

AN-6609

Selecting the Best JFET for Your Application

Introduction

This application note contains design curves for all of Fairchild Semiconductor discrete JFET processes. JFET process characteristics provide complete information on all processes, including all parts manufactured from a particular process. This can greatly aid device selection or substitution. In all cases, temperature and $V_{\rm GS}({\rm off})$ distribution data is provided to facilitate worst-case design. In addition, a complete list of all device types supplied from this process is included to aid in cross reference searches and the selection of preferred device types. Preferred parts are shown with gray overprinting. The curves in this section should be considered typical of the process supplied by Fairchild Semiconductor. Every effort is made to keep the process in tolerance with the published graphs, but the exact distribution of any specific lot of material is not guaranteed.

How to use the Application Note

The following suggested procedure will help you find the device you need.

Part Number Known: Go to the Fairchild web site and type in the part number. If alternate type is required, refer to the online cross reference guide.

Specification Known: Refer to Figure 2, "JFET Process Family Tree" on page 4 of this application note to find the most compatible process. Then turn to Figure 3, "JFET Process Comparison Curves", on page 6 to compare the specifications of each process type. Finally, turn to page 16 for a detailed listing of process characteristics and specific

device type numbers available in that process. Take special note of preferred part types. Full data sheets are available on line.

Application Known: Turn to "Choose the Proper FET" and Figure 2, "JFET Process Tree" on page 4. Also Table 2, "Advantages of Using JFET by Application on page 3. Finally, refer to 0, "Applications and Their Parameters in Approximate Order of Importance" on page 2 as needed.

None of the Above: Contact local representative or regional office for assistance.

JFET Application Guide

Fairchild Semiconductor manufactures a broad line of silicon junction field effect transistors (JFETs). Fairchild's JFETs provide excellent performance in many application areas such as RF amplifiers, analog switching low input current amplifiers, ultra low noise amplifiers and outstanding matched duals for operational amplifiers input applications.

Table 1 is a guide to enable the user to determine what parameters are important in each application. This followed by a listing of JFET Parameter Relationships in Figure 1. Table 2 lists many application advantages of JFETs by application.

Table of Contents

Table 1. Applications and Their Parameters in Approximate Order of Importance

LOW FREQUENCY AMPLIFIER	SOURCE FOLLOWER	ELECTROMETER AMPLIFIERS	LOW DRIFT AMPLIFIER	LOW NOISE AMPLIFIER	HIGH FREQUENCY AMPLIFIER	OSCILLATOR	DIFFERENTIAL AMPLIFIER	ANALOG AND DIGITAL SWITCHING
Y _{fs} I _{DSS}	Y _{fs} IG	IG Yfs	IDZ Y _{fs} @ IDZ	e _n IG, i _n	Re(Y _{fs}) Re(Y _{is})	Y _{fs} I _{DSS}	VGS1-VGS2 Δ VGS1-VGS2 ΔT	rDS(ON) ID(OFF)
VGS(OFF) C _{iss} C _{rss} e _n BVGSS	C _{rss} C _{iss} IDSS VGS(OFF) BVGSS	IDZ ^e n ^g os	VGS ^{@ I} DZ IG BVGSS	Yfs IDSS VGS(OFF)	NF C _{rss} Re(Y _{OS}) IDSS VGS(OFF)	C _{rss} C _{iss} VGS(OFF) BVGSS	IG1- G2 IG- Yfs Yfs1/Yfs2 Yos1-Yos2 CMRR VGS(OFF)	C _{iss} C _{rss} VGS(OFF) BVGSS

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{GS(OFF)}}\right)^{2} \quad \begin{array}{c} \text{Variation of drain current with gate bias.} \\ \text{Square low transfer characteristic.} \\ \text{VGS(OFF)} = \frac{2 I_{DSS}}{9 f_{SO}} \quad \begin{array}{c} \text{Gate-source cutoff voltage in terms of IDSS} \\ \text{and } g_{fSO} \end{array} \quad \begin{array}{c} \text{TDS} \approx \frac{1}{9 f_{S}} \quad \begin{array}{c} \text{Relationship between} \\ \text{TDS} = \frac{1}{9 f_{S}} \\ \text{VGS(OFF)} \end{array} \quad \begin{array}{c} \text{Relationship between} \\ \text{TDS} = \frac{1}{9 f_{S}} \\ \text{VGS(OFF)} \end{array} \quad \begin{array}{c} \text{Relationship between} \\ \text{TDS} = \frac{1}{9 f_{S}} \\ \text{VGS(OFF)} \end{array} \quad \begin{array}{c} \text{Relationship between} \\ \text{TDS} = \frac{1}{9 f_{S}} \\ \text{VGS(OFF)} \end{array} \quad \begin{array}{c} \text{Relationship between} \\ \text{TDS} = \frac{1}{9 f_{S}} \\ \text{VGS(OFF)} \end{array} \quad \begin{array}{c} \text{Variation of drain resistance with gate bias in terms zero bias resistance with gate bias in terms zero bias resistance (rDSO) and VGS(OFF).} \\ \text{VGS(OFF)} \\ \text{VGS(OFF)} \\ \text{Variation of drain resistance of IDSS} \\ \text{VGS(OFF)} \\ \text{Variation of drain resistance of IDSS} \\ \text{VGS(OFF)} \\ \text{Variation of drain resistance of IDSS} \\ \text{VGS(OFF)} \\ \text{Variation of drain resistance of IDSS} \\ \text{VGS(OFF)} \\ \text{Voriation of drain resistance in terms of VGS(OFF)} \\ \text{VGS(OFF)} \\ \text{Voriation of drain resistance in terms of VGS, and VGS(OFF)} \\ \text{VGS(OFF)} \\ \text{VGS(OFF)} \\ \text{Voriation of ON resistance as a function of ductance with gate bias.} \\ \text{Voriation of ON resistance as a function of temperature.} \\ \text{Voriation of temperature.} \\ \text{Vori$$

Figure 1. JFET Parameter Relationships

APPLICATION NOTE

Table 2. Advantages of JFET by Application

APPLICATION	ADVANTAGES	FINAL ASSEMBLY WHERE USED
DC Amplifiers	High Z _{in} Low drift duals Low noise	Transducers, military guidance systems, control systems, temp indicators, multimeters
Low frequency amplifiers	Small coupling capacitors Low noise, distortion High input impedance	Sound detection, microphones, inductive transducers, hearing aids, high impedance transducers
Operational amplifiers	Summing point essentially zero. Low device noise. Less loading of transducers	Control systems, potted op amps, test equipment, medical electronics
Medium and high frequency amplifiers	Low cross modulation Low device noise Simplified circuitry	FM tuners, communication received scope inputs, most instrumentation equipment, high impedance inputs
Mixers — 100 MHz and up	Low mixing noise Low cross modulation	FM tuners, communication receivers
Oscillators	Low drift	Transmitters, receivers, organ
Logic gates	Virtually infinite fan in Simplified circuitry Zero storage time Symmetrical	Guidance controls, computer market mini military teaching aids, traffic control, telemetry
Choppers	Zero offset Low leakage currents Simplified circuitry Eliminates input transformers	Op amp modules guidance controls instrumentation equipment
AD Converters Multiplex switching (arrays) and sample hold	Improved isolation of input and output. Zero offset. Symmetrical. Low resistance Simplified circuitry	Control system, DVM's and any read- out equipment, medical electronics
Relay contact replacement	Solid state reliability Zero offset, High isolation Symmetrical No inductive spring No contact bounce High repetition rate	Test equipment, airborne equipment instrumentation market
Voltage variable resistor	Symmetrical Solid state reliability Functions as variable resistor. Low noise. High isolation Improved resolution	Organ, tone controls, control ckts to input operational amplifiers
Current limiters Sources	Two lead simplicity Wide selection range Low voltage operation	Hybrid circuits, amplifiers, power supply protection, timing ckts, voltage regulators

Choose the Proper JFET

Fairchild Semiconductor utilizes 17 different JFET geometries to cover, without compromise, the full spectrum of applications. Specific part number characteristics are summarized into application areas further on within this app note. In addition, this app note includes process comparison charts which graphically indicate the typical values of a given parameter for all geometries under identical test

conditions. Detailed data on each process, along with a list of all part numbers manufactured from each process, is also supplied.

Figure 2, gives a look at the characteristics for each process type to help the designer select the process that best meets his requirements. Table 3 shows which application the process was designed to best serve. After narrowing down the process types, it is suggested that the process sheets and specific part number characteristics be consulted.

Figure 2. The JFET Process Family Tree

Table 3. Part Number and Process Application Recommendations

POPULAR PRODUCT TYPES	2N4416, 2N5485, 6 PN4416, PN4302-4	2N4856-61, 2N4391-3 PN4856-61, PN4391-3	2N4338-41, 2N3684-7	2N4117-9, 2N3452-4 2N4117A-19A	2N3821-2, 2N4221-2 2N5457-9	2N5432-4	2N5196-9, 2N5545-7 2N3954-8	2N5902-9	U421-U426	2N5018-21, P1086-7E 2N5114-6	2N2608-9, 2N5460-62	2N5397, J300	U308-10, J308-10	2N5911-12	NDF9401-10	2N5515-24, 2N6483-5	2N5564-6	2N5561-63
PROCESS DESIGNATION	50	51	52	53	55	58	83	84	86	88	89	90.	92	93	94	95	96	98
Low Current Amplifier	50, 500, 50		S	Р	S		Р	Р	Р		Р				Р	Р		Р
Low Freq Ampli ≤ 100 Hz			S		S		Р			S	S				. Р	Р		Р
High Freq Ampli > 100 MHz	Р											Р	Р	Р			Р	
General Purpose Amplifier	Р		Р		Р						P							
Low Naise Amp (10 Hz en)	S	S			S	S	Р								Р	Р	Р	Р
Low Noise Amp > 50 MHz	Р				S							Р	Р	Р			Р	
High Frequency Mixer	Р											Р	P					
Dual Diff Pair							Р	Р	Р	-				Р	Р	S	Р	Р
AGC Amplifier	Р				Р		+											
Electrometer Preamp				Р				Р	Р						Р			S
Microvolt Amplifier				Р				Р	Р						Р			Р
Low Leakage Diode				Р														
Diff/Angle Ended Inp. Stag.							Р	Р	Р					Р	Р		Р	Р
Active Filter	Р		S		Р	93					S							
Oscillator	Р		S		Р						S	Р	Р					
Voltage Variable Resistor	Р	Р	S		Р					P	Р							Р
Hybrid Chips	Р	Р		Р	Р		P	Р	Р	Р	Р				Р			
Analog/Digital Switch		P				Р				P							S	S
Multiplexing	Р	Р			S	S				P								
Choppers		Р				Р				P		10					Р	
Nixie Drivers																		
Reed Relay Replacement						Р												
Sub pA Dual Diff Pair								Р	Р									
Sample-Hold	Р	P			S				S	P								P.
Buffer Interface to CMOS										P	Р							
Matched Switch							S							S	S		Р	Р
HF ≥ 400 MHz Prime												Р	Р					
Current Limiter		Р								P								
Current Source	<u></u>	<u></u>	Р	S	Р	<u> </u>	<u> </u>		<u> </u>	<u></u>	S	L	<u></u>	<u> </u>	<u></u>		L	<u> </u>

P - Prime Choice S - Secondary (Alternate) Choice

Figure 3. JFET Process Comparison Curves

Figure 4. JFET Process Comparison Curves (Continued)

JFET Characteristic Selection Guide

Table 4. N-Channel Selection Guide: Switches and Choppers

Type No.		VGSS VGDO @ IG (μA)	IG *ID (nA) @ Max		(nA) Max	ID(off) VDS (V)	V _{GS}	(V Min	V () Max [©]	Vne	I _D (nA)	(m Min	IDSS (A) Max	V _{DS}	101	(on) @ ^I D (mA)	(pF) Max	C _{iss} V _{DS} (V)	V _{GS}	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS}	t _{on} (ns) Max	^t off (ns) Max	Process No.
2N3824	50	1	0.1	30	0.1	15	-8		8	15	1				250		6	15	0	3	0	-8			55
2N3966	30	1	1	20	0.1	10	-7	4	6	10	10	2		20	220		6	20	0	1.5	0	-7			50
2N3970	40	1	0.25*	20	0.25	20	-12	4	10	20	1	50	150	20	30	1	25	20	0	6	0	-12	20	30	51
2N3971	40	. 1 .	0.25*	20	0.25	20	12	2	5	20	1	25	75	20	60	1	25	20	0	6	0	-12	30	60	51
2N3972	40	-1	0.25*	20	0.25	20	-12	0.5	3	20	1	5	30	20	100	1	25	20	0	6	0	-12	80	100	51
◆2N4091	40	-1	0,2*	-20	0.2	20	-12	5	10	20	1	30		20	30	4.4	16	20	0	5	0	20	25	40	51
•2N4092	40	5 1	0.2*	20	0.2	20	-8	2	7	20	1.	15		20	50	1	1.6	20	0	-5	0	20	35	60	51
•2N4093	40	10	0.2*	20	0.2	20	-6	1	5	20	1	8		20	80	1	16	20	0	5	0	-20	60	80	51
2N4391	40	1	0.1	20	0.1	20	-12	4	10	20	1	_ 50	150	20	30		14	- 20	0	3.5	0	-12	20	35	51
2N4392	40	1	0.1	20	0,1	20	7	2	5	20	1	25	75	20	60	1	14	20	0	3.5	0	-7	20	55	51
2N4393	40	1	0.1	20	0.1	20	-5	0.5	3	20	1	5	30	20	100	1	14	20	0	3.5	0	5	20	80	51
◆2N4856	40	1	0.25	20	0.25	15	-10	4	10	15	.5	50		- 15	25		18	0	-10	8	0	-10	9	25	51
2N4856A	40	1	0.25	20	0.25	15	-10	4	10	15	.5	50		15	25		10	0	-10	4	0	-10	8	20	51
•2N4857	40	1	0.25	20	0.25	15	-10	2	6	15	.5	20	100	15	40		18	0	10	8	0	10	10	50	51
2N4857A	40	1	0.25	20	0.25	15	-10	2	6	15	.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51
◆2N4858	40	8 (8 1 %)	0.25	20	0.25	15	-10	8,0	4	15	.5	8 .	80	15	60		18	0	-10	8	0	-10	20	100	51
2N4858A	40	1	0.25	20	0.25	15	-10	0.8	4	15	.5	8	80	15	60		10	0	-10	3.5	0	-10	16	80	51
•2N4859	30	1	0.25	15	0.25	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
2N4859A	30	1	0.25	15	0.25	15	-10	4	10	15	.5	50		15	25		10	0	-10	4	0	-10	8	20	51
•2N4860	30	1	0.25	15	0.25	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	51
2N4860A	30	1	0.25	15	0.25	15	-10	2	6	15	.5	20	100	15	40		10	0	-10	3.5	0	-10	10	40	51
●2N4861	30	1	0.25	15	0.25	15	-10	0.8	4	15	.5	8	80	15	60		18	0	-10	8	0	-10	20	100	51
2N4861A	30	1	0.25	15	0.25	15	-10	0.8	4	15	.5	8	80	15	60		10	0	-10	3.5	0	-10	16	80	51
2N5432	25	t,	0.2	15	0.2	5	-10	4	10	5	3	150		15	5	10	30	0	-10	15	0	10	5	36	58
2N5433	25	1.1	0.2	15	-0.2	5	-10	3	9	- 5	3	100		15	7	10	30	0	-10	15	0	-10	5	36	58
2N5434	25	1	0.2	15	0.2	5	-10	1	4	5	3	30		15	10	10	30	0	-10	15	0	-10	5	36	58
2N5555	25	10	1	15	10	12	-10		(10)			15		15 -	150		5	15	0	1.2	0	-10	10	25	50

