | | ±4 | nA | | _ | | | T _A = -40°C to 125°C | | | ±7 | | | | | | T _A = 25°C | | ±0.1 | ±2 | | | Ios | Input offset current | V _{CM} = 0 V | T _A = -40°C to 85°C | | | ±4 | nA | | -03 | | - GWI | $T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ | | | ±7 | | | NOISE | | | 14 10 0 10 120 0 | | | | | | e _{n p-p} | Input voltage noise | f = 0.1 Hz to 10 Hz | | | 0.09 | | μV _{PP} | | on p-p | input voltage noise | f = 10 Hz | | | 2.5 | | р у РР | | e _n | Noise density | f = 100 Hz | | | 2.25 | | nV/√ Hz | | On . | Troise defisity | f = 1 kHz | | | 2.2 | | 110/ 1112 | | In | Input current noise density | f = 1 kHz | | | 400 | | fA/ √ Hz | | | OLTAGE RANGE | I - I KIIZ | | | 400 | | 1A/ V 11Z | | | Common-mode voltage | | | | | | | | V_{CM} | range | | | (V -) + 1.5 | | (V+) - 1.5 | V | | | | (V -) + 1.5 V < V _{CM} < (V+) - 1.5 | 5 V | 132 | 140 | | | | CMRR | Common-mode rejection ratio | (V -) + 1.5 V < V _{CM} < (V+) - 1.9
T _A = -40°C to 125°C | 5 V, | 120 | 130 | | dB | | INPUT IM | IPEDANCE | | | | | | | | | Differential | | | | 400 9 | | kΩ pF | | | Common-mode | | | | 10 ⁹ 0.5 | | Ω pF | | OPEN-LC | DOP GAIN | | | | | | | | | | $(V -) + 0.2 V < V_O < (V+) - 0.2$ | T _A = 25°C | 126 | 132 | | | | | | V , $R_L = 10 \text{ k}\Omega$ | T _A = -40°C to 125°C | 120 | | | | | A _{OL} | Open-loop voltage gain | (V -) + 0.6 V < V _O < (V+) - 0.6 | | 114 | 120 | | dB | | | | $V, R_L = 600 \Omega^{(1)}$ | T _A = -40°C to 85°C | 110 | | | | | FREQUE | NCY RESPONSE | | , A | | | | | | GBW | Gain bandwidth product | | | | 18 | | MHz | | SR | Slew rate | | | | 6.4 | | V/µs | | | Phase margin (⊕m) | $R_1 = 10 \text{ k}\Omega$, $C_1 = 25 \text{ pF}$ | | | 80 | | degrees | | | J () | 0.1%, G = -1, 10-V step, C ₁ = 1 | 00 pF | | 2.1 | | | | t _S | Settling time | 0.0015% (16-bit), G = -1, 10-V | · · · · · · · · · · · · · · · · · · · | | 2.1 | | | | | Overload recovery time | G = -10 | οιορ, ο _L – 100 μι | | 0.5 | | LIC | | | , | G = 10 | | | 0.5 | | μs | | | Total harmonic distortion + noise (THD+N) | $G = +1$, $f = 1$ kHz, $V_O = 20$ V_{PP} , 6 | 600 Ω | | 0.000025 | | % | Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # **6.6 Electrical Characteristics (continued)** at $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_L = 10 \text{ k} \Omega$ connected to midsupply, and $V_{CM} = V_{OUT} = \text{midsupply}$ (unless otherwise noted) | | PARAMETER | TEST | CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------|--|--|---|--------------|---------|------------|------| | ОИТРИТ | 1 | | | | | - | | | | | R _L = 10 k Ω , A _{OL} > 130 dl | 3 | (V -) + 0.2 | | (V+) - 0.2 | | | | Voltage output swing | R _L = 600 Ω, A _{OL} > 114 di | 3 | (V -) + 0.6 | | (V+) - 0.6 | V | | | | R _L = 10 k Ω , A _{OL} > 120 dl | B, $T_A = -40^{\circ}\text{C}$ to 125°C | (V -) + 0.2 | | (V+) - 0.2 | | | I _{SC} | Short-circuit current | V _S = ±18 V | | | ±65 | | mA | | C _{LOAD} | Capacitive load drive (stable operation) | | | Se | e # 6.7 | | | | Z _O | Open-loop output impedance | | | Se | e #6.7 | | | | POWER | SUPPLY | 1 | | 1 | | <u>"</u> | | | ı | Quiescent current | escent current | | 2.2 | | 2.5 | mA | | IQ | (per amplifier) | I _O = 0 A | | | 3.25 | IIIA | | ⁽¹⁾ Temperature range limited by thermal performance of the package. ## **6.7 Typical Characteristics** at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, R_L = 10 k Ω connected to midsupply, and V_{CM} = V_{OUT} = midsupply (unless otherwise noted) # 7 Detailed Description ### 7.1 Overview The OPAx210 are the next generation of the OPAx209 operational amplifiers. The OPAx210 offer improved input offset voltage, offset voltage temperature drift, input bias current, and lower 1/f noise corner frequency. In addition, these devices offer excellent overall performance with high CMRR, PSRR, and A_{OL} . The OPAx210 precision operational amplifiers are unity-gain stable, and free from unexpected output and phase reversal. Applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1- μ F capacitors are adequate. # 7.2 shows a simplified schematic of the OPAx210. The die uses a SiGe bipolar process and contains 180 transistors. ## 7.2 Functional Block Diagram ## 7.3 Feature Description #### 7.3.1 Operating Voltage The OPAx210 op amps can be used with single or dual supplies within an operating range of V_S = 4.5 V (±2.25 V) up to 36 V (±18 V). #### **CAUTION** Supply voltages greater than 40 V total can permanently damage the device. In addition, key parameters are specified over the temperature range of $T_A = -40^{\circ}\text{C}$ to +125°C. Parameters that vary significantly with operating voltage or temperature are shown in # 6.7. ## 7.3.2 Input Protection ▼ 7-1 shows an example configuration that implements a current-limiting feedback resistor. 