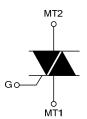


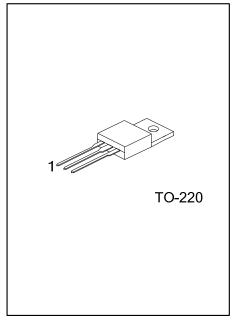
UTC UNISONIC TECHNOLOGIES CO., LTD

BTB16A

Preliminary

TRIAC


16A TRIACS


DESCRIPTION

The UTC BTB16A is a 16A triacs which can be operated in 3 quadrants only, it uses UTC's advanced technology to provide customers with high commutation performances and voltage insulated tab, etc.

The UTC BTB16A is suitable for inductive load switching operations, also can be used in ON/OFF function applications such as induction motor starting circuits, heating regulation, static relays etc.

SYMBOL

ORDERING INFORMATION

Ordering	Daakaga	Pin	Assignn	Deaking			
Lead Free	Halogen Free	Package	1	2	3	Packing	
BTB16AL-x-xx-TA3-T	BTB16AG-x-xx-TA3-T	TO-220	MT1	MT2	G	Tube	

BTB16AL-x-xx-TA3-T		
T T T (1)Packing Type	(1) T: Tube	
(2)Package Type	(2) TA3: TO-220	
(3)Sensitivity and type	(3) refer to SENSITIVITY AND TYPE	
(4)Voltage	(4) 6: 600V, 8: 800V	
(5)Lead Free	(5) L: Lead Free, G: Halogen Free	
	(

SENSITIVITY AND TYPE

	VOL	TAGE		TYPE		
PART NUMBER	600V	800V	SENSITIVITY	TYPE		
BW	O	\odot	50mA	SNUBBERