

FEATURES

- Super-low power version of DS1232
- 50µA quiescent current
- Halts and restarts an out-of-control microprocessor
- Automatically restarts microprocessor after power failure
- Monitors pushbutton for external override
- Accurate 5% or 10% microprocessor power supply monitoring
- 8-pin DIP, 8-pin SOIC or space saving µ-SOP package available
- Optional 16-pin SOIC package available
- Industrial temperature -40°C to +85°C available, designated N

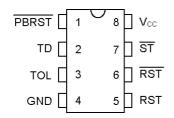
PIN DESCRIPTION

PBRST -Pushbutton Reset Input

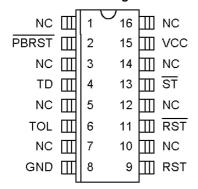
TD -Time Delay Set

TOL -Selects 5% or 10% Vcc Detect

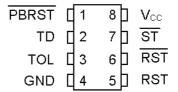
GND -Ground

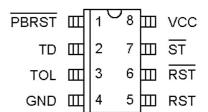

RST -Reset Output (Active High)

RST -Reset Output (Active Low, open drain)


ST -Strobe Input

-+5 Volt Power Vcc


PIN ASSIGNMENT


DS1232LP 8-Pin DIP (300-mil) See Mech. Drawings Section

DS1232LPS 16-Pin SOIC (300-mil) See Mech. Drawings Section

DS1232LPμ(118-mil μ-SOP) See Mech. Drawings Section

DS1232LPS-2 8-Pin SOIC (150-mil) See Mech. Drawings Section

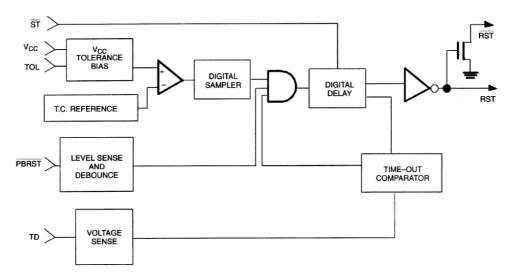
DESCRIPTION

The DS1232LP/LPS Low Power MicroMonitor Chip monitors three vital conditions for a microprocessor: power supply, software execution, and external over-ride. First, a precision temperature-compensated reference and comparator circuit monitors the status of Vcc. When an out-of-tolerance condition occurs, an internal power-fail signal is generated which forces reset to the active state. When Vcc returns to an in-tolerance condition, the reset signals are kept in the active state for a minimum of 250ms to allow the power supply and processor to stabilize.

The second function the DS1232LP/LPS performs is pushbutton reset control. The DS1232LP/LPS debounces the pushbutton input and guarantees an active reset pulse width of 250 ms minimum. The third function is a watchdog timer. The DS1232LP/LPS has an internal timer that forces the reset signals to the active state if the strobe input is not driven low prior to timeout. The watchdog timer function can be set to operate on timeout setting of approximately 150ms, 600ms, and 1.2 seconds.

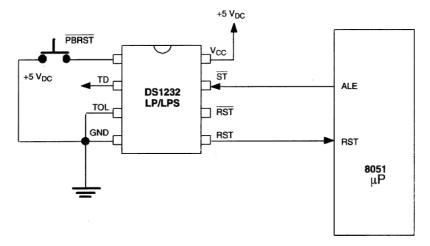
OPERATION - POWER MONITOR

The DS1232LP/LPS detects out-of-tolerance power supply conditions and warns a processor-based system of impending power failure. When Vcc falls below a preset level as defined by TOL, the Vcc comparator outputs the signals RST and RST. When TOL is connected to ground, the RST and RST signals become active as Vcc falls below 4.75 volts. When TOL is connected to Vcc, the RST and RST signals become active as Vcc falls below 4.5 volts. The RST and RST are excellent control signals for a microprocessor, as processing is stopped at the last possible moments of valid Vcc. On power-up, RST and RST are kept active for a minimum of 250 ms to allow the power supply and processor to stabilize.

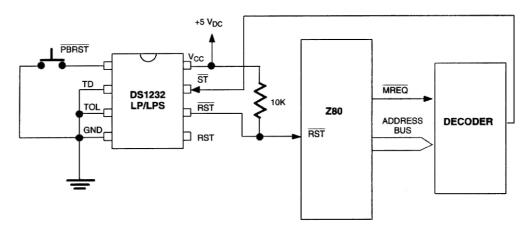

OPERATION - PUSHBUTTON RESET

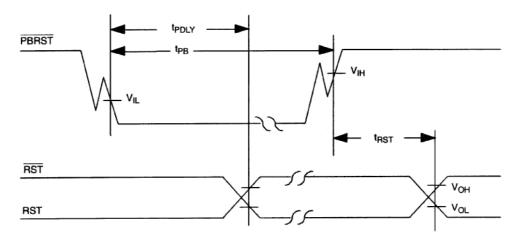
The DS1232LP/LPS provides an input pin for direct connection to a pushbutton (Figure 1). The pushbutton reset input requires an active low signal. Internally, this input is debounced and timed such that RST and RST signals of at least 250ms minimum are generated. The 250ms delay starts as the pushbutton reset input is released from low level.