图 7-1. Pulsed Operation #### 7.3.3 Noise Performance - e_n = voltage noise, - i_n = current noise, - R_S = source impedance, - $k = Boltzmann's constant = 1.38 \times 10^{-23} J/K$, and - T = temperature in kelvins For more details on calculating noise, see #8.1.1. 图 7-2. Noise Performance of the OPAx210 and OPA827 in Unity-Gain Buffer Configuration #### 7.3.4 Phase-Reversal Protection The OPAx210 have internal phase-reversal protection. Many FET- and bipolar-input op amps exhibit a phase reversal when the input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input circuitry of the OPAx210 prevents phase reversal with excessive common-mode voltage; instead, the output limits into the appropriate rail (see § 6-30). #### 7.3.5 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly. It is helpful to have a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event. See 3 7-3 for an illustration of the ESD circuits contained in the OPAx210 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as it discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent it from being damaged. The energy absorbed by the protection circuitry is then dissipated as heat. When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device has a trigger, or threshold voltage, that is greater than the normal operating voltage of the OPAx210 but less than the device breakdown voltage level. After this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level. When the operational amplifier connects into a circuit such as the one [8] 7-3 shows, the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occur, there is a risk that some of the internal ESD protection circuits may be biased on, and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption device. \boxtimes 7-3 depicts a
specific example where the input voltage, V_{IN} , exceeds the positive supply voltage, +V_S, by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +V_S can sink the current, one of the upper input steering diodes conducts and directs current to $+V_S$. Excessively high current levels can flow with increasingly higher V_{IN} . As a result, the data sheet specifications recommend that applications limit the input current to 10 mA. If the supply is not capable of sinking the current, V_{IN} may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. Another common question involves what happens to the amplifier if an input signal is applied to the input while power supplies $+V_S$, $-V_S$, or both are at 0 V. Again, the answer depends on the supply characteristic while at 0 V, or at a level less than the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source through the current steering diodes. This state is not a normal bias condition; the amplifier will not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path. If there is an uncertainty about the ability of the supply to absorb this current, external transient voltage suppressor (TVS) diodes may be added to the supply pins as shown in $\boxed{8}$ 7-3. The breakdown voltage must be selected so that the diode does not turn on during normal operation. However, the breakdown voltage must be low enough so that the TVS diode conducts if the supply pin begins to rise to greater than the safe operating supply voltage level. - (1) $V_{IN} = +V_S + 500 \text{ mV}.$ - (2) TVS: $+V_{S(max)} > V_{TVSBR (Min)} > +V_{S}$. - (3) Suggested value approximately 1 k Ω . 图 7-3. Equivalent Internal ESD Circuitry and Relation to a Typical Circuit Application ### 7.4 Device Functional Modes The OPAx210 are operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum power-supply voltage for the OPAx210 is 36 V (±18 V). # 8 Application and Implementation #### Note 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 8.1 Application Information The OPAx210 are unity-gain stable, precision operational amplifiers with very low noise. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate. ### 8.1.1 Basic Noise Calculations Low-noise circuit design requires careful analysis of all noise sources. External noise sources can dominate in many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the circuit is the root-sum-square combination of all noise components. The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. This function is plotted in $\boxed{8}$ 7-2. The source impedance is usually fixed; consequently, select the op amp and the feedback resistors to minimize the respective contributions to the total noise. 8-1 illustrates both noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors also contribute noise. In general, the current noise of the op amp reacts with the feedback resistors to create additional noise components. However, the extremely low current noise of the OPAx210 means that the device current noise contribution can be neglected. Generally, the feedback resistor values are chosen to make these noise sources negligible. Low impedance feedback resistors load the output of the amplifier. The equations for total noise are shown for both configurations. Copyright © 2021 Texas Instruments Incorporated #### (A) Noise in Noninverting Gain Configuration Noise at the output is given as Eo, where (1) $$E_{0} = \left(1 + \frac{R_{2}}{R_{1}}\right) \cdot \sqrt{(e_{S})^{2} + (e_{N})^{2} + \left(e_{R_{1}\parallel R_{2}}\right)^{2} + (i_{N} \cdot R_{S})^{2} + \left(i_{N} \cdot \left[\frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}}\right]\right)^{2}} \quad [V_{RMS}]$$ (2) $$e_S = \sqrt{4 \cdot k_B \cdot T(K) \cdot R_S} \left[\frac{V}{\sqrt{Hz}} \right]$$ Thermal noise of Rs $$(3) \quad e_{R_1 \parallel R_2} = \sqrt{4 \cdot k_B \cdot T(K) \cdot \left[\frac{R_1 \cdot R_2}{R_1 + R_2}\right]} \quad \left[\frac{V}{\sqrt{Hz}}\right]$$ Thermal noise of R₁ || R₂ (4) $$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{\kappa} \right]$$ Boltzmann Constant (5) $$T(K) = 237.15 + T({}^{\circ}C)$$ [K] Temperature in kelvins #### (B) Noise in Inverting Gain Configuration Noise at the output is given as Eo, where (6) $$E_0 = \left(1 + \frac{R_2}{R_S + R_1}\right) \cdot \sqrt{(e_N)^2 + \left(e_{R_1 + R_S \parallel R_2}\right)^2 + \left(i_N \cdot \left[\frac{(R_S + R_1) \cdot R_2}{R_S + R_1 + R_2}\right]\right)^2} \quad [V_{RMS}]$$ (7) $$e_{R_1+R_S\parallel R_2} = \sqrt{4 \cdot k_B \cdot T(K) \cdot \left[\frac{(R_S+R_1) \cdot R_2}{R_S+R_1+R_2}\right]} \quad \left[\frac{V}{\sqrt{Hz}}\right]$$ Thermal noise of (R₁ + R_S) || R₂ (8) $$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{K} \right]$$ Boltzmann Constant (9) $$T(K) = 237.15 + T({}^{\circ}C)$$ [K] Temperature in kelvins Copyright © 2017, Texas Instruments Incorporated Where e_N is the voltage noise of the amplifier. For the OPAx210 op amp, $e_N = 2.2 \text{ nV}/\sqrt{\text{Hz}}$ at 1 kHz. Where i_N is the current noise of the amplifier. For the OPAx210 op amp, i_N = 400 fA/ \sqrt{Hz} at 1 kHz. NOTE: For additional resources on noise calculations visit the *TI Precision Labs Series*. #### 图 8-1. Noise Calculation in Gain Configurations ## 8.2 Typical Application 图 8-2. Low-Pass Filter ## 8.2.1 Design Requirements Low-pass filters are commonly used in signal processing applications to reduce noise and prevent aliasing. The OPAx210 are designed to construct high-speed, high-precision active filters. 