• Note. JAN qualified per applicable MIL-S-19500 specification.

Type No.	BV ₀ BV ₀ (V) @ Min	GDO	*1	GSS DGO @ VDG (V)	(nA) Max	D(off) @ V _{DG} (V)	V _{GS}	(\ Min	/) Max	V _p V _{DS}	I _D (nA)	(n Min	IDSS nA) Max [@]	V _{DS}	rds (Ω) (Max	(on) D (mA)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS}	(pF) @	C _{rss} V _{DS} (V)	V _{GS} (V)	ton (ns) Max	^t off (ns) Max	Process No.
2N5638	30	10	T	15	1 %	15	12		(12)			50		20	30	1 =	10	0	-12	4	0	-12			51
2N5639	30	10	1	15	1	15	-8		(8)		10.5	25		20	60	1	10	0	-12	4	0	-8	4		51
2N5640	30	10	1	15	1	15	-6		(6)			5		20	100	1	10	0	12	4	0	-6			51
2N5653	30	10	1	15	: 1	15	-12		(12)			40		20	50	1	10	0	-12	3.5	0	-12	9	15	51
2N5654	25	10	1	15	10	15	-8		(8)			15		20	100	1	10	. 0	-12	3.5	0	-8	14	30	51
J108	25	1	3	15	3	5	-10	3	10	5	1000	80		15	8	10	t30	0	-10	t15	0	-10	t5	t36	58
J109	25	1	3	15	3	5	-10	2	6	5	1000	40		15	- 12	10	t30	0	-10	t15	0	10	t5	t36	58
J110	25	1	3	15	3	5	-10	.5	4	5	1000	10		15	18	10	130	0 -	-10	t15	0_	10	15	t36	58
J111	35	1	1	15	1	5	-10	3	10	5	1000	20		15	30	1	t10	0	-10	t5	0	-10	t13	t35	51
J112	35	1	1	15	1-	5	10	1	- 5	. 5	1000	5	ue.	15	50	1	t10	0	-10	t5	0	-10	113	t35	51
J113	35	1	1	15	1	5	-10	.5	3	5	1000	2		15	100	1	t10	0	-10	t5	0	-10	t13	t35	51
J114	25	1	1	15	1	5	10	3	10	5	1000	15		15	150	1	t4	0	-10	t2	0	-10	t6	t20	90
PN4091	40	1	1*	20	1	20	-12	- 5	10	20 -	1	30		20	30		16	20	0	5 -	20	0	25	40	51
PN4092	40	1	1*	20	1	20	-8	2	7	20	1	15		20	- 50		16	- 20	0	5	20	0	35	60	51
PN4093	40	1	1.	20	1	20	6	1	5	20	1	8 _		20	80		16	20	0	- 5	20	-0	60	80	51
PN4391	40	1	1	20	1	20	-12	4	10	20	1	50	150	20	30		14	20	0	3.5	0	-12	20	35	51
PN4392	40	1	1	20	1	20	-7	2	5	20	1 -	25	75	20	60		14	20	0	3.5	0	7	40	80	51
PN4393	40	- 1	1	20	1	20	-5	0,5	3.	20	1	5	30	20	100		14	20	-0	3.5	0	-5	55	130	51
PN4856	40	1	1	20	1	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
PN4857	40	1	1	20	1	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	.51
PN4858	40	1	1	20	1	15	-10	8,0	4	15	.5	8	80	15	60		18	0	10	8	0	-10	20	100	51
PN4859	30	1	1	15	1	15	-10	4	10	15	.5	50		15	25		18	0	-10	8	0	-10	9	25	51
PN4860	30	1	1	15.	1	15	-10	2	6	15	.5	20	100	15	40		18	0	-10	8	0	-10	10	50	51
PN4861	30	1	1.	15	1	15	-10	0.8	4	15	.5	8	80	- 15	60		18	0	-10	8	0	-10	20	100	51
TIS73	30	1	2	15	. 2	15	-10	4	10	15	4	50		15	25		18	0	~10	. 8	0	-10	9	25	51
TIS74	30	1	2	15	2	15	-10	2	6	15	4 .	20	100	15	40		18	0	-10	8	0	-10	10	50	51
TIS75	30	1	2	15	2	15	-10	8.0	4	15	4	8	80	15	60		18	0	-10	8	0	-10	20	100	51
U1897E	40	1	0.2*	20				5	10	20	1	30		20	30	1	16	20	0	5	0	-20	25	40	51
'U1898E	- 40	1	0.2*	20				2	7	20	1	15		20	50	1	16	20	0	5	0	-20	35	60	51
U1899E	40	1	0.2*	20				1	5	20	1	8		20	80	1	16	20	0	5	0	-20	60	80	51

Table 5. N-Channel Selection Guide: RF, VHF, UHF Amplifiers

Type No.	BV	/GSS /GDO @ I _G (μA)	100	GSS OGO @ V _{DG} (V)	Min		′p [®] V _{DS} (V)	I _D (nA)	(m Min	IDSS iA) Max	@ V _{DS}	R _e l (mmho) Min	-	R _e l (μmho) Max	(Y _{os}) @ f (MHz)	(pF) (Max	C _{iss} [®] V _{DS} (V)	V _{GS}	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS} (V)		IF RG = 1k Freq (MHz)	Process No.
2N3819	25	1	2	15		8	15	2	2	20	15	1.6	100			8	15	0	4	15	0			50
2N3823	30	1 .	0.5	20		8	15	.5	4	20	15	3.2	200	200	200	6	15	0	2	15	.0	2.5	100	50
2N4223	30	10	0.25	20	0.1	8	15	.25	3	18	15	2.7	200	200	200	6	15	0	2	15	0	5	200	50
2N4224	30	10	0.5	20	0.1	8	15	.5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50
2N4416	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
•2N4416A	35	1.	0.1	20	2.5	6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
2N5078	30	1	0.25	20	0.5	8	15		4	25	15	4	200	150	200	6	15	0	2	15	0	3	200	50
2N5245	30	1	1	20	. 1	6	15	10	5	15	15	4	400	100	400	4,5	15	0	1.	15	0	4	400	90
2N5246	-30	1	1	20	0.5	4	15	- 10	1.5	7	15	2.5	400	100	400	4,5	15	0	1	15	0			90
2N5247	30	1	1	20	1,5	8	15	10	8	24	15	4	400	150	400	4.5	15	0	-1	15	0			90
2N5248	30	. 1	5	20	1	8	15	10	4	20	15	3	200	200	200	6	15	0	2	15	0	15		50
2N5397	25	1	0.1	15	1	6	10	1	10	30	10	5.5	450	200	450	5	. 10	10m	1.2	10	10m	3.5	450	90
2N5398	25	- 1	0.1	15	1	6	10	1	5	40	10	5.0	450	400	450	5.5	10	0	1.3	10	0	3.2	450	90
2N5484	25	1	1	20	0.3	3	15	10	1	5	15	2.5	100	75	100 =	5	15	0	1	15	0	- 3	100	50
2N5485	25	1	1	20	1	4	15	10	4	10	15	3	400	100	400	5	15	0	1 .	15	0	4	400	50
2N5486	25	1	1	20	2	6	15	10	8	20	15	3.5	400	100	400	5	15	0	1	15	0	4	400	50
2N5668	25	10	2	15	0.2	4	15	10	1	5	15	1	100	50	100	7	15	0	3	15	0	2.5	100	50
2N5669	25	10	2	15	1	6	15	10	4	10	15	1.6	100	100	100	7	15	0	3	15	0	2.5	100	50
2N5670	25	10	2	15	2	8	15	10	8	20.	15	2.5	100	150	100	7	15	0	3	15	0	2.5	100	50
2N5949	30	1	1	15	3	7	15	100	12	18	15	3.0	100	75	100	6	15	0	2	15	0	5	100	- 50
2N5950	30	1	1	15	2,5	6	15	100	10	15	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5951	30	1	1	15	2	5	15	100	7	13	15	3.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5952	30	1	1	15	1.3	3.5	15	100	4	8	15	1.0	100	75	100	6	15	0	2	15	0	5	100	50
2N5953	30	1	1	15	.8	3	15	100	2.5	5	15	1,0	100	50	100	6	15	0	2	15	0	5	100	50
J300	25	1	0,5	15	1	6	10	1	6	30	10	4,5	.001	200	,001	5,5	10	5m	1,7	10	5m	t2	100	90
J304	30	1	0.1	20	2	6	15	1	5	15	15	14.2	400	t80	100	t3	15	0	t,8	15	0	t4	400	50
J305	30	1	0.1	20	.5	3	15	1	1	8	15	t3.0	400	t80	100	t3	15	0 -	t.8	15	0	t4	400	50
J308	25	1	1	15	1	6.5	10	1	12	60	10	8	.001	200	.001	7.5	0	-10	2.5	0	-10	t1.5	100	92
J309	25	1	1	15	1	4.0	10	1	12	30	10	10	.001	200	.001	7.5	0	-10	2.5	0	-10	t1.5	100	92
J310	25	1	1	15	2	6.5	10	1	24	60	10	8	.001	200	.001	7.5	0	-10	2.5	0	-10	t1,5	100	92

Note. JAN qualified per applicable MIL-S-19500 specification.

Type No.	BV(BV((V) (Min	DO	10	GSS DGO @ VDG (V)	Min		V _p @ V _{DS} (V)	I _D (nA)	(m Min	DSS (A) Max	@ V _{DS}	R _e (mMho) Min		R _e i (µMho) Max	(Y _{os}) @ f (MHz)	77.	iss [©] V _{DS} (V)	V _{GS}	C _r (pF) @ Max		V _{GS}		IF RG = 1k Freq (MHz)	Process No.
MPF102	25	1	2	15		8	15	2	2	20	15	1.6	100	100	200	7	15	0	3	15	0			50
MPF106	25	1	1	20	0.5	4	15	.5	4	10	15	2.5	0.001			5	15	0	2	15	0	4	400	50
MPF107	25	1	1	20	2	6	15	.5	8	20	15	4	0.001			5	15	0	1,2	15	0	4	400	50
MPF108	25	10	1	15	0.5	8	15	10μ	1.5	24	15	1.6	100	200	100	6.5	15	.0	2.5	15	0	3	100	50
PN4223	30	1	0.25	20	0.1	8	15	1	3	18	15	2.7	200	200	200	6	15	0	2	15	. 0	5	200	50
PN4224	30	1	0.25	20	0.1	8	15	5	2	20	15	1.7	200	200	200	6	15	0	2	15	0			50
PN4416	30	1	0.1	20		6	15	1	5	15	15	4	400	100	400	4	15	0	0.8	15	0	4	400	50
U308	25	1	0.15	15	1	6	10	1	12	60	10	10	0.001	150	100	5	0	10m	2.5	0	10mA	t3	450	92
U309	25	- 1	0.15	15	1	4	10	1	12	30	10	10	0.001	150	100	5	0	10m	2.5	0	10mA	t3	450	92
U310	25	1	0.15	15	2.5	6	10	1	24	60	10	10	0.001	150	100	5	10	10m	2,5	10	10mA	t3	450	92
U312	25	1	0.1	15	1	6	10	1	10	30	10	6	0.001			3.8	10	10m	1.2	10	10mA	t3.5	450	90
U320	20	1	3	15	2	10	5	1m	100	500	15	75	0.001			30	0	10	15	0	10	t2.5	30	58
U321	25	1	3	15	1	4	5	1m	80	250	15	75	0.001			30	0	10	15	0	10	t2.5	30	58
U322	25	1	3	15	3	10	5	1m	200	700	15	75	0.001			30	0	10	15	0	10	t2.5	30	58