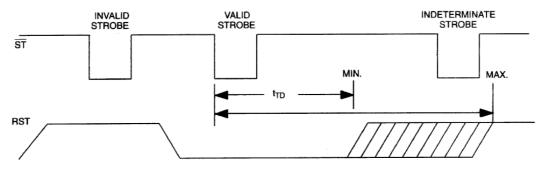
OPERATION - WATCHDOG TIMER


The watchdog timer function forces RST and RST signals to the active state when the ST input is not stimulated for a predetermined time period. The time period is set by the TD input to be typically 150ms with TD connected to ground, 600 ms with TD left unconnected, and 1.2 seconds with TD connected to Vcc. The watchdog timer starts timing out from the set time period as soon as RST and RST are inactive. If a high-to-low transition occurs on the ST input pin prior to timeout, the watchdog timer is reset and begins to timeout again. If the watchdog timer is allowed to timeout, then the RST and RST signals are driven to the active state for 250ms minimum. The ST input can derived from microprocessor address signals, data signals, and/or control signals. When the microprocessor is functioning normally, these signals would, as a matter of routine, cause the watchdog to be reset prior to timeout. To guarantee that the watchdog timer does not timeout, a high-to-low transition must occur at or less than the minimum shown in Table 1. A typical circuit example is shown in Figure 2.

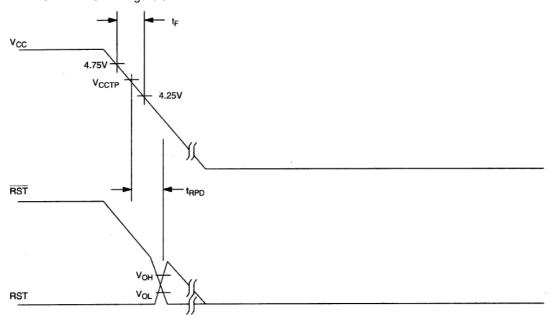
MICROMONITIOR BLOCK DIAGRAM



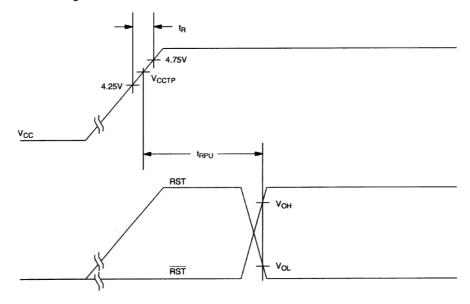

PUSHBUTTON RESET Figure 1


WATCHDOG TIMER Figure 2

TIMING DIAGRAM: PUSHBUTTON RESET Figure 3


TIMING DIAGRAM:STROBE INPUT Figure 4

WATCHDOG TIME-OUTS Table 1


TD	TIME-OUT				
10	MIN	TYP	MAX		
GND	62.5ms	150ms	250ms		
Float	250ms	600ms	1000ms		
Vcc	500ms	1200ms	2000ms		

TIMING DIAGRAM: POWER-DOWN Figure 5

TIMING DIAGRAM: POWER-UP Figure 6

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Ground Voltage on I/O Relative to Ground Operating Temperature Operating Temperature (Industrial Version) Storage Temperature Soldering Temperature -0.5V to +7.0V -0.5V to Vcc +0.5V 0°C to 70°C -40°C to +85°C -55°C to +125°C 260°C for 10 seconds

RECOMMENDED DC OPERATIONG CONDTIONS

(0°C to 70°C)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.0	5.5	V	1
ST and PBRST Input High Level	V _{IH}	2.0		Vcc +0.3	V	1
ST and PBRST Input Low Level	VIL	-0.3		+0.8	V	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \text{ to } 70^{\circ}C; Vcc = 4.5 \text{ to } 5.5V)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage	I _{IL}	-1.0		+1.0	μA	3
Output Current @ 2.4V	I _{OH}	-8	-10		mA	5
Output Current @ 0.4V	I _{OL}	10			mA	
Low Level @ RST	V _{OL}			0.4	V	1
Output Voltage @ -500uA	V _{OH}	Vcc	Vcc		V	1,7
		-0.5V	-0.1V			
Output Current (CMOS)	lcc1			50	μA	2
Operating Current (TTL)	lcc2		200	500	μA	8
Vcc Trip Point (TOL=GND)	V _{CCTP}	4.50	4.62	4.74	V	1
Vcc Trip Point (TOL=Vcc)	V _{CCTP}	4.25	4.37	4.49	V	1

^{*}This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

CAPACITANCE $(t_A=25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C _{IN}			5	pF	
Output Capacitance	C _{OUT}			7	pF	

AC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \text{ to } 70^{\circ}C; Vcc = 5V \pm 10\%)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
PBRST =V _{IL}	t _{PB}	20			ms	
RESET Active Time	t _{RST}	250	610	1000	ms	
ST Pulse Width	t _{ST}	20			ns	6,9
Vcc Fail Detect to RST and RST	t _{RPD}		50	175	μs	
Vcc Slew Rate 4.75 V to 4.25 V	t _F	300			μs	
Vcc Detect to RST and RST Inactive	t _{RPU}	250	610	1000	ms	4
Vcc Slew Rate 4.25V to 4.75V	t _R	0			ns	
PBRST Stable Low to RST and RST	t _{PDLY}			20	ms	

NOTES:

- 1. All voltages referenced to ground.
- 2. Measured with outputs open and \overline{ST} and \overline{PBRST} within 0.5V of supply rails.
- 3. PBRST is internally pulled up to Vcc with an internal impedance of 40k typical.
- 4. $t_R=5 \mu s$.
- 5. RST is an open-drain output.
- 6. Must not exceed t_{TD} minimum. See Table 1.
- 7. RST remains within 0.5V of Vcc on power-down until Vcc drops below 2.0V. RST remains within 0.5V of GND on power-down until Vcc drops below 2.0V.
- 8. Measured with outputs open and \overline{ST} and \overline{PBRST} at TTL levels.
- 9. Watchdog can not be disabled. It must be strobed to avoid resets.

MARKING INFORMATION:

8-pin DIP - "DS1232L"

16-pin SOIC - "DS1232L"

8-pin SOIC - "DS1232L"

8-pin µ-SOP - "1232"