8-2 shows a second-order, low-pass filter commonly encountered in signal-processing applications. Use the following parameters for this design example: - Gain = 5 V/V (inverting gain) - Low-pass cutoff frequency = 25 kHz - · Second-order Chebyshev filter response with 3-dB gain peaking in the pass band ### 8.2.2 Detailed Design Procedure The infinite-gain, multiple-feedback circuit for a low-pass network function is shown in 图 8-2. Use 方程式 1 to calculate the voltage transfer function. $$\frac{\text{Output}}{\text{Input}}(s) = \frac{-1/R_1R_3C_2C_5}{s^2 + (s/C_2)(1/R_1 + 1/R_3 + 1/R_4) + 1/R_3R_4C_2C_5}$$ (1) This circuit produces a signal inversion. For this circuit, the gain at dc and the low-pass cutoff frequency are calculated by 方程式 2: Gain = $$\frac{R_4}{R_1}$$ $f_c = \frac{1}{2\pi} \sqrt{(1/R_3 R_4 C_2 C_5)}$ (2) #### 8.2.3 Application Curve 图 8-3. OPAx210 Second-Order, 25-kHz, Chebyshev, Low-Pass Filter ## 8.3 System Example #### 8.3.1 Time Gain Control System for Ultrasound Applications During an ultrasound send-receive cycle, the magnitude of reflected signal depends on the depth of penetration. The ultrasound signal incident on the receiver decreases in amplitude as a function of the time elapsed since transmission. The time gain control (TGC) system helps achieve the best possible signal-to-noise ratio (SNR), even with the decreasing signal amplitude. When the image is displayed, similar materials have similar brightness, regardless of depth. Linear-in-dB gain, which means the decibel gain is a linear function of the control voltage (V_{CNTL}), is used to generate this image. There are multiple approaches for a TGC control circuit that are based on the type of DAC. \boxtimes 8-4 shows a high-level block diagram for the topology using a current-output multiplying DAC (MDAC) to generate the drive for V_{CNTL}. The op amp used for current-to-voltage (I-to-V) conversion must have low-voltage noise, as well as low-current noise density. The current density helps reduce the overall noise performance because of the DAC output configuration. The DAC output can go up to ± 10 V; therefore, the op amp must have bipolar operation. The OPAx210 is used here because of the low-voltage noise density of 2.2 nV/ $\sqrt{\text{Hz}}$, low-current noise density of 500 fA/ $\sqrt{\text{Hz}}$, rail-to-rail output, and the ability to accept a wide supply range of ± 2.25 V to ± 18 V and provide rail-to-rail output. The low offset voltage and offset drift of the OPAx210 facilitate excellent dc accuracy for the circuit. The OPAx210 is used to filter and buffer the 10-V reference voltage generated by the REF5010. The REF5010 serves as the reference voltage for the DAC8802, which generates a current output on I_{OUT} corresponding to the digital input code. The I_{OUT} pin of the DAC8802 is connected to the virtual ground (negative terminal) of the OPAx210; the feedback resistor (R_{FB} is internal to the DAC8802) is connected to the output of the OPAx210, and results in a current-to-voltage conversion. The output of the OPAx210 has a range of -10 V to 0 V, which is fed to the THS4130 configured as a Sallen-Key filter. Finally, the 10-V range is attenuated down to a 1.5-V range, with a common-mode voltage of 0.75 V using a resistive attenuator. See the 2.3-nV/ \sqrt{Hz} , Differential, Time Gain Control DAC Reference Design for Ultrasound for an in-depth analysis of 8 N-4. 图 8-4. Block Diagram for Time Gain Control System for Ultrasound # 9 Power Supply Recommendations The OPAx210 are specified for operation from 4.5 V to 36 V (± 2.25 V to ± 18 V); many specifications apply
from – 40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in # 6.7. ## 10 Layout ## 10.1 Layout Guidelines For best operational performance of the device, use good printed circuit board (PCB) layout practices, including the following guidelines: - Noise from the amplifier can propagate into other analog circuits through the power pins of the amplifiers. Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-supply applications. - Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. - To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than running in parallel with the noisy trace. - Place the external components as close to the device as possible. - Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. - Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. - For best performance, clean the PCB following board assembly. - Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, bake the PCB to remove moisture introduced into the device packaging during the cleaning process. A low-temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. #### 10.2 Layout Example 图 10-1. OPA2210 Layout Example ## 11 Device and Documentation Support # 11.1 Device Support ### 11.1.1 Development Support ### 11.1.1.1 TINA-TI™ Simulation