Table 6. N-Channel Selection Guide: Low Frequency – Low Noise Amplifiers

Type No.	BV,	GSS GSS	I _G (nA) (iss DG	(V _G s	(OFF) @ V _{DS}	I _D	(n	I _{DSS}	@ V _{DS}	1	fs (Rei)	(fs) V _{DS}	f	G, (μmho)	oss VDS	(pF) (iss @ V _{DS}	v _{GS}	C _{rss} (pF)@V _{DS}	nV/√Hz	@ f	Process No.
1000000	Min	(μ A)	Max	(V)	Min	Max	(V)	(nA)	Min	Max	(V)	Min	Max	(V)	(MHz)	Max	(V)	Max	(V)	(V)	Max (V)	Max	(Hz)	
2N4393	40	1.0	0.1	20	0.5	3.0	20	1.0	5.0	30	20	t12		20	0.001			14	20	0	3.5 5.0 (GS)	t8.0	10	51
2N5556	30	10	0.1	15	0.2	4.0	15	1.0	0.5	2.5	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
2N5557	30	10	0.1	15	0.8	5.0	15	1.0	2.0	5.0	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
2N5558	30	10	0.1	15	1.5	6.0	15	1.0	4.0	10	15	1.5	6.5	15	0.001	20	15	6.0	15	0	3.0 15	35	10	50
NF5101	40	1	0.2	15	0.5	1.1	. 15	1.0	1.0	12	15	3.5		15	0,001	25	15	t12	16	0	14 15	3,5	1k	51
NF5102	40	1	0.2	15	0.7	1.6	15	1,0	4.0	20	15	7.5		15	0.001	25	15	t12	15	0	t4 15	3.5	1 1 1	51
NF5103	40	1	0.2	15	1.2	2.7	15	1.0	10	40	15	7.5		15	0.001	25	15	t12	15	0	14 15	3.5	1k	51
PF5101	40	1	0.2	15	0.5	1.1	15	1.0	1.0	12	.15	3.5		15	0.001	25	15	112	15	0	, t4 15	3.5	1k	51
PF5102	40	1	0.2	15	0.7	1.6	15	1.0	4.0	20	15	7.5		15	0.001	25	15	t12	15	0	t4 15	3.5	1k	51
PF5103	40	1	0.2	15	1.2	2.7	_15	1.0	10	40	15	7.5	9.4	15	0.001	25	15	t12_	15	0	t4 15	3.5	1k	51
PN4393	40	1.0	0.1	20	0.5	3.0	20	1.0	5.0	30	20	t12		20	0.001			14	20	0	3.5 5.0(GS)	t8.0	10	51

Table 7. N-Channel Selection Guide: Ultra Low Current Amplifiers

Transistor Type	BV	/GSS /GDO @ I _G (μA)	(pA)	GSS DGO @ V _{DG} (V)	(' Min		v _p @ v _{DS} (v)	I _D (nA)	() Min	IDSS (A) Max	@ V _{DS}	(μπ Min	G _{fs} nho) @ Max	V _{DS}	G _o (μmho) Max			iss [©] V _{DS} (V)	V _{GS}	(pF) (Max	C _{rss} @ V _{DS} (V)	V _{GS}	\\/Hz/	Process No.
2N4117	40	1	10	20	0.6	1.8	10	1	30	90	10	20	210	10	3	10	3	10	0.	1.5	10	0		53
2N4117A	40	- 1	1 =	20	0.6	1.8	10	1	30	90	10	70	210	10	3	10	3	10	0	1.5	- 10	0		53
2N4118	40	1	10	20	1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1,5	10	0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	53
2N4118A	40	1	1	20	-1	3	10	1	80	240	10	80	250	10	5	10	3	10	0	1.5	10	0		53
2N4119	•40	1	10	20	2	6	10	1	200	600	10	100	330	10	10	10	3	10	Ö	1.5	10	0		53
2N4119A	40	-1	1	20	2	6	10	1	200.	600	10	100	330	10	10	10	3	10	0	1,5	10	0		53

Table 8. N-Channel Selection Guide: General Purpose Amplifiers

10	*B\	GSS GDO		SS GO		V) @		1_		IDSS	@ VDS	1000	G _{fs}	@ V _{DS}	G (μmho)	oss	C _{is}		v _{GS}	C _{r:}	ss V _{DS}	Vas	(NV)	n	
Transistor Type	(V) . Min	@ I _G (μΑ)	(nA) (Max	@ V _{DG} (V)	Min	Max	(V)	ID (nA)	Min	Max	(V)	Min	Max	(V)	Max	(V)	Max	(V)	(V)	Max	(V)	V _{GS} (V)	Max	Freq (Hz)	Process No.
2N3069	*50	1	1	30		9,5	30	1000	2	10	30	1	2.5	30	80	30	15	0	-12	1.5	30	0	125	1000	52
2N3070	*50	1	1	30		4.5	30	1000	0.5	2.5	30	0.75	2.5	30	30	30	15	0	-8	1.5	30	0	125	1000	52
2N3368	*40	1	5	30		11,5	20	1000	2	12	30	1	4	30	80	30	20	8	0	3	30	0			52
2N3369	*40	1	5	30		6.5	20	1000	0.5	2,5	30	0.6	2.5	30	30	30	20	8	0	3	30	0			52
2N3370	*40	1	5	30		3.2	20	1000	0.1	0.6	30	0.3	2.5	30	15	30	20	8	0	3	30	0	20		52
2N3436	*50	1	0.5	. 30		9.8	20	1000	3	15	20	2.5	10	20	35	30	18	0	-10	6	30	0	100	1000	55
2N3437	*50	1	0.5	30		4.8	20	1000	0.8	4	20	1.5 .	6	20	20	30	18	0	-6	6	30	0	100	1000	55
2N3438	*50	1	0,5	30		2.3	20	1000	0.2	1	20	0.8	4.5	20	5	30	18	0	4	6	30	0	100	1000	55
2N3458	*50	1	0.25	30	100	7.8	20	1000	3,	15	20	2,5	10	20	35	30	18	0	-10	5	30	0	225	20	52
2N3459	*50	1_	0.25	30		3.4	20	1000	0.8	4	20	1,5	6	20	20	30	18	0	-6	5	30	0	155	20	52
2N3460	*50	1	0.25	30		1.8	20	1000	0.2	1	20	0.8	4.5	20	5	30	18	0	-4	5	30	0	155	20	52
2N3684	50	1	0.1	30	2	5	20	1.	2.5	7,5	20	2	3	20	50	20	4	20	0	1.2	20	0	150	100	52
2N3685	50	1	0.1	. 30	1.,	3.5	20	1	1	3.	20	1,5	2.5	20	25	20	4	20	0	1.2	20	0	150	100	52
2N3686	50	1	0.1	30	0.6	2	20	1	0.4	1,2	20	1	2	20	10	20	4	20	0	1.2	20	0	150	100	52
2N3687	50	1	0.1	30	0.3	1.2	20	1	0.1	0.5	20	0.5	1,5	20	5	20	4	20	0	1.2	20	0	150	100	52
2N3821	50	1	0.1	30		4	15	.5	0.5	2.5	15	1.5	4.5	15	10	15	6	15	0	3	15	0	200	10	55
2N3822	50	- 1	0.1	30		6	15	.5	2	10	15	3	6.5	15	20	15	6 .	15	0	.3	15	0	200	10	55
2N3967	30	1	0.1	20	2	5	20	1	2.5	10	20	2.5		20	35	20¶	5	20	1	1.3	20	٠	84	100	50
2N3967A	30	1	0.1	20	2	5	20	1	2,5	10	20	2.5		20	35	20¶	5	20	4	1.3	20	٠	160	10	50
2N3968	30	1	0.1	20		3	20	1	1	5	20	2		20	15	20**	5	20	**	1.3	20	t	84	100	50
2N3968A	30	1	0.1	20		3	20	1	1	5	20	2		20	15	20**	5	20	**	1.3	20	t	160	10	50
2N3969	30	1	0.1	20		1.7	20	1	0.4	2	20	1.3		20	5	2011	5	20	tt	1.3	20	1	84	100	50
2N3969A	30	1	0.1	20	2.1	1.7	20	1	0.4	2	20	1.3		20	5	2011	5	20	tt	1.3	20	•	160	10	50

 $\bullet \, I_D = 1 \,\, \text{mA} \qquad {}^{\dagger} \, I_D = 500 \mu \text{A} \qquad \P \, I_D = 250 \mu \text{A} \qquad \delta \, I_D = 100 \mu \text{A} \qquad {}^{**} \, I_D = 100 \mu \text{A} \qquad {}^{\dagger\dagger} \, I_D = 40 \mu \text{A}$

Transistor Type		VGSS VGDO @ IG (μA)	ID	GSS OGO @ VDG (V)	Min (*	V V) @ Max		I _D (nA)	(n Min	IDSS nA) Max	@ VDS (V)	(mi Min	G _{fs} mho) Max	@ V _{DS}	G (μmho)(Max	oss [©] V _{DS} (V)	(pF) @ Max	C _{iss} V _{DS} (V)	V _{GS}	(pF) @ Max	C _{rss} V _{DS} (V)	V _{GS}	(NV) (Hz) Max	en @ Freq (Hz)	Process No.
2N4220	30	10	0.1	15		4	15	.1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0			55
2N4220A	30	10	0.1	15		4	15	.1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0	115	100	55
2N4221	30	10	0.1	15	10	6	15	.1	2	6	15	2	5	15	20	15	6	15	0	2	15	0			55
2N4221A	30	10	0.1	15		6	15	.1	2	6	15	2	5	15	20	15	6	15	0	2	15	0	115	100	55
2N4222	30	10	0.1	15		8	15	.1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0			55
2N4222A	30	10	0.1	15		8	15	.1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0	115	100	55
2N4338	50	1	0.1	30	0.3	1	15	100	0.2	0.6	15	0.6	1.8	15	- 5	15	7	15	0	3	15	0	68	1000	52
2N4339	50	1.	0.1	30	0.6	1.8	15	100	0.5	1.5	15	0.8	2.4	15	15	15	7	15	0	3	15	0	68	1000	52
2N4340	50	1	0.1	30	1	3	15	100	1.2	3.6_	15	1.3	3	15	30	15	7	15	0	3	15	0	68	1000	-52
2N4341	50	1	0.1	- 30	2	6	15	100	3	9	15	2	4	15	60	15	7	15	0	3	15	0	68	1000	55_
2N5103	25	10	0.1	15	0.5	4	15	1	1	8	15	2	8	15	100	15	5	15	0	1	15	0	100	10	50
2N5104	25	1	0.1	15	0.5	4	15	1	2	6	15	3.5	7.5	15	100	15	5	15	0	1	15	0	50	10	50
2N5105	25	1	0.1	15	0.5	4	15	1	5	15	15	5	10	15	100	15	5	15	0	1	15	0			50
2N5358	40	select 1	0,1	20	0.5	3	15	100	0.5	1	15	1	3	15	-10	15	6	15	0	2	15	0	115	100	55
* 2N5359	40	1.0	0.1	20	8.0	- 4	15	100	0,6	1.6	15	1.2	3.6	15	10	15	6	15	0	2	15	0	115	100	55
2N5360	40	Jah	0.1	20	8.0	4	15	100	0.5	2,5	15	1,4	4.2	15	20	15	6	15	0	2	15	0	115	100	55
2N5361	40		0.1	20	1	6	15	100	2.5	5	15	1.5	4.5	15	20	15	6	15	0	2	15	0	115	100	55
2N5362	40	1. 1.	0.1	20	2	7	15	100	4	8	15	2	5.5	15	40	15	6	15	0	2	15	0	115	100	55
2N5363	40	1	0,1	20	2.5	8	15	100	7	14	15	2.5	6 -	15	40	15	6	15	0	2	15	0	115	100	55
2N5364	40	1	0.1	20	2.5	8	15	100	9	18	15	2.7.	6.5	15	60	15	6	15	0	2	15	0	115	100	55
2N5457	25	1	1	15	0,5	6	15	10	1	5	15	2	5	15	50	15	7	15	0	3	15	0			55
2N5458	25	1	1	15	1	7	15	10	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55
2N5459	25	1	1	15	2	8	15	10	4	16	15	2	6	15	50	15	7	15	0	3	15	0		7	55
2N5556	30	1	0.1	15	0.2	4	15	1	0.5	2.5	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
2N5557	30	1	0.1	15	8.0	5	15	1	2.0	5.0	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
2N5558	30	1	0.1	15	1.5	6	15	1	4	10	15	1.5	6.5	15	20	15	6	15	0	3	15	0	35	10	50
J201	40	4.04	0.1	20	0.3	1.5	20	10	0.2	1.0	20	0.5		20	t1	20	15	20	0	t2	20	0	t10	1k	52
J202	40	1	0.1	20	8.0	4.0	20	10	0.9	4.5	20	1.0		20	t3.5	20	t5	20	0	t2	20	0	t10	1k	52
J203	40	1	0.1	20	2.0	10.0	20	10	4.0	20	20	1.5		20	t10	20	t5	20	0	t2	20	0	110	1k	52
J210	25	1	0.1	15	1	3	15	1	2	15	15	4.0	12.0	15	150	15	t5	15	0	t1.5	15	0	t10	1k	90
J211	25	1	0.1	15	2.5	4.5	15	1	7	20	15	7.0	12.0	15	200	15	t5	15	0	t1.5	15	0	t10	14	90
J212	25	1	0.1	15	4	6	15	1	15	40	15	7.0	12.0	15	200	15	t5	15	0	t1,5	15	0	t10	1k	90
MPF103	25	1	1	15	our reliable to	6	15	1	1	5	15	1	5	15	50	15	7	15	0	3	15	.0		12	55
MPF104	25	1	1	15		7	15	1	2	9	15	1.5	5.5	15	50	15	7	15	0	3	15	0			55
MPF105	25	1	1	15		8	15	1	4	16	15	2	6	15	50	15	7	15	0	3	15	0		100000000000000000000000000000000000000	55
MPF109	25	10	1	15	0.2	8	15	10	0.5	24	15	8.0	6	15	75	15	7	15	0	3	15	0	115	1000	55

