

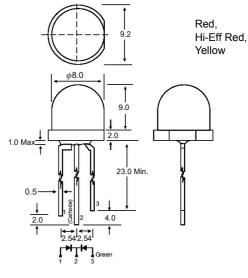
MULTI-COLOR TYPE LED

Package Dimensions

Features

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged

Absolute Maximum Ratings at Ta=25℃


All dimensions are in millimeters (inches).

Protruded resin under flange is 1.0mm (.04") max.

Specifications are subject to change without notice.

Lead spacing is measured where the leads emerge from the package.

Parameter	Max.	Unit	
Power Dissipation	100	mW	
Peak Forward Current	100	mA	
(1/10 Duty Cycle, 0.1ms Pulse Width)	100	ША	
Continuous Forward Current	40	mA	
Derating Linear From 50℃	0.4	mA / °C	
Reverse Voltage	5	V	
Operating Temperature Range	-40°C to +80°C		
Storage Temperature Range	-40°C to +80°C		
Lead Soldering Temperature	260°C for 5 Seconds		
[4mm(.157") From Body]			
Notes:			

Unit: mm (inches)

Tolerance: \pm 0.25mm (.010") max.

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)	lv (mcd) (Note E2)	Viewing Angle $2\theta_{1/2}$ (Deg) (Note E3)
				Min Typ	Min Typ	
EL-8RG332	Hi-Red	Water Clear	656	1.6 – 1.9	70 – 95	30
	Hi-Green		564	1.7 – 2.2	45 – 70	30
EL-8RG634	Hi-Red	White Diffused	630	1.6 – 2.0	40 – 65	60
	Hi- Green		568	1.7 – 2.2	25 – 40	60
EL-8YG634	Hi-Yellow	White Diffused	588	1.6 – 2.0	40 – 65	60
	Hi- Green		568	1.7 – 2.2	25 – 40	60

Parameter

1. 2.

3.

4.

Luminous Intensity

Test Condition

 I_f = 20mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.)

Dominant Wavelength

Peak Emission Wavelength Viewing Angle Spectral Line Half-Width Forward Voltage Reverse Current I_f = 20mA (Note E2: The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.)

I_f = 20mA

(Note E3. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.) I_f = 20mA

 $I_f = 20mA$ $I_f = 20mA$

 $I_f = 20mA$