BC807, BC808 ### **Small Signal Transistors (PNP)** #### **SOT-23** Dimensions in inches and (millimeters) Pin configuration 1 = Base, 2 = Emitter, 3 = Collector. #### **FEATURES** PNP Silicon Epitaxial Planar Transistors for switching, AF driver and amplifier applications. - Especially suited for automatic insertion in thick- and thin-film circuits. - These transistors are subdivided into three groups -16, -25 and -40 according to their current gain. - As complementary types, the NPN transistors BC817 and BC818 are recommended. #### **MECHANICAL DATA** Case: SOT-23 Plastic Package Weight: approx. 0.008 g Marking code | Туре | Marking | |----------|---------| | BC807-16 | 5A | | -25 | 5B | | -40 | 5C | | BC808-16 | 5E | | -25 | 5F | | -40 | 5G | ### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | | Symbol | Value | Unit | |--|----------------|-------------------|-------------------|------| | Collector-Emitter Voltage | BC807
BC808 | -V _{CES} | 50
30 | V | | Collector-Emitter Voltage | BC807
BC808 | -V _{CEO} | 45
25 | V | | Emitter-Base Voltage | | -V _{EBO} | 5 | V | | Collector Current | | -I _C | 500 | mA | | Peak Collector Current | | -I _{CM} | 1000 | mA | | Peak Base Current | | -I _{BM} | 200 | mA | | Peak Emitter Current | | I _{EM} | 1000 | mA | | Power Dissipation at T _{SB} = 50 °C | | P _{tot} | 310 ¹⁾ | mW | | Junction Temperature | | Tj | 150 | °C | | Storage Temperature Range | | T _S | -65 to +150 | °C | | 1) Device on fiberglass substrate, see layou | t | | | ı | # BC807, BC808 ### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |--|---|---------------------------------------|-----------------------|-----------------------------|------------------| | DC Current Gain at $-V_{CE}$ = 1 V, $-I_{C}$ = 100 mA
Current Gain Group-16
-25
-40
at $-V_{CE}$ = 1 V, $-I_{C}$ = 300 mA
-16
-25
-40 | h _{FE}
h _{FE}
h _{FE}
h _{FE}
h _{FE} | 100
160
250
60
100
170 | -
-
-
-
- | 250
400
600
-
- | -
-
-
- | | Thermal Resistance Junction Substrate Backside | R _{thSB} | _ | _ | 3201) | K/W | | Thermal Resistance Junction to Ambient Air | R _{thJA} | _ | _ | 450 ¹⁾ | K/W | | Collector Saturation Voltage
at -I _C = 500 mA, -I _B = 50 mA | -V _{CEsat} | _ | _ | 0.7 | V | | Base-Emitter Voltage
at -V _{CE} = 1 V, -I _C = 300 mA | -V _{BE} | _ | _ | 1.2 | V | | Collector-Emitter Cutoff Current at $-V_{CE}$ = 45 V BC807 at $-V_{CE}$ = 25 V BC808 at $-V_{CE}$ = 25 V, T_j = 150 °C | -I _{CES}
-I _{CES} | _
_
_ | -
-
- | 100
100
5 | nA
nA
μA | | Emitter-Base Cutoff Current at –V _{EB} = 4 V | -I _{EBO} | _ | _ | 100 | nA | | Gain-Bandwidth Product
at $-V_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $f = 50 \text{ MHz}$ | f _T | _ | 100 | _ | MHz | | Collector-Base Capacitance at –V _{CB} = 10 V, f = 1 MHz | C _{CBO} | | 12 | | pF | | Device on fiberglass substrate, see layout | - | 1 | - | 1 | - | Layout for $R_{thJA}\ test$ Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm) ### **RATINGS AND CHARACTERISTIC CURVES BC807, BC808** ## Admissible power dissipation versus temperature of substrate backside Device on fiberglass substrate, see layout # Pulse thermal resistance versus pulse duration (normalized) Device on fiberglass substrate, see layout ## Collector current versus base-emitter voltage ## Gain-bandwidth product versus collector current ### **RATINGS AND CHARACTERISTIC CURVES BC807, BC808** ## Collector saturation voltage versus collector current Base saturation voltage versus collector current ## DC current gain versus collector current Common emitter collector characteristics ## **RATINGS AND CHARACTERISTIC CURVES BC807, BC808** ## Common emitter collector characteristics # Common emitter collector characteristics