Table 8. N-Channel Selection Guide: General Purpose Amplifiers (Continued)

		GSS GDO		GSS DGO			/ _p @ Vns	1-	(-	I _{DSS}	@ VDS	(mn	G _{fs}	@ V _{DS}	G (μmho) (oss	(pF) @	Ciss	\ \ \ 	(pF) @	C _{rss}	V	(NY)	'n	
Transistor Type	(V) (Min	@ I _G (μΑ)	(nA) Max	@ V _{DG} (V)	Min	Max	@ V _{DS}	ID (nA)	Min	Max	(V)	Min	Max	(V)	Max	(V)	Max	V _{DS}	V _{GS} (V)	Max	(V)	V _{GS}		Freq (Hz)	Process No.
MPF111	20	10	100	10	0.5	10	10	1000	0.5	20	10	0.5		10	200	10									50
MPF112	25	10	100	10	0.5	10	10	1000	1	25	10	1	7.5	10	es a superior										55
PN3684	50	1	1	30	2	5	20	1	2.5	7.5	20	2	3	20	50	20	4	20	0	1.2	20	0	150	20	52
PN3685	50	1	1	30	1	3.5	20	1	1	3	20	1.5	2.5	20	25	20	4	20	0	1.2	20	0	150	20	52
PN3686	50	1	1	30	0.6	2	20	1	0.4	1.2	20	1-	2	20	10	20	4	20	0	1.2	20	0	150	20	52
PN3687	50	1	1	30	0.3	1,2	20	4	0.1	- 0.5	20	0.5	1.5	20	5	20	4	20	0	1.2	20	0	150	20	52
PN4220	30	10	1	15		4	15	1	0.5	3	15	1	4	15	10	15	6	15	0	2	15	0			55
PN4221	30	10	1	15		6	15	1	2	6	15	2	5	15	20	15	6	15	0	2	15	0			55
PN4222	30	10	1	15		8	15	1	5	15	15	2.5	6	15	40	15	6	15	0	2	15	0			55
PN4302	30	1	1	10		4	20	10	0.5	5	20	- 1		20	50	20	6	20	0	3	20	0	100	1000	52
PN4303	30	1	1	10		6	20	10	4	10	20	2		20	50	20	6	20	0	3	20	0	100	1000	52
PN4304	30	1	1	10		10	20	10	0.5	15	20	1		20	50	20	6	20	0	3	20	0	125	1000	52
PN5163	25	1	10	15	0.4	8	15	1000	1	40	15	2	9	15	200	15	12	15	0	3	15	0	50	1000	50
TIS58	25	1	4	15	0.5	5	15	20	2.5	8	15	1.3	4	15			6	15	2 mA	3	15	2 mA			50
TIS59	25	1	4	15	1	9	15	20	6	25	15	1.3		15			6	15	2 mA	3	15	2 mA			50

Table 9. N-Channel Selection Guide: General Purpose Dual JFETs

		OF	ERATING	CONDIT	ONS F	OR THE	SE CHA	RACTER	RISTICS				T		T		1													
Type No.	VDO	CHAR. G ID (µA)	VGS1-2 VOS (mV) Max	DRIFT (μV/°C) ΔVGS Max	I _G (pA) Max	G μml Min		G _{OSS} (μmho) Max	CMRR (dB) Min	V _c (V Min	"	V (N Min	p V) Max	I _D (m Min	A)	G (mn Min		G _{oss} (μmho) Max	(pA) @	SSS VDG (V)	(pF)	C _{rss} (pF) Max	BV (V) Min	(nV/√Hz) € Max	e f (Hz)	IDSS Match %	G _{fs} Match %	G _{oss1-2} (μmho)	^I G1 ^{-I} G2 125°C (nA)	Proce No.
2N3921	10	700	5.0	10	250	1500	1	20					-3.0	1.0	10	1.5	7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
2N3922	10	700	5.0	25	250	1500		20					-3.0	1.0	10		7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
2N3934	10	200	5.0	10	100	300	- 1	5.0										replaceme					- 1							
2N3935	10	200	5.0	25	100	300	THE COLUMN SERVICE	5.0	TED CHARGE	ningside	MESTISMEN	500000000	Name and Address of			-	Name and Park	eplaceme					04020040		HOUSE THE	5.0	3.0	GC Set TO LOCAL CASE	10	83
2N3954A	20	200	5.0	5.0	50						4.0	1.0	4.5	0.5	5.0 5.0	1.0	3.0	35	100	30		1.2	50	150	100	5.0	3.0		10	83
2N3954	20	200	5.0	10	50						4.0	1.0	4.5	0.5	5.0		3.0	35 35	100	30 30	4.0	1.2	50	150	100	5.0	3.0		10	83
2N3955A	20	200	5,0	15	50						4.0	1.0	4,5 4,5	0.5	5.0	1.0	3.0	35	100	30	4.0	1.2	50	150	100	5.0	5.0		10	83
2N3955 2N3956	20	200	16	25 50	50						4.0	1.0	4.5	0.5	5.0	1.0	3.0	35	100	30		1.2	50	150	100	5.0	5.0		10	83
2N3956 2N3957	20	200	20	75	50						4.0	1.0	4.5	0.5	5.0		3.0	35	100	30		1.2	50	150	100	10	10		10	83
2N3957 2N3958	20	200	25	100	50			Surfee:		0.5		1.0	4.5	0.5	5.0	1.0	3.0	35	100	30	SECTION STATE	1.2	50	150	100	15	15		10	83
2N4082	10	200	15	10	100	300	18463	10	30630,600	0.5	7.5	1,0						replaceme		- 00	E GATE	257.000			1.00	KADIRAN		aheava	201-30-23	1
2N4083	10	200	15	25	100	300		10										replaceme					- 1							
2N4084	10	700	15	10	250	1500		20		0.5	4.0		3.0	1.0	10	1,5	7.5	35	1000	30	18	6.0	50	100	1.0k		5.0			83
2N4085	10	700	15	25	250	1500		20					3.0	1.0	10		7.5	35	1000	1000		6.0	50	100	1.0k		5.0			83
	T			G CONDIT			ESE CH		DISTICS	N.		1		T		Т			Т			T		T		Т				1
	-			DRIFT	TONS P	T	ESE UN	MACIE			-	1		1		1						1								
		CHAR.	VGS1-2	(V/°C)	¹G		fs	Goss	CMRR	٧	gs		Vp		oss		Gfs	Goss		GSS	Ciss	Crss	BV	_ē,		DSS	Gfs	Goss 1-2	G1-IG	
Type No.	(V	G ^I D (μA)	(mV) Max	ΔV _{GS} Max	(pA) Max	Min.	Max	(µmho) Max	(dB) Min	Min	V) Ma×	Min	(V) Max		nA) Max	Min	mho) Max	(µmho) Max	Max	® VDG	(pF) Max	(pF) Max	(V) Min	(nV/√Hz) Max	@ 1 (Hz)	Match %	Match %	(µmho)	125°C (nA)	No
2N5045	15	200	5.0	67								0.5	4.5	0.5	8.0	1.5		25	250		8.0	4.0	50	200	10	I	5.0	1.0		8
2N5046	15	200	10	133								0.5	4.5	0.5	8.0	1.5		25	250	30	8.0	4.0	50	200	10	1	10	2.0		8
2N5047	15	200	15	200	Ciliano	L	SERVICE TO	NAME OF TAXABLE PARTY.	e documento de sentre e	non-castilla	Sales annual	0.5	4.5	0.5	8.0	1.5	CONSTRUCTION OF	25	250	30	8.0	4.0	50	200	10		20	3.0		8
2N5196	20	200	5.0	5.0	15	700	1500	4.0			3.8	0.7	4.5	0.7	7.0	1.0		50	25	30	6.0	2.0	50	20	1.0k	5.0	3.0	1.0	5.0	1 8
2N5197	20	200	5.0	10	15	700	1500	4.0		0.2		0.7	4.5	0.7	7.0	1.0		50	25	30	6.0	2.0	60	20	1.0k	5.0	3.0	1.0	5.0	1
2N5198	20	200	10	20	15	700	1500	4,0		0.2		0.7	4.5	0.7	7.0	1.0		50	25	20	6.0	2.0	50	20	1.0k	5.0	5.0	1.0	5.0	8
2N5199	20	200	15	40	15	700	1500	40		Managemen	3.8	1.0	4.5 4.5	0.7	7.0 5.0	1.0	000000000	3.0	100	30 30	6.0	2.0	50 50	20	1.0k	5.0	3.0	0.25	5.0	8
2N5452	20	200	5.0 10	5.0 10		İ		1.0		0.2	4.2	1.0	4.5	0.5	5.0	1.0		3.0	100		4.0	1.2	50	20	1.0k 1.0k	5.0	3.0	0.25		8
2N5453 2N5454	20	200	15	25				1.0		0.2	4.2	1.0	4.5	0.5	5.0	1.0		3.0	100	30	4.0	1.2	50	20	1.0k	5.0	5.0	0.25		8
2N5545	15	200	5.0	10	50	0.336		1.0		MHEET	2500	0.5	4.5	0.5	8.0	1.5	ners company	25	100	THE R. P. LEWIS CO., LANSING	6.0	2.0	50	180	10	5.0	3.0	1.0	5.0	8
2N5546	15	200	10	20	50	10000				4354		0.5	4.5	0.5	8.0	1.5	5.28559363	25	100	30	6.0	2.0	50	200	10	10	5.0	2.0	5.0	8
2N5547	15	200	15	40	50							0.5	4.5	0.5	8.0	1.5		25	100	30	6.0	2.0	50			10	10	3.0	5.0	8
J410	20	200	10	10	250	600	1200	5.0		0.3	4.0	0.5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100					۹ و
J411	20	200	25	25	250	600	1200	5.0		0.3		0,5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100	2.1				9
J412	20	200	40	80	250	600	1200	5.0			4.0	0.5	3.5	0.5	6	1	4	20	250	20	4.5	1.2	40	50	100					9
NPD8301	20	200	5	10	100	700	1200	5.0		0.3	4.0	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					8
NPD8302	20	200	10	15	100	700	1200	5.0		0.3	4.0	0.5	3,5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					8
NPD8303	20.	200	16	25	100	700	1200	5.0		0.3	4.0	0.5	3.5	0.5	6	1	4	20	100	20	4.5	1.2	40	50	100					8
U231	20	200	5.0	10	50	600		10		0.3	4.0		Se	e 2N3	954 as a	in imp	roved re	placemen	t											8
U232	20	200	10	25	50	600		10		0.3	4.0		Se	e 2N3	955 as a	an imp	roved re	placemen	t							1				8
U233	20	200	15	50	50	600		10		0.3	4.0	1	Se	e 2N3	956 as a	n imp	roved re	placemen	t		1		31			1				8
	1	272,020	20	20.00		600		10		0.3	4.0	I	C.	e 2N2	957 ac s	n imn	roved re	placemen			1	1	. 7			1				8
U234	20	200	20	75	50	600				0.3	4.0	1	36	2143	307 03 0	p		procerrien					-	l .		1				1 0

Table 10. N-Channel Selection Guide: Low Frequency – Low Noise Dual JFETs

			OPERATI	NG COND	ITIONS	FOR T	THESE C	HARACTE	RISTICS																					1
Type No.	OP. (VDG (V)	HAR. I _D (μΑ)	VGS1-2 VOS (mV) Max	DRIFT (μV/°C) ΔVGS Max	I _G (pA) Max		Sfs nhos Max	G _{oss} (μmho) Max	CMRR (dB) Min		gs V) Max		(p V) Max		nA) Max		Sfs nho) Max	G _{oss} (μmho) Max	I _G (pA) (Max	SS VDG (V)	C _{iss} (pF) Max	C _{rss} (pF) Max	BV (V) Min	e _r (nV/√Hz) Max		IDSS Match %	G _{fs} Match %	G _{oss} 1-2 (μmho)	^I G1 ^{-I} G2 125°C (nA)	Proces No.
2N5515	20	200	5.0	5.0	100	500	1000	1.0	100	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	30	10	5.0	3,0	0.1	10	95
2N5516	20	200	5.0	10	100	500	1000	1.0	100	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	1	10	5.0	3.0	0.1	10	95
2N5517	20	200	10	20	100	500	1000	1.0	90	0,2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0.1	10	95
2N5518	20	200	15	40	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0,1	10	95
2N5519	20	200	15	80	100	500	1000	1.0		0.2	3.8	0:7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	1	10	10	10	0.1	10	95
2N5520	20	200	5.0	5.0	100	500	1000	1.0	100	0,2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	15	10	5.0	3,0	0.1	10	95
2N5521	20	200	5.0	10	100	500	1000	1.0	100	0,2	3.8	0.7	4.0	0,5	7,5	1.0	4.0	10	250	30	+25	+5.0	40	1	10	5.0	3.0	0.1	10	95
2N5522	20	200	10	20	100	500	1000	1.0	90	0.2	3.8	0,7	4.0	0.5	7.5	1.0	4.0	10	260	30	+25	+5.0	40		10	5.0	5.0	0.1	10	95
2N5523	20	200	15	40	100	500	1000	1.0		0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40		10	5.0	5.0	0,1	10	95
2N5524	20	200	15	80	100	500	1000	1.0		0.2	3,8	0.7	4.0	0.5	7.5	1.0	4.0	10	250	30	+25	+5.0	40	(1) A 10	10	10	10	0.1	10	95
2N6483	20	200	5.0	5.0	100	500	1500	1.0	100	0.2	3.8	0,7	4.0	0,5	7.5	1,0	4.0	10	200	30	20	3.5	50	10	10	5,0	3.0	0.1	10	95
2N6484	20	200	10	10	100	500	1500	1.0	100	0.2	3.8	0.7	4.0	0.5	7,5	1.0	4.0	10	200	30	20	3.5	50	1	10 -	5.0	3.0	0.1	10	95
2N6485	20	200	15	25	100	500	1500	1,0	90	0.2	3.8	0.7	4.0	0.5	7.5	1.0	4.0	10	200	30	20	3.5	50		10	5.0	5.0	0.1	10	95

Table 11. N-Channel Selection Guide: Wide Band - Low Noise Dual JFETs

		OP	ERATING	CONDITI	ONS FO	R THES	E CHARA	ACTERIS	STICS																				
Type No.	OP. C V _{DG} (V)		VGS1-2 ¹ VOS (mV) Max	DRIFT (µV/°C) ΔVGS Max	I _G (pA) Max	G _f μmt Min		G _{oss} (μmho) Max	CMRR (dB) Min	V _{g:} (V) Min			/p V) Max	I _D (m Min	A)	G _{fs} (μmho) Min Max	G _{oss} (μmho) Max	IG (pA) Max	SS VDG (V)	C _{iss} (pF) Max		BV (V) Min	_e _n (nV/√Hz) € Max		IDSS Match %	G _{fs} Match %	G _{oss} 1-2 (μmho)	IG1-IG2 125°C (nA)	Proce No.
2N5564	15	2000	5.0	10		7500		45	774			0.5	3.0	5.0	30	200		100	20	12	3.0	40	50	10	5.0	5.0			96
2N5565	15	2000	10	25		7500		45				0.5	3.0	5.0	30			100	20	12	3.0	40	50	10	5.0	10			96
2N5566	15	2000	20	50		7500		45				0.5	3.0	5.0	30			100	20	12	3.0	40	50	10	5.0	10			96
2N5911	10	5000	10	20	100	5000	10,000	100		0.3	4.0	1.0	5.0	7.0	40		TENES!	100	15	5.0	1.2	25	20	10k	5.0	5.0	20	20	93
2N5912	10	5000	16	40	100	5000	10,000	100		0.3	4.0	1.0	5.0	7.0	40			100	15	5.0	1.2	25	20	10k	5.0	5.0	20	20	93
NPD5564	15	2000	5,0	10		7500		45				0.5	3.0	5.0	30			100	20	1.2	3.0	40	50	10	5,0	5.0			96
NP05565	15	2000	10	25		7500		45				0.5	3.0	5.0	30			100	20	12	3.0	40	50	10	5.0	10			96
NPD6566	15	2000	20	50		7500		45				0.5	3,0	5.0	30		500000	100	20	12	3.0	40	50	10	5.0	10			96
U257	10	5000	100			5000	10,000	150				1.0	5.0	5.0	40			100	15	5.0	1.2	25	30	10k	15	15	20		93
U430	10	10,000				10,000	20,000	150				1.0	4.0	12	30			150	15			25	10	100	10	10			92
U431	10	10,000				10,000	20,000	150				2.0	6.0	24	60			150	15			25	10	100	10	10			

Table 12. N-Channel Selection Guide: Low Leakage - High CMRR Wide Band Dual JFETs

		OP	ERATING	CONDIT	IONS FO	OR THE	SE CHA	RACTER	ISTICS																				
Type No.	OP. C V _{DG} (V)	nan.	VGS1-2 VOS (mV) Max	DRIFT (μV/ °C) ΔVGS Max	I _G (pA) Max		fs hos Max	G _{oss} (μmho) Max	CMRR (dB) Min		gs V) Max	V (\ Min	p /) Max		DSS mA) Max	G _{fs} (μπho) Min Max	G _{oss} (μmho) Max	(nA)	GSS VDG (V)	C _{iss} (pF) Max	C _{rss} (pF) Max	BV (V) Min	e _n (nV/√Hz)@ Max) f (Hz)	IDSS Match %	G _{fs} Match %	Goss1-2 (µmho)	^I G1 ^{-I} G2 125°C (nA)	Process No.
NDF9401	20	200	5.0	5.0	5.01	950	2000	0.1	120	0.1	4.0	0.5	4.0	0,5	10		7 =	10	30	5.0	0.02	50	30	10	5.0	3.0	0.1	1.0	94
NDF9402	20	200	5.0	10	5.09	950	2000	0.1	120	1.0	4.0	0.5	4.0	0.5	10			-10	30	5.0.	0.02	50	30	10	5,0	3,0	0.1		94
NDF9403	20	200	10	10	5.01	950	2000	0.1	110	0.1	4.0	0.5	4.0	0.5	10	4.1.2		10	30	5.0	0.02	50	30	10	5.0	5,0	0.1	1,0	94
NDF9404	20	200	15	10	5.09	950	2000	0.1	110	0.1	4.0	0,5	4.0	0.5	10			10	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1.0	94
NDF9405	20	200	25	25	5.04	950	2000	0.1	100	0.1	4.0	0.5	4.0	0,5	10	9 30 5		10	30	5.0	0.02	50	30	10	10	10	0.1	1.0	94
NDF9406	20	200	5.0	5.0	5.04	950	2000	0.1	120	0.1	4.0	0.5	4.0	0.5	10			10	30	5,0	0.02	50	30	10	5,0	3.0	0.1	1.0	94
NDF9407	20	200	5.0	10	5.0¶	950	2000	0.1	120	0.1	4.0	0.6	4.0	0.5	10	多数表	200	10	30	5.0	0.02	50	30	10	5.0	3.0	0.1	1.0	94
NDF9408	20	200	10	10	5.09	950	2000	0.1	110	0.1	4,0	0,5	4.0	0.5	10	30.69		10.	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1.0	94
NDF9409	20	200	15	10	5.01	950	2000	0,1	110	0,1	4.0	0.5	4.0	0.5	10			10	30	5.0	0.02	50	30	10	5.0	5.0	0.1	1,0	94
NDF9410	20	200	25	25	5.09	950	2000	0.1	100	0,1	4.0	0.5	4.0	0,5	10			10	30	5.0	0.02	50	30	10	10	10	0.1	1.0	94

[¶] V_{DG} = 35V

Table 13. N-Channel Selection Guide: Ultra Low Leakage Dual JFETs

		OPERA	TING CON	IDITIONS	FOR 1	THESE CHA	ARACTER	RISTICS															
Type No.	Op Cor V _{DG} (V)		V _{GS1-2} V _{OS} (mV) Max	ΔV _{GS} DRIFT (μV/°C) Max	I _G (pA) Max	G _{fs} (mMho) Min	G _{OSS} (μMho) Max	V _i (\ Min	GS V) Max	(V _p V) Max	I _D (n Min	SS nA) Max	400	ifs nho) Max	G _{oss} (μmho) Max	I _{GS} (pA) @ Max		C _{iss} (pF) Max	C _{rss} (pF) Max	BV _{GSS} (V) Min	IG1-IG2 @ 125°C (nA) Max	Process No.
2N5902	10	30	5	5	3	50µ	1		4	0.6	4.5	30μ	0.5	70μ	0.25	5	5	20	3	1.5	40	2	84
2N5903	10	30	5	10	3	50μ	1		4	0.6	4.5	30μ	0.5	70μ	0.25	5	5	20	3	1.5	40	2	84
2N5904	10	30	10	20	3	50μ	1		4	0.6	4.5	30μ	0.5	70μ	0.25	5	5	20	3	1.5	40	2	84
2N5905	10	30	15	40	3	50μ	1		4	0.6	4.5	30μ	0.5	70μ	0.25	5	5	20	3	1.5	40	2	84
2N5906	10	30	5	5	1	50µ	1		4	0.6	4.5	30μ	0,5	70µ	0.25	5	2	20	3	1,5	40	0.2	84
2N5907	10	30	5	10	1	50µ	1		4	0.6	4,5	30μ	0.5	70μ	0.25	5	2	20	3	1.5	40	0.2	84
2N5908	10	30	10	20	1	50µ	1		4	0.6	4.5	30μ	0.5	70jı	0.25	5	2	20	3	1.5	40	0,2	84
2N5909	10	30	15	40	1	50µ	al it		4	0.6	4.5	30μ	0.5	70µ	0.25	- 5	2	20	3	1.5	40	0.2	84

Table 14. P-Channel Selection Guide: Switches

Transistor Type	BV	GSS GDO @ I _G	10	GSS DGO @ V _{DG} (V)	(nA) Max	I _{D(off)} @ V _{DS} (V)	V _{GS}	(' Min		V _p @ V _{DS} (V)	Ι _D (μΑ)	Min	I _{DSS} (mA) @ Max	V _{DS}		r _{ds} @ I _D (mA)	(pF) @	C _{iss} V _{DS} (V)	V _{GS}	(pF) Max	C _{rss} @ V _{DS} (V)	V _{GS}	t _{on} (ns) Max	^t off (ns) Max	Process No.
2N3382	30	1	15	30	2	-5	6	1	5	-5		3	30	10	300					-		-			88
	0.000		tease	30		–5 –5	61	'	5			15	30	10	180										88
2N3384	30		15		2		6	4		-5 -		1.000			10000										88
2N3386	30	1	15	30	2.5	-5	10	4	9.5	-5	1	15	50	10	150		40	40			•	100			
2N3993	25	1	1.2*	15	1.2	-10	10	4	9.5	-10	1	10		10	150		16	-10	0	4.5	0	10			88
2N3993A	25	1	1.2*	15	1,2	-10	10	4	9.5	-10	1	10		10	150		12	-10	0	3	0	10			88
2N3994	25	1	1.2*	15	1.2	-10	6	1	5.5	-10	1	2		10	300		16	-10	0	4.5	0	10			88
2N3994A	25	1	1.2*	15	1.2	-10	6	1	5.5	-10	1	2		10	300		12	-10	0	3	0	10			88
2N5018	30	1	2	15	10	-15	12		10	-15	1	10		20	75		45	-15	0	10	0	12	35	65	88
2N5019	30	1	2	15	10	-15	7		5	-15	1	5		20	150		45	-15	0	10	0	7	90	125	88
e2N5114	30	1	0.5	20	0.5	-15	12	5	10	-15	.001	30	90	18	75	1	25	-15	0	7	0	12	16	21	88
•2N5115	30	1	0.5	20	0,5	-15	7	3	6	-15	.001	16	60	15	100	1	25	-15	0	7	0	7	30	38	88
•2N5116	30	1	0.5	20	0.5	-15	5	1 :	4	-15	.001	5	25	15	150	1	25	-15	0	7	0	5	42	60	88
J174	30	1	1	20	1	-15	10	5	10	-15	.01	20	100	15	85	1	11	0	10	5.5	0	10	2	5	88
J175	30	1	1	20	1	-15	10	3	6	-15	.01	7	60	15	125	.5	11	0	10	5.5	0	10	5	10	88
J176	30	- 1	1	20	1	-15	10	1	4	-15	.01	2	25	15	250	.25	11	0	10	5.5	0	10	15	15	88
J177	30	1	1	20	1	-15	10	.8	2.25	-15	.01	1.5	20	15	300	.1	11	0	10	5.5	0	10	20	20	88
P1086E	30	1	2	20	10	-15	10		10	-15	.01	10	M M MY C S S S S S S S S S S S S S S S S S S	15	75	1	45	-15	0	10	15	0	35	50	88
P1087E	30	1	2	20	10	-15	5		5	-15	.01	5		15	150		45	-15	0	10	15	0	40	75	88
U304	30	1	0.5	20	0.5	-15	12	5	10	15	1	30	90	15	85		27	-15	0	7	0	12	35	35	88
U305	30	1	0.5	20	. 100		7	3	4	15	1	15	60	15	110		27	-15	0	7	0	7	50	45	88
U306	30	1	0.5	20			5	1	4	15	1	5	25	15	175		27	-15	0	7	0	5	60	80	88

[•] Note. JAN qualified per applicable MIL-S-19500 specification

Table 15. P-Channel Selection Guide: Amplifiers

Transistor Type		VGSS /GDO @ I _G (μA)	10	GSS DGO @ V _{DG} (V)	(' Min		v _p @ v _{DS} (v)	Ι _D (μΑ)	(n Min	IDSS nA) (Max	® V _{DS}	(mn Min	G _{fs} nho) Max	@ V _{DS}	G, (μmho) Max	oss @ V _{DS} (V)	(pF) Max	C _{iss} V _{DS} (V)	V _{GS}	(pF) Max	C _{rss} V _{DS} (V)	V _{GS}	(NV	Pn © Freq (Hz)	Process No.
•2N2608	30	1	10	30	1	4	-5	1	0.9	4.5	5	1		5			17	-5	1				125	1000	89
2N2609	30	1	30	30	1	4	-5	1	2	10	5	2.5		5			30	5	1				125	1000	88
2N3329	20	10	10	10		5	-15	10	1	3	10	1	2	10/1mA	20	10	20	-10	1				125	1000	89
2N3330	20	10	10	10		6	-15	10	2	6	10	1.5	3	10/2mA	40	10	20	-10	1				125	1000	89
2N3331	20	10	10	10		8	-15	10	5	15	10	2	4	10/5mA	100	10	20	-10	1				155	1000	89
2N3332	20	10	10	10		6	-15	10	1	6	10	1	2.2	10/1mA	20	10	20	-10	1				65	1000	89
2N4381	25	1	1	15	1	5	-15	1	3	12	15	2	6	15	75	15	20	-15	0	5	-15	0	20	1000	89
2N4382	25	1	1	15	2.5	9	-15	1	10	30	15	4	8	15	100	15	20	-15	0	5	-15	0	20	1000	88