Software (Free Download) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI™ simulation software is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI simulation software provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities. Available as a free download from the Analog eLab Design Center, TINA-TI simulation software offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool. #### **Note** These files require that either the TINA software or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI software folder. ## 11.1.1.2 DIP Adapter EVM The DIP Adapter EVM tool provides an easy, low-cost way to prototype small, surface-mount integrated circuits (ICs). The EVM includes footprint options for the following TI packages: - D or U (SOIC-8) - PW (TSSOP-8) - DGK (VSSOP-8) - DBV (SOT23-6, SOT23-5 and SOT23-3) - DCK (SC70-6 and SC70-5) - DRL (SOT563-6) The DIP Adapter EVM may also be used with terminal strips or may be wired directly to existing circuits. #### 11.1.1.3 Universal Operational Amplifier EVM The Universal Op Amp evalutaion module (EVM) is a series of general-purpose, blank circuit boards that simplify prototyping circuits for a variety of IC package types. The EVM board design allows many different circuits to be constructed easily and quickly. Five models are offered, with each model intended for a specific package type. The PDIP, SOIC, VSSOP, TSSOP, and SOT-23 packages are all supported. #### Note These boards are unpopulated, so users must provide their own ICs. TI recommends requesting several op amp device samples when ordering the Universal Op Amp EVM. #### 11.1.1.4 TI Precision Designs TI Precision Designs are analog solutions created by TI's precision analog applications experts. These designs offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. ## 11.1.1.5 WEBENCH® Filter Designer The WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH® Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners. Available as a web-based tool from the WEBENCH® Design Center, the WEBENCH® Filter Designer allows you to design, optimize, and simulate complete multistage active filter solutions within minutes. ## 11.2 Documentation Support #### 11.2.1 Related Documentation The following documents are relevant to using the OPAx210 and recommended for reference. All are available for download at www.ti.com (unless otherwise noted): - Texas Instruments, OPA827 Low-Noise, High-Precision, JFET-Input Operational Amplifier data sheet - Texas Instruments, OPA2x11 1.1-nv/√Hz Noise, Low-Power, Precision Operational Amplifier data sheet - Texas Instruments, OPA210, OPA2210, OPA4210 EMI Immunity Performance technical brief - Texas Instruments, OPAx209 2.2-nV/ \(\sqrt{Hz} \), Low-Power, 36-V Operational Amplifier data sheet - Texas Instruments, Microcontroller PWM to 12-Bit Analog Out design guide - · Texas Instruments, Capacitive Load Drive Solution Using an Isolation Resistor design guide - Texas Instruments, Noise Measurement Post Amp design guide ## 11.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 11.4 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的《使用条款》。 #### 11.5 Trademarks TINA™ is a trademark of DesignSoft, Inc. TINA-TI™ and TI E2E™ are trademarks of Texas Instruments. WEBENCH® is a registered trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 11.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 11.7 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: OPA210 OPA2210 # 重要声明和免责声明 TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款 (https://www.ti.com/legal/termsofsale.html) 或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司 www.ti.com 21-Dec-2022 #### **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | OPA210IDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 26T2 | Samples | | OPA210IDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 26T2 | Samples | | OPA210IDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2D5J | Samples | | OPA210IDGKT | ACTIVE | VSSOP | DGK | 8 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2D5J | Samples | | OPA210IDR | ACTIVE | SOIC | D | 8 | 3000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA210 | Samples | | OPA210IDT | ACTIVE | SOIC | D | 8 | 250 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OPA210 | Samples | | OPA2210ID | ACTIVE | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OP2210 | Samples | | OPA2210IDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | RoHS & Green | NIPDAUAG SN | Level-2-260C-1 YEAR | -40 to 125 | 10HQ | Samples | | OPA2210IDGKT | ACTIVE | VSSOP | DGK | 8 | 250 | RoHS & Green | NIPDAUAG SN | Level-2-260C-1 YEAR | -40 to 125 | 10HQ | Samples | | OPA2210IDR | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OP2210 | Samples | | OPA2210IDRGR | ACTIVE | SON | DRG | 8 | 3000 | RoHS & Green
