

SURMOUNT™ 15µM PIN Diodes RoHS Compliant

Rev. V6

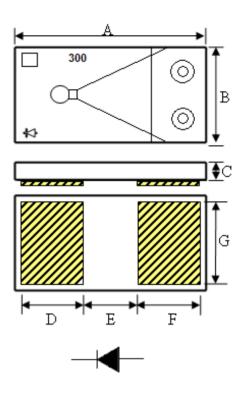
Features

- ♦ 0603 Outline
- ♦ Surface Mount
- ♦ 15µm I-Region Length Devices
- ♦ No Wirebonds Required
- ♦ Silicon Nitride Passivation
- ♦ Polymer Scratch Protection
- ♦ Low Parasitic Capacitance and Inductance
- ♦ High Average and Peak Power Handling

Description

This device is a silicon, glass PIN diode surmount chip fabricated with M/A-COM Technology Solutions patented HMICTM process. This device features two silicon pedestals embedded in a low loss, low dispersion glass. The diode is formed on the top of one pedestal and connections to the backside of the device are facilitated by making the pedestal sidewalls electrically conductive. Selective backside metallization is applied producing a surface mount device. This vertical topology provides for exceptional heat transfer. The topside is fully encapsulated with silicon nitride and has an additional polymer layer for scratch and impact protection. These protective coatings prevent damage to the junction and the anode air-bridge during handling and assembly.

Applications


These packageless devices are suitable for usage in moderate incident power, $\leq 50 \text{dBm/C.W.}$ or where the peak power is $\leq 75 \text{dBm}$, pulse width is $\leq 1 \mu \text{S}$, and duty cycle is $\leq 0.01\%$. Their low parasitic inductance, 0.4 nH, and excellent RC constant, make these devices a superior choice for higher frequency switch elements when compared to their plastic package counterparts.

Absolute Maximum Ratings¹ @T_{AMB} = +25°C (unless otherwise specified)

Parameter	Absolute Maximum					
Forward Current	500 mA					
Reverse Voltage	- 115 V					
Operating Temperature	-55°C to +125°C					
Storage Temperature	-55 °C to +150°C					
Junction Temperature	+175°C					
C.W. Incident Power	50dBm					
Mounting Temperature	+280°C for 30 seconds					

1) Exceeding these limits may cause in permanent damage

Case Style ODS 1314

Chip Dimensions

DIM	INC	HES	ММ		
	Min	Max	Min	Max	
Α	0.060	0.062	1.525	1.575	
В	0.031	0.032	0.775	0.825	
С	0.004	0.008	0.102	0.203	
D	0.019	0.021	0.475	0.525	
Е	0.019	0.021	0.475	0.525	
F	0.019	0.021	0.475	0.525	
G	0.029	0.031	0.725	0.775	

Notes:

- 1) Backside metal: 0.1microns thick.
- Yellow area with hatch lines indicate backside ohmic gold contacts
- 3) Both devices have same outline dimensions (A to G).

SURMOUNT™ 15µM PIN Diodes RoHS Compliant

Rev. V6

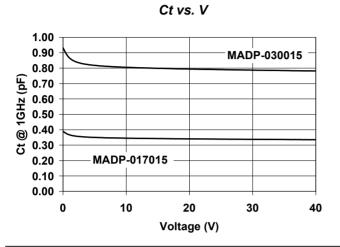
Electrical Specifications @ T_A = 25°C (unless otherwise noted)

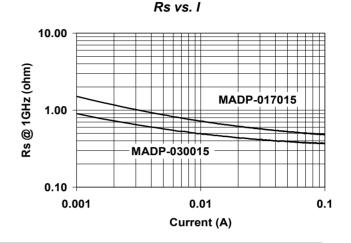
Parameter	Symbol	Conditions	Units	Min	Тур	Ma x	Min	Тур	Max	
				MADP-017015			MADP-030015			
Capacitance	C_T	-40 V, 1 MHz ^{1,3}	pF		0.32	0.3		0.79	0.85	
Capacitance	Ст	-40V, 1 GHz ^{1,3}	pF		0.31			0.78		
Capacitance, 85°C	C_T	-40 V, 1 GHz ^{1,3}	pF		0.29			0.76		
Resistance	R _S	+10 mA, 1 GHz ^{2,3}	Ω		0.72			0.49		
Resistance	R _S	+70 mA, 1 GHz ^{2,3}	Ω		0.51			0.38		
Resistance, 85°C	R _S	+10 mA, 1 GHz ^{2,3}	Ω		1.08			0.82		
Resistance, 85°C	R _S	+70 mA, 1 GHz ^{2,3}	Ω		0.84			0.69		
Forward Voltage	V_{F}	+10 mA	V		0.74	0.9 0		0.72	0.90	
Reverse Leakage Current	I _R	-115 V	uA		-	10		-	10	
Third Order Intercept Point	IP ³	F1= 1800 MHz F2 = 1810 MHz Input Power = 0 dBm I bias = +70 mA	dBc		-36.8			- 37. 0		
Thermal Resistance	θ		°C/W		30			13		
Lifetime	TL	+10 mA / -6 mA (50% - 90% V)	uS		1.3			1.6		