Note, JAN qualified per applicable MIL-S-19500 specification

		V _{GSS} V _{GDO}		GSS			V _p			IDSS	3		Gfs			oss		Ciss			C _{rss}		/ NV)	e _n	
Transistor Type	(V) Min	♥GDU @ I _G (μA)	(nA) Max	DGO @ V _{DG} (V)	Min (1	V) Max	@ V _{DS}	I _D (μΑ)	(n Min	nA) Max	@ V _{DS}	(m Min	mho) Max	@ V _{DS}	(µmho) Max	(V)	(pF) Max	V _{DS}	V _{GS} (V)	(pF) Max	(V)	V _{GS} (V)	=	@ Freq (Hz)	Proces No.
2N5020	25	1	1	15	0,3	1.5	-15	1	0.3	1.2	15	1	3.5	15	20	15	25	-15	0	7	-15	0	30	1000	89
2N5021	25	1	1	15	0.5	2.5	-15	1	1	3.5	15	1.5	6	15	20	15	25	-15	0	7	-15	0	30	1000	89
2N5460	40	10	5	20	0.75	6	-15	1	1	5	15	1	4	15	50	15	7	-15	0	2	-15	0	115	100	89
2N5461	40	10	5	20	1	7.5	-15	1	2	9	15	1.5	5	15	50	15	7	-15	0	2	-15	0	115	100	89
2N5462	40	10	5	20	1.8	9	-15	1	4	16	15	2	6	15	50	15	7	-15	0	2	-15	0	115	100	89
J270	30	1	0.2	20	0.5	2.0	15	.001	2	15	15	6.0	15,0	15	200	15	t20	15	0	t5	15	0	t10	1k	88
J271	30	1	0.2	20	1.5	4.5	15	.001	6	50	15	8.0	18.0		500	15	t20	15	0	t5	15	0	t10	1k	88
PN4342	25	10	10	15		5.5	-10	1	4	12	10	2	6	10	75	10	20	-10	0	5	-10	0	80	100	89
PN4343	25	10	10	15		10	-10	1	10	30	10	4	8	10	100	10	20	-10	0	5	-10	0	80	100	88
PN4360	20	10	10	15	0.7	10	-10	1	3	30	10	2	8	10	100	10	20	-10	0	5	-10	0	190	100	89
PN5033	20	10	10	15	0.3	2.5	-10	1	0.3	3.5	10	1	5	10	20	10	25	-10	0	7	-10	0	100	1000	89
U300	40	1	0.1	20	5	10	-15	.001	30	90		8	12	15			20	-15	15 mA	5.5	-15	15 mA	40	1000	88
U301	40	1	0.1	20	2.5	60	-15	.001	15	60		7	11	15			20	-15	7 mA	5.5	-15	5.5 mA	40	1000	88

APPLICATION NOTE

Table 16. Pro-Electron JFETs: Amplifiers

Type No.	BV	GSS GDO @ I _G (μΑ)	ID	GSS OGD @V _{GD} (V)	Min (P P V _{DS} (V)	I _D (nA)	(Y Min	V _{GS} V) Max	8 @ V _{DS} (V)	Ι _D (μΑ)	(n Min	IDSS nA) (Max	[⊚] V _{DS}	(mn Min	R _e (YFs	S) @ f (MHz)		iss ^{@ V} DS (V)	V _{GS} (V)	C _r (pF) (Typ	ess VDS (V)	V _{GS}	(dB e _n Max	NF 8) @ R _G	= 1k f (Hz)* (MHz)	Process No.
BF244A	30	1	5	20	.5	8	15	10	.4	2.2	15	200	2	6.5	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF244B	30	1	5	20	.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF244C	30	1	5	20	.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	.001	4	20	-1	1.1	20	-1		1.5	100	50
BF245A	30	1	5	20	.5	8	15	10	.4	2.2	15	200	2	6.5	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF245B	30	1	5	20	.5	8	15	10	1.6	3.8	15	200	6	15	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF245C	30	1	5	20	.5	8	15	10	3.2	7.5	15	200	12	25	15	3	6.5	.001	4	20	-1	1.1	20	-1				50
BF246A	25	1	5	15	.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		.001	11	15	0	3.5	15	0				51
BF246B	25	1	5	15	.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		.001	11	15	0	3.5	15	0				51
BF246C	25	1	5	15	.6	14.5	15	10	5.5	12	15	200	110	250	15	8		.001	11	15	0	3.5	15	0				51
BF247A	25	1	5	15	.6	14.5	15	10	1.5	4.0	15	200	30	80	15	8		.001	11	15	0	3.5	15	0				51
BF247B	25	1	5	15	.6	14.5	15	10	3.0	7.0	15	200	60	140	15	8		.001	11	15	0	3.5	15	0				51
BF247C	25	1	5	15	.6	14.5	15	10	5.5	12	15	200	110	250	15	8		.001	11	15	0	3.5	15	0				51
BF256A	30	1	5	20					.5	7.5	15	200	3	7	15	4.5		.001				.7	20	-1		7.5	800	50
BF256B	30	1	5	20					.5	7.5	15	200	6	13	15	4.5		.001				.7	20	-1		7.5	800	50
BF256C	30	1	5	20					.5	7.5	15	200	11	18	15	4.5		.001				.7	20	-1		7.5	800	50
BC264A	30	1	10	20	.5		15	10	.2	1.2	15	1000	2	4.5	15	2.5		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264B	30	1	10	20	.5		15	10	.4	1.4	15	1500	3.5	6.5	15	3.0		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264C	30	1	10	20	.5		15	10	.5	1.5	15	2500	5.0	8.0	15	3.5		.001	4.0	15	-1	1.2	15	-1		40*	10*	50
BC264D	30	1	10	20	.5		15	10	.6	1.6	15	3500	7.0	12.0	15	4.0		.001	4.0	15	-1	1.2	15	-1		40*	10*	50

JFET Process Characteristics

This section contains complete design curves for all of Fairchild Semiconductor's discrete JFET processes. Temperature and $V_{\rm GS(off)}$ distribution data is provided to facilitate worst-case design. In addition a complete list of all device types supplied from this process is included to aid in cross reference searches and the selection of preferred

device types. The curves in this section should be considered typical of the process supplied by Fairchild Semi-conductor. Every effort is made to keep the process in tolerance with the published graphs, but the exact distribution of any specific lot of material is not guaranteed.

Process 50 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 50 is designed primarily for RF amplifier and mixer applications. It will operate up to 450 MHz with low noise figure and good power gain. These devices offer outstanding performance at VHF aircraft and communications frequencies. Their major advantage is low crossmodulation and intermodulation, low noise figure and good power gain. The device is also a good choice for analog switching where low capacitance is very important.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-25	-40		, V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0V	1.0	10	20	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	3.0	5.5	7.0	mmhos
Forward Trans- conductance	9fs	V _{DG} = 15V, I _D = 200 μA		1.1		mmhos
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-5.0	-100	pA
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	100	175	500	Ω
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.7	-3.5	-6.0	٧
Output Conductance	gos	V _{DG} = 15V, I _D = 1 mA, f = 1 kHz		10		μ mhos
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, V_{GS} = 0$	7	0.7	0.9	pF
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0$		3.5	4.0	pF
Noise Voltage	e _n	V _{DG} = 15V, I _D = 1 mA, f = 100 Hz		8.0		nV/√Hz
Noise Figure	NF	$V_{DG} = 15V$, $I_D = 5 \text{ mA}$, $R_G = 1 \text{ k}\Omega$, $f = 400 \text{ MHz}$		2.2	4.0	dB
Power Gain	G _{PS}	V _{DG} = 15V, I _D = 5 mA, f = 400 MHz		12		dB

Examples of process 50 part numbers are as follows.

^{*}Denotes preferred parts.

	*	PN5163	2N5949	BC264C
2N3823	*2N5484	FIND 103		
2N3966	*2N5485	MPF102	2N5950	BC264D
2N4223	*2N5486	MPF 106	2N5951	BF245A
2N4224	2N5555	MPF 107	2N5952	BF245B
2N4416	2N5668	MPF110	2N5953	BF245C
*2N4416A	2N5669	MPF111	BC264A	BF256A
2N5078 2N5103 2N5104 2N5105 2N5556	2N5670 2N5670 *J304 *J305 PN4223 PN4224	2N3819 2N5248 BF244A BF244B	BC264B QUALIFIED	BF256B BF256C PER MIL-S-19500
2N5557 2N5558	*PN4416	BF244C TIS58 TIS59		JANTX, JANTXV I, JANTX, JANTXV

COMMON SOURCE

COMMON GATE

Process 51 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 51 is designed primarily for electronic switching applications such as low ON resistance analog switching. It features excellent $C_{\rm iss}$ $R_{\rm DS(ON)}$ time constant. The inherent zero offset voltage and low leakage current make these devices excellent for chopper stabilized amplifiers, sample and hold circuits, and reset switches. Low feed-through capacitance also allows them to handle video signals to 100 MHz.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-30	-50		V
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 20V$, $V_{GS} = 0$ Pulse Test	5.0	65	170	mA
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-15	-200	pA
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	20	35	100	Ω
Forward Trans- conductance	g _{fs}	$V_{DG} = 15V$, $I_D = 2 \text{mA}$		8.5		mmhos
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 20V, I_{D} = 1 \text{ nA}$	-0.5	-4.5	-9.0	V
Drain "OFF" Current	I _{D(OFF)}	$V_{DS} = 20V, V_{GS} = -10V$		15	200	pА
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, I_{D} = 5 \text{ mA}, f = 1 \text{ MHz}$		3.5	4.0	pF
Input Capacitance	C _{iss}	$V_{DS} = 15V, I_{D} = 5 \text{ mA, f} = 1 \text{ MHz}$		12	16	pF
Noise Voltage	e _n	$V_{DG} = 15V, I_D = 1 \text{ mA, f} = 100 \text{ Hz}$		6.0	81.48	nV/√Hz
Turn-On Time	t _{on}	$V_{DD} = 10V, I_{D} = 6.6 \text{ mA}$		12	20	ns
Turn-Off Time	t _{off}	$V_{DD} = 10V, I_{D} = 6.6 \text{ mA}$		40	80	ns

Examples of process 51 part numbers are as follows.

^{*}Denotes preferred parts.

2N3970	2N4861	*PN4092	BF247A
2N397.1	2N4861A	*PN4093	BF247B
2N3972		*PN4391	BF247C
*2N4091	*	*PN4392	TIS73
*2N4092	*NF5101	*PN4393	TIS74
*2N4093	*NF5102	*PN4856	TIS75
*2N4391	*NF5103	*PN4857	
*2N4392	*2N5638	*PN4858	QUALIFIED PER MIL-S-19500
*2N4393	*2N5639	*PN4859	2N4091 JAN, JANTX, JANTXV
*2N4856	*2N5640	*PN4860	2N4092 JAN, JANTX, JANTXV
2N4856A	2N5653	*PN4861	2N4093 JAN, JANTX, JANTXV
*2N4857	2N5654	U1897E	2N4856 JAN, JANTX, JANTXV
2N4857A	*J111	U1898E	2N4857 JAN, JANTX JANTXV
*2N4858	*J112	U1899E	2N4858 JAN, JANTX, JANTXV
2N4858A	*J113		2N4859 JAN, JANTX, JANTXV
2N4859	*PF5101	BF246A	2N4860 JAN, JANTX, JANTXV
2N4859A	*PF5102	BF246B	2N4861 JAN, JANTX, JANTXV
2N4860	*PF5103	BF246C	214 100 1 07 114, 57 114 174, 67 114 174
2N4860A	*PN4091		

Process 52 N-Channel JFET

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 52 is designed primarily for low level audio and general purpose applications. These devices provide excellent performance as input stages for piezo electric transducers or other high impedance signal sources. Their high output impedance and high voltage breakdown lend them to high gain audio and video amplifier applications. Source and drain are interchangeable.

CHARACTERISTIC	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown	BVGSS	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		V
Voltage						
Drain Saturation Current	IDSS	$V_{DS} = 20V$, $V_{GS} = 0V$	0.2	1.5	12	mA
Forward Transconductance	9fs	$V_{DS} = 20V, V_{GS} = 0V$	1.0	2.5	5.0	mmho
Forward Transconductance	9fs	$V_{DS} = 20V$, $I_{D} = 200 \mu A$		700		μmho
Reverse Gate Leakage Current	IGSS	$V_{GS} = -30V$, $V_{DS} = 0V$		-10		pA
Drain ON Resistance	rDS	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{ V}$	250	400	2000	Ω
Gate Cutoff Voltage	VGS(OFF),VP	V _{DS} = 15V, I _D = 1 nA	-0.3	1.0	-8.0	v
Output Conductance	gos	$V_{DG} = 15V$, $I_{D} = 200 \mu A$		2.0		μmho
Feedback Capacitance	C _{rss}	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		1.3	1.8	pF
Input Capacitance	C _{iss}	V _{DG} = 15V, V _{GS} = 0V, f = 1 MHz		5	6	pF
Noise Voltage	e _n	V _{DG} = 15V, I _D = 200 μA, f = 100 Hz		10		nV/√Hz

Examples of process 52 part numbers are as follows.

*Denotes preferred parts.