| NIPDAU | Level-1-260C-UNLIM | -40 to 125 | O2210 | Samples | | OPA2210IDRGT | ACTIVE | SON | DRG | 8 | 250 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | O2210 | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". # PACKAGE OPTION ADDENDUM www.ti.com 21-Dec-2022 - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. www.ti.com 9-Aug-2022 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | OPA210IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA210IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.23 | 3.17 | 1.37 | 4.0 | 8.0 | Q3 | | OPA210IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA210IDGKT | VSSOP | DGK | 8 | 250 | 180.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA210IDR | SOIC | D | 8 | 3000 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA210IDT | SOIC | D | 8 | 250 | 180.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA2210IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA2210IDGKT | VSSOP | DGK | 8 | 250 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA2210IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA2210IDRGR | SON | DRG | 8 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | OPA2210IDRGT | SON | DRG | 8 | 250 | 180.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 9-Aug-2022 *All dimensions are nominal | 7 til dilliciololio ale nominal | | | | | | | | |---------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | OPA210IDBVR | SOT-23 | DBV | 5 | 3000 | 213.0 | 191.0 | 35.0 | | OPA210IDBVT | SOT-23 | DBV | 5 | 250 | 213.0 | 191.0 | 35.0 | | OPA210IDGKR | VSSOP | DGK | 8 | 2500 | 356.0 | 356.0 | 35.0 | | OPA210IDGKT | VSSOP | DGK | 8 | 250 | 210.0 | 185.0 | 35.0 | | OPA210IDR | SOIC | D | 8 | 3000 | 356.0 | 356.0 | 35.0 | | OPA210IDT | SOIC | D | 8 | 250 | 210.0 | 185.0 | 35.0 | | OPA2210IDGKR | VSSOP | DGK | 8 | 2500 | 366.0 | 364.0 | 50.0 | | OPA2210IDGKT | VSSOP | DGK | 8 | 250 | 366.0 | 364.0 | 50.0 | | OPA2210IDR | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | OPA2210IDRGR | SON | DRG | 8 | 3000 | 367.0 | 367.0 | 35.0 | | OPA2210IDRGT | SON | DRG | 8 | 250 | 210.0 | 185.0 | 35.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 9-Aug-2022 ## **TUBE** ### *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | | |-----------|--------------|--------------|------|-----|--------|--------|--------|--------|--| | OPA2210ID | D | SOIC | 8 | 75 | 506.6 | 8 | 3940 | 4.32 | | SMALL OUTLINE TRANSISTOR #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-178. - 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side. SMALL OUTLINE TRANSISTOR NOTES: (continued) - 5. Publication IPC-7351 may have alternate designs. - 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE TRANSISTOR NOTES: (continued) ^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ^{8.} Board assembly site may have different recommendations for stencil design. SMALL OUTLINE INTEGRATED CIRCUIT ## NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # DGK (S-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. # DGK (S-PDSO-G8) # PLASTIC SMALL OUTLINE PACKAGE #### NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # DRG (S-PWSON-N8) # PLASTIC SMALL OUTLINE NO-LEAD - NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - C. SON (Small Outline No-Lead) package configuration. - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product
Data Sheet for details regarding the exposed thermal pad dimensions. - E. JEDEC MO-229 package registration pending. PLASTIC SMALL OUTLINE - NO LEAD #### NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. # 重要声明和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司