Notes:

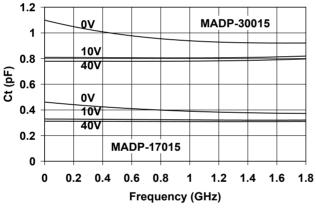
- 1) Total capacitance, C_T, is equivalent to the sum of Junction Capacitance, Cj, and Parasitic Capacitance, Cpar.
- 2) Series resistance R_S is equivalent to the total diode resistance : Rs = Rj (Junction Resistance) + Rc (Ohmic Resistance)
- 3) Rs and C_T are measured on an HP4291A Impedance Analyzer with the die mounted in an ODS-186 package.
- 4) Theta (θ) is measured with the die mounted in an ODS-186 package .

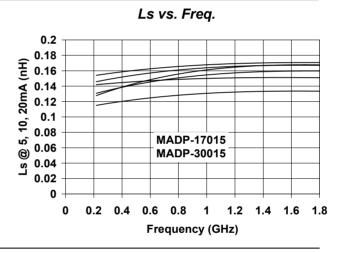
Typical Spice Parameters @ T_{AMB} = +25°C

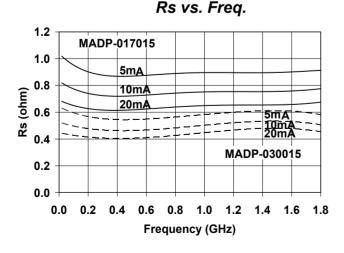

Spice Parameter	N	RS	IS	IK	BV	IBV	Ct	CJO	٧J	M	FC	Cpar_Cj
Units	-	Ω	Α	(mA)	(Volts)	(μ A)	(pF)	(pF)	(Volts)	-	-	(F)
MADP-017015-1314	1.1	1.2	9.8E-15	14.7	145	10	0.46	0.10	0.29	0.50	0.34	3.5E-13
MADP-030015-1314	1.1	1.1	8.5E-15	13.9	145	10	1.12	0.29	0.18	0.50	0.19	8.2E-13

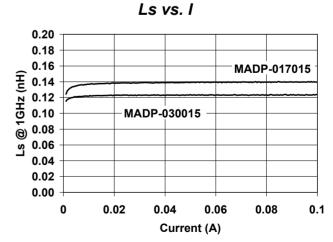


SURMOUNT™ 15µM PIN Diodes **RoHS Compliant**


Rev. V6






٥V 1 10V 40V

Ct vs. Freq.

SURMOUNT™ 15µM PIN Diodes RoHS Compliant

Rev. V6

Handling Procedures

All semiconductor chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pickups is strongly recommended for individual components. Bulk handling should insure that abrasion and mechanical shock are minimized.

Bonding Techniques

Attachment to a circuit board is made simple through the use of surface mount technology. Mounting pads are conveniently located on the bottom surface of these devices and are removed from the active junction locations. These devices are well suited for solder attachment onto hard and soft substrates. The use of 80Au/20Sn, or RoHS compliant solders is recommended. For applications where the average power is ~1W, conductive silver epoxy may also be used. Cure per manufacturers recommended time and temperature. Typically 1 hour at 150°C.

When soldering these devices to a hard substrate, hot gas die bonding is preferred. A vacuum tip pick-up tool and a force of 60 to100 grams applied to the top surface of the device is recommended. When soldering to soft substrates, such as Duroid, it is recommended to use a soft solder at the circuit board to mounting pad interface. Position the die so that its mounting pads are aligned with the circuit board mounting pads. While applying a downward force perpendicular to the top surface of the die, apply heat near the circuit trace and diode mounting pad. The solder connection to the two pads should not be made one at a time as this will create unequal heat flow and thermal stress to the part. Solder reflow should not be performed by causing heat to flow through the top—surface of the die to the back. Since the HMIC glass is transparent, the edges of the mounting pads can be visually inspected through the die after attachment is completed.

Typical re-flow profiles for Sn60/Pb40 and RoHS compliant solders is provided in <u>Application Note M538</u>, "Surface Mounting Instructions" and can viewed on the MA-COM website @ www.macomtech.com

Ordering Information

Gel Pack
MADP-017015-13140G
MADP-030015-13140G

MADP-017015-1314 MADP-030015-1314

SURMOUNT™ 15µM PIN Diodes RoHS Compliant

Rev. V6

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.