2N3069	*2N3684	*J201
2N3070	*2N3685	*J202
2N3071	*2N3686	*J203
2N3368	*2N3687	*PN3684
2N3369	2N3967	*PN3685
2N3370	2N3967A	*PN3686
2N3458	2N3968	*PN3687
2N3459	2N3968A	*PN4302
2N3460	2N3969	*PN4303
*2N4338	2N3969A	*PN4304
*2N4339		
*2N4340		
*2N4341		

Process 53 N-Channel JFET

DESCRIPTION

Process 53 is designed primarily for low current DC and audio applications. These devices provide excellent performance as input stages for sub picoamp instrumentation or any high impedance signal sources.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-60		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 10V, V _{GS} = 0	0.02	0.25	1.0	mA
Forward Trans- conductance	9 _{fs}	V _{DS} = 10V, V _{GS} = 0	80	250	350	μmho
Forward Trans- conductance	9 _{fs}	$V_{DG} = 15V, I_{D} = 50 \mu\text{A}$		120		μmho
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-0.3	-10	pА
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 10V, I _D = 1 nA	-0.5	-2.2	-6.0	V
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, V_{GS} = 0, f = 1 MHz$		0.85	1.0	pF
Input Capacitance	Ciss	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		2.0	2.5	pF
Output Conductance	gos	$V_{DG} = 10V, I_{D} = 50 \mu A$		0.9	5.0	μmhos
Noise Voltage	en	$V_{DG} = 10V, I_{D} = 50 \mu A,$		45	150	n√/√Hz
	10.	f = 100 Hz			10	

Examples of process 53 part numbers are as follows.

*Denotes preferred parts.

2N4117 *2N4117A 2N4118 *2N4118A 2N4119 *2N4119A

Process 55 N-Channel JFET

DESCRIPTION

Process 55 is a general purpose low level audio amplifier and switching transistor. Wafer processing is similar to process 52 but process 55 uses a larger geometry. This results in higher $Y_{\rm fs}$, $I_{\rm DSS}$, and capacitance and lower $R_{\rm DS(ON)}$. It is useful for audio and video frequency amplifiers and RF amplifiers under 50 MHz. It may also be used for analog switching applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-40	-70		v
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20V, V _{GS} = 0	0.5	5.0	20	mA
Forward Trans- conductance	9fs	V _{DS} = 20V, V _{GS} = 0	2.0	4.5	7.0	mmho
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 200 μA	72	1200		μmhos
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -30V, V_{DS} = 0$		-10	-100	рА -
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	140	250	600	Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 20V, I_{D} = 1 \text{ nA}$	-0.5	-2.0	-8.0	V
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, V_{GS} = 0, f = 1 MHz$		1.5	2.0	рF
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		6.0	7.0	pF
Output Conductance	g _{os}	$V_{DG} = 15V, I_{D} = 200 \mu\text{A}$		2		μmhos
Noise Voltage	e _n	$V_{DG} = 15V$, $I_{D} = 200 \mu\text{A}$, $f = 100 \text{Hz}$		10		nV/√Hz

Examples of process 55 part numbers are as follows.

2N3436	*2N5361	
2N3437	*2N5362	
2N3438	*2N5363	
	*2N5364	
2N3821		
2N3822	*2N5457	
2N3824	*2N5458	
2N4220	*2N5459	
2N4220A	MPF103	
2N4221	MPF104	
2N4221A	MPF105	
2N4222	MPF108	
2N4222A	MPF109	
*2N5358	MPF112	
*2N5359	PN4220	
*2N5360	PN4221	
2113300	PN4222	

^{*}Denotes preferred parts.

Process 58 N-Channel JFET

DESCRIPTION

Process 58 was developed for analog or digital switching applications where very low $r_{DS(ON)}$ is mandatory. Switching times are very fast and $R_{DS(ON)}\,C_{iss}$ time constant is low. The 6Ω typical on resistance is very useful in precision multiplex systems where switch resistance must be held to an absolute minimum. With r_{DS} increasing only 0.7%/ $^{\circ}$ C, accuracy is retained over a wide temperature excursion.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-25	-30		٧
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 5V$, $V_{GS} = 0$ Pulse Test	100	400	1000	mA
Reverse Gate Leakage	I _{GSS}	$V_{GS} = -15V, V_{DS} = 0$	4	-50	-500	pA
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	3.0	6.0	20	Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 5V, I_{D} = 3 \text{ nA}$	-0.5	-5.0	-12	V
Drain "OFF" Current	I _{D(OFF)}	$V_{DS} = 5V, V_{GS} = -10V$		0.05	20	nA
Feedback Capacitance	C _{rss}	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 1 \text{ MHz}$		12	25	pF
Input Capacitance	C _{iss}	$V_{DG} = 15V, I_{D} = 2 \text{ mÅ}, f = 1 \text{ MHz}$		25	50	pF
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 2 mA		10		mmhos
Output Conductance	g _{os}	$V_{DG} = 10V, I_{D} = 2 \text{ mA}$		100		μmhos
Noise Voltage	en	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 100 \text{ Hz}$		6.0		nV/√Hz

Examples of process 58 part numbers are as follows.

*Denotes preferred parts.

U320	*J108	*2N5432
U321	*J109	*2N5433
U322	*J110	*2N5434

Process 59 N-Channel JFET

DESCRIPTION

Process 59 is provided for analog or digital switching applications where very low $R_{DS(ON)}$ is mandatory. The 4Ω typical ON resistance is very useful where switch resistance must be held to an absolute minimum.

Electrical Characteristics (T_A = 25°C)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
BV _{GSS}	Gate-Source Breakdown Voltage	$V_{DS} = 0V, I_{G} = -1 \mu A$	25			٧
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 15V, V_{GS} = 0V$ Pulse Test	100	600	1500	mA
IGSS	Reverse Gate Leakage	$V_{GS} = -15V, V_{DS} = 0V$			1.0	nA
rDS(ON)	ON Resistance	$V_{DS} = 100 \text{ mV}, V_{GS} = 0 \text{V}$	1.5	4.0	10	Ω
V _{GS(OFF)}	Pinch Off Voltage	$V_{DS} = 5V, I_{D} = 100 \text{ nA}$	0.5	5.0	10	٧
I _{D(OFF)}	Drain OFF Current	$V_{DS} = 5V, V_{GS} = -10V$		1.0	10	nA
C _{rss}	Feedback Capacitance	$V_{DG} = 15V, I_{D} = 2 \text{ mA}, f = 1 \text{ MHz}$		25	35	pF
C _{iss}	Input Capacitance	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 1 \text{ MHz}$		50	80	pF
9fs	Forward Transconductance	$V_{DG} = 10V, I_{D} = 2 \text{ mA}$		10		mmho
gos	Output Conductance	$V_{DG} = 10V$, $I_D = 2 \text{ mA}$		200		μmho
en	Noise Voltage	$V_{DG} = 15V, I_D = 2 \text{ mA}, f = 100 \text{ Hz}$		6.0		nV/√Hz

This process is available in the following device types.

J105

J106

J107

Process 83 N-Channel JFET

DESCRIPTION

Process 83 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Likewise matching characteristics are virtually independent of operating current and voltage, providing design flexibility. Most GP 2N types are sorted from this family.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-50	-70	- 4	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0	0.5	2.5	8.0	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	1.0	2.5	5.0	mmho
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.5	-2.0	-4.5	V
Gate Current	I _G	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$		3.0	50	pA
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 0.2 mA	600	850		μmhos
Output Conductance	gos	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		1.0	5.0	μmhos
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$		450		Ω
Noise Voltage	e _n	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$ f = 100 Hz		10	50	nV/√Hz
Differential Match	V _{GS1} -V _{GS2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		7.0	25	mV
Differential Match	ΔV _{GS1-2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		10	50	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 15V, I _D = 0.2 mA	80	95		dB
Feedback Capacitance	C _{rs}	V _{DG} = 15V, I _D = 0.2 mA, f = 1 MHz		1.0	1.2	pF
Input Capacitance	C _{is}	V _{DG} = 15V, I _D = 0.2 mA, f = 1 MHz		3.4	4.0	pF

Examples of process 83 part numbers are as follows.

^{*}Denotes preferred parts.

2N3921	2N5047	U233	J410
2N3922	*2N5196	U234	J411
*2N3954	*2N5197	U235	J412
*2N3954A	*2N5198		
*2N3955	*2N5199		*NPD8301
*2N3955A	2N5452		*NPD8302
*2N3956	2N5453		*NPD8303
*2N3957	2N5454		
*2N3958	*2N5545		
2N4084	*2N5546		
2N4085	*2N5547		
2N5045	U231		
2N5046	U232		

Process 84 N-Channel JFET

DESCRIPTION

Process 84 is a monolithic dual JFET with a diode isolated substrate. It is designed for the most critical operational amplifier input stages or electrometer single ended preamp. Ideal for medical applications and instrumentation inputs where subpicoamp inputs are important. Device design considered high CMRR, subpicoamp leakage over wide input swings, low capacitance, and tight match over wide current range.

CHARACTERISTIC	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-60		V
Drain Saturation Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0V	20	300	1000	μΑ
Forward Transconductance	g _{fs}	V _{DS} = 15V, V _{GS} = 0V	90	180	300	μV
Forward Transconductance	g _{fs}	$V_{DS} = 15V, I_{D} = 30 \mu\text{A}$	50	120	150	μV
Gate Cutoff Voltage	V _{GS(OFF)}	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	0.5	2	4.5	V
Reverse Gate Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = -20V$		1	5	pA
Gate Leakage Current	I _G	$V_{DG} = 10V, I_{D} = 30 \mu\text{A}$		0.5	3	pA
Feedback Capacitance	C _{rss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		0.3	0.4	pF
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		2	3	pF
Noise Voltage	e _n	$V_{DS} = 15V$, $I_{D} = 30 \mu A$, $f = 1 \text{ kHz}$		30	50	nV/√Hz
Noise Voltage	e _n	$V_{DS} = 15V$, $I_{D} = 30 \mu\text{A}$, $f = 10 \text{Hz}$		180		nV/√Hz
Output Conductance	g _{os}	$V_{DS} = 10V, I_{D} = 30 \mu\text{A}$		0.1	0.2	μV
Differential Gate-Source Voltage	V _{GS1} -V _{GS2}	$V_{DS} = 10V, I_{D} = 30 \mu\text{A}$	-	12	25	mV
Differential Gate-Source Voltage Drift	ΔV_{GS1-2}	$V_{DS} = 10V, I_{D} = 30 \mu\text{A}$	E .	10	50	μV/°C
Common-Mode Rejection Ratio	CMRR	$V_{DS} = 10V$, $I_D = 30 \mu A$		112	=	dB

Examples of process 84 part numbers are as follows.

2N5903 2N5904 2N5905 *2N5906 *2N5907 *2N5908 *2N5909

2N5902

^{*}Denotes preferred parts.

Process 86 Monolithic Dual JFET

DESCRIPTION

Process 86 is a monolithic dual JFET with a diode isolated substrate. It is intended for critical amplifier input stages requiring low noise, sub picoamp bias currents and high gain. Exacting process control results in consistent parameter distribution with tight match and low drift.

This process is available in the following device types. *Denotes preferred parts.

U421 U422 U423 U424 U425

U426

Process 88 P-Channel JFET

DESCRIPTION

Process 88 is designed primarily for electronic switching applications where a P channel device is desirable. Inherent zero offset voltage, low leakage and low $R_{\mbox{\footnotesize{DS(ON)}}}\,C_{iss}$ time constant make this device excellent for low level analog switching, sample and hold circuits and chopper stabilized amplifiers. This device is the complement to Process 51.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = 1 \mu A$	30	40		V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -15V, V_{GS} = 0$	-5.0	-30	-90	mA
Forward Trans- conductance	9fs	$V_{DS} = -15V$, $V_{GS} = 0$	4.0	13	17	mmhos
Forward Trans- conductance	g _{fs}	$V_{DG} = -15V, I_{D} = -2 \text{ mA}$		3.5		mmhos
Gate Leakage	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0$		0.05	1.0	nA
"ON" Resistance	r _{DS}	$V_{DS} = -100 \text{ mV}, V_{GS} = 0$	50	80	200	Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = -15V, I_{D} = -1 \text{ nA}$	0.5	5.0	10	V
Drain "OFF" Current	I _{D(OFF)}	$V_{DS} = -15V, V_{GS} = 10V$		-0.05	-10	nA
Feedback Capacitance	C _{rss}	$V_{DG} = -15V$, $I_{D} = -2$ mA, $f = 1$ MHz		4.0	5.0	pF
Input Capacitance	C _{iss}	$V_{DS} = -15V$, $I_{D} = -2 \text{ mA}$, $f = 1 \text{ MHz}$		14	15	pF
Output Conductance	g _{os}	$V_{DG} = -15V, I_{D} = -2 \text{ mA}$		100	300	μmhos
Noise Voltage	e _n	$V_{DG} = -15V$, $I_{D} = -2$ mA, $f = 100$ Hz		20		nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

2N2609	2N3382	*J174			
2N4382	2N3384	*J175			
2N5018	2N3386	*J176			
2N5019	2N3993	*J177			
*2N5114	2N3993A	*J270			
*2N5115	2N3994	*J271			
*2N5116	2N3994A				
U300		QUALIFIED PER MIL-S-19500			
U301		*2N5114JAN, JANTX, JANTXV *2N5115JAN, JANTX, JANTXV *2N5116JAN, JANTX, JANTXV			
U304	P1086E				
U305	P1087E				
U306	PN4343	ZNOTTOJAN, JANTA, JANTAV			

Process 89 P-Channel JFET

DESCRIPTION

Process 89 is designed primarily for low level amplifier applications. This device is the complement to Process 55. Commonly used in voltage variable resistor applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = 1 \mu A$	20	40		V
Zero Gate Voltage Drain Current	DSS	$V_{DS} = -15V, V_{GS} = 0$	-0.3	-4.0	-20	mA
Forward Trans- conductance	g _{fs}	$V_{DS} = -15V, V_{GS} = 0$	1.0	2.5	4.0	mmhos
Forward Trans- conductance	9fs	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA}$		700		μmhos
Gate Leakage	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0$		0.02	1.0	nA
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = -15V, I_{D} = -1 \text{ nA}$	0.5	3.0	9.0	V
Feedback Capacitance	C _{rss}	$V_{DG} = -15V$, $V_{GS} = 0$, $f = 1 \text{ MHz}$		2.0	2.5	pF
Input Capacitance	Cis	$V_{DS} = -15V, I_{D} = -2 \text{ mA, f} = 1 \text{ MHz}$		7.0	8.5	pF
"ON" Resistance	r _{DS}	$V_{DS} = -100 \text{ mV}, V_{GS} = 0$		450		Ω
Output Conductance	g _{os}	$V_{DG} = -15V, I_{D} = -0.2 \text{ mA}$		5.0	15	μmhos
Noise Voltage	e _n	$V_{DG} = -15V$, $I_{D} = -0.2 \text{ mA}$, $f = 100 \text{ Hz}$		30	. ,	nV/√Hz

This process is available in the following device types. *Denotes preferred parts.

2N2608 2N4381	*2N5460 *2N5461	2N3820
2N5020 2N5021	*2N5462 PN4342 PN4360	QUALIFIED PER MIL-S-19500 2N2608JAN
2N3329 2N3330	PN5033	
2N3331 2N3332		

Process 90 P-Channel JFET

DESCRIPTION

Process 90 is designed for VHF/UHF mixer/amplifier and applications where Process 50 is not adequate. Has sufficient gain and low noise, common gate configuration at 450 MHz, for sensitive receivers. The high transconductance and square law characteristics insures low crossmodulation and intermodulation distortions. Common-gate operation simplifies circuitry. Consider Process 92 for even higher performance.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-20	-30		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 10V, V _{GS} = 0	3	18	40	mA
Forward Trans- conductance	9 _{fs}	V _{DS} = 10V, V _{GS} = 0	5.5	8.0	10	mmhos
Forward Trans- conductance	9 _{fs}	V _{DS} = 10V, I _D = 5 mA	4.5	5.8		mmhos
Reverse Gate Current	I _{GSS}	$V_{GS} = -15V, V_{DS} = 0$		-5.0	-100	pA
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$		90		Ω
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 10V, I_{D} = 1 \text{ nA}$	-1.5	-3.5	-6.0	V
Output Conductance	gos	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		45	100	μmhos
Feedback Capacitance	C _{rs}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		1.0	1.2	рF
Input Capacitance	Cis	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		4.0	5.0	pF
Noise Voltage	en	$V_{DG} = 10V, I_{D} = 5 \text{ mA, f} = 100 \text{ Hz}$		13		nV/√Hz
Noise Figure	NF	$V_{DG} = 10V, I_{D} = 5 \text{ mA, f} = 450 \text{ MHz}$		3.0		dB
Power Gain	G _{pg} (CG)	$V_{DG} = 10V, I_{D} = 5 \text{ mA}, f = 450 \text{ MHz}$		11		dB

This process is available in the following device types.

J114

*J210

*J211

*J212 *J300 *2N5245

*2N5246

*2N5247

*2N5397

U312

2N5398

^{*}Denotes preferred parts.

COMMON SOURCE

COMMON GATE

Process 92 N-Channel Junction Match

GATE IS ALSO BACKSIDE CONTACT

DESCRIPTION

Process 92 is designed for VHF/UHF amplifier, oscillator, and mixer applications. As a common gate amplifier, 16 dB at 100 MHz and 12 dB at 450 MHz can be realized. Worst case 75 ohm input impedance provides ideal input match.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-20	-30		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 10V, V _{GS} = 0, Pulsed	10	38	80	mA
Forward Trans- conductance	9fs	V _{DS} = 10V, V _{GS} = 0, Pulsed		19		mmhos
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 10 mA	10	13	18	mmhos
Reverse Gate Current	I _{GSS}	$V_{GS} = -15V, V_{DS} = 0$		-15	-100	рА
"ON" Resistance	r _{DS}	V _{DS} = 100 mV, V _{GS} = 0	35	45	80	Ω
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 10V, I _D = 1 nA	-1.5	-4.0	-6.5	V
Output Conductance	g _{os}	V _{DG} = 10V, I _D = 10 mA		160	250	μmhos
Feedback Capacitance	C_{gd}	V _{DG} = 10V, I _D = 10 mA, f = 1 MHz		2.0	2.5	pF
Input Capacitance	C_{gs}	V _{DG} = 10V, I _D = 10 mA, f = 1 MHz		4.1	5.0	рF
Noise Voltage	en	V _{DG} = 10V, I _D = 10 mA, f = 100 Hz		6.0	190	nV/√Hz
Noise Figure	NF	$V_{DG} = 10V, I_{D} = 10 \text{ mA},$ f = 450 MHz		3.0		dB
Power Gain	G _{pg}	$V_{DG} = 10V, I_{D} = 10 \text{ mA},$ f = 450 MHz		12	i.	dB

This process is available in the following device types.

*Denotes preferred parts.

U308 *U309 *U310 U430 U431

J308 *J309 *J310

Process 93 N-Channel JFET

DESCRIPTION

Process 93 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages, and high slew rate op amps. Monolithic structure eliminates thermal transient errors, and provides freedom to pick operating current and voltage.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-25	-30		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 10V, V _{GS} = 0, Pulsed	3.0	18	40	mA
Forward Trans- conductance	9fs	V _{DS} = 10V, V _{GS} = 0, Pulsed		8.0		mmhos
Forward Trans- conductance	9fs	V _{DG} = 10V, I _D = 5 mA	5.0	6.0	10	mmhos
Output Conductance	gos	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		50	100	μmhos
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 10V, I_{D} = 1 \text{ nA}$	-1.5	-3.5	-6.0	V
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$		100		Ω
Gate Current	I _G	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		10	100	pA
Noise Voltage	e _n	$V_{DG} = 10V, I_{D} = 5 \text{ mA}, f = 100 \text{ Hz}$		9.0	30	nV/√Hz
Differential Match	VGS1-VGS2	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		9.0	30	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}$		15	40	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 10V, I _D = 5 mA		90	E S	dB
Feedback Capacitance	C _{rs}	$V_{DG} = 10V, I_{D} = 5 \text{ mA}, f = 1 \text{ MHz}$		1.0	1.2	pF
Input Capacitance	Cis	$V_{DG} = 10V, I_{D} = 5 \text{ mA, f} = 1 \text{ MHz}$		4.2	5.0	pF

This process is available in the following device types.

^{*}Denotes preferred parts.

^{*2}N5911 *2N5912 U257

ID - DRAIN CURRENT (mA)

10

1.0

In - DRAIN CURRENT (mA)

0.1

ID - DRAIN CURRENT (mA)

Process 93 P-Channel JFET

DESCRIPTION

Process 94 is a monolithic dual JFET. It is strictly intended for operational amplifier input buffer applications. Special processing results in extremely low input bias current and virtually unmeasureable offset current. It is important to note that the <5 pico ampere bias current is measured at 35 volts. Typical CMRR is 125 dB. Performance superior to electrometer tubes can be readily achieved with low offset voltage and almost zero long term drift.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-40	-70		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0	0.5	3.0	10	mA
Forward Trans- conductance	9 _{fs}	V _{DS} = 15V, V _{GS} = 0	1.5	3.5	7.0	mmho
Forward Trans- conductance	9 _{fs}	V _{DG} = 15V, I _D = 0.2 mA	0.9	1.2	1.8	mmhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA	-0.5	-2.0	-6.0	V
Gate Current	I _G	$V_{DG} = 35V, I_{D} = 0.20 \text{ mA}$		1.0	15	pА
Feedback Capacitance	C _{rss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		0.01	0.02	pF
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		4.0	5.0	pF
Noise Voltage	e _n	$V_{DG} = 15V$, $I_{D} = 0.2$ mA, $f = 10$ Hz		12	50	nV/√Hz
Output Conductance	gos	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		<0.1		μmhos
Differential Match	V _{GS1} -V _{GS2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		5.0	25	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		6.0	50	μV/°C
Common Mode Rejection	CMRR	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		125	().	dB

This process is available in the following device types.

*NDF9406 *NDF9407 *NDF9408 *NDF9409 *NDF9410 NDF9401 NDF9402 NDF9403 NDF9404

NDF9405

^{*}Denotes preferred parts.

Process 95 N-Channel JFET

DESCRIPTION

Process 95 is a monolithic dual JFET with a diode isolated substrate. It is intended for operational amplifier input buffer applications. Processing results in low input bias current and virtually unmeasureable offset current. Low noise voltage and high CMRR for critical I/f applications.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V$, $I_{G} = -1 \mu A$	-40	-70		V
Zero Gate Voltage Drain Current	DSS	$V_{DS} = 15V, V_{GS} = 0$	0.5	3.0	8.0	mA
Forward Trans- conductance	9 _{fs}	$V_{DS} = 15V, V_{GS} = 0$	1.0	2.5	4.0	mmhos
Forward Trans- conductance	g _{fs}	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$	0.5	0.7		mmhos
Gate Leakage	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-5.0	-100	pA
Pinch Off Voltage	V _{GS(OFF)}	$V_{DS} = 15V, I_{D} = 1 \text{ nA}$	−0.5	-2.5	-4.0	V
Input Capacitance	C _{iss}	$V_{DS} = 15V, V_{GS} = 0, f = 1 MHz$		10	14	pF
Noise Voltage	e _n	$V_{DS} = 15V$, $I_D = 0.2 \text{ mA}$, $f = 10 \text{ Hz}$		8.0	30	nV/√Hz
Noise Voltage	e _n	$V_{DS} = 15V$, $I_{D} = 0.2 \text{ mA}$, $f = 100 \text{ Hz}$	*	6.0	10	nV/√Hz
Output Conductance	gos	$V_{DG} = 15V, I_{D} = 0.2 \text{ mA}$		0.3	1.0	μ mhos
Feedback Capacitance	C _{rss}	V _{DS} = 15V, V _{GS} = 0, f = 1 MHz		3.5	5.0	pF
Differential Match	V _{GS1} -V _{GS2}	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$		6.0	25	mV
Differential Match	ΔV_{GS1-2}	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$		9.0	60	μV/°C
Common Mode Rejection	CMRR	$V_{DG} = 20V, I_{D} = 0.2 \text{ mA}$	86	115		dB

This process is available in the following device types.

2N5515	*2N5522
2N5516	*2N5523
2N5517	*2N5524
2N5518	*2N6483
2N5519	*2N6484
*2N5520	*2N6485
*2N5521	

^{*}Denotes preferred parts.

Noise Voltage vs

Process 96 N-Channel JFET

DESCRIPTION

Process 96 is a monolithic dual JFET with a diode isolated substrate. It is intended for wide band, low noise, single ended video amplifier input stages. Also ideal for matched voltage variable resistor applications over 60 dB tracking range.

CHARACTERISTIC	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Gate-Source Breakdown Voltage	BV _{GSS}	$V_{DS} = 0V, I_{G} = -1 \mu A$	-4 0	-55		٧
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 15V, V _{GS} = 0	5.0	15	30	mA
Forward Trans- conductance	9fs	V _{DS} = 15V, V _{GS} = 0	9.0	18	30	mmhos
Forward Trans- conductance	g _{fs}	V _{DG} = 15V, I _D = 2 mA	7.5	9.0		mmhos
Output Conductance	g _{os}	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		15	45	μmhos
Pinch Off Voltage	V _{GS(OFF)}	V _{DS} = 15V, I _D = 1 nA		-1.8	-3.0	V
"ON" Resistance	r _{DS}	$V_{DS} = 100 \text{ mV}, V_{GS} = 0$	35	70	120	Ω
Gate Current	I _{GSS}	$V_{GS} = -20V, V_{DS} = 0$		-8.0	-100	рА
Gate Current	I _G	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		15	200	рА
Noise Voltage	e _n	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 100 \text{ Hz}$		4.5	10	nV/√Hz
Feedback Capacitance	C _{rs}	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 1 \text{ MHz}$		2.5	3.0	pF
Input Capacitance	Cis	$V_{DG} = 15V, I_{D} = 2 \text{ mA, f} = 1 \text{ MHz}$		10	12	pF
Differential Voltage	V _{GS1} -V _{GS2}	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		8.0	25	mV
Differential Voltage	ΔV_{GS}	$V_{DG} = 15V, I_{D} = 2 \text{ mA}$		9.0	50	μV/°C
Common Mode Rejection	CMRR	V _{DG} = 15V, I _D = 2 mA	76	95		dB

This process is available in the following device types.

*2N5564 *2N5565 *NPD5564 *NPD5565

*2N5566

*NPD5566

^{*}Denotes preferred parts.

Process 98 N-Channel JFET

DESCRIPTION

Process 98 is a high gain, general purpose, monolithic dual JFET with a diode isolated substrate. It is intended for amplifier input stages requiring high gain, low noise and low offset drift over temperature. Strict processing controls result in low input bias currents and virtually immeasurable offset currents. Matching characteristics are essentially independent of operating current and voltage.

This process is available in the following device types.

^{*}Denotes preferred parts.

2N5561	J401
2N5562	J402
2N5563	J403
U401	J404
U402	J405
U403	J406
U404	
U405	
U406	

References

1977 JFET DATABOOK, National Semiconductor

Editor: Richard Dunipace, June 2015.

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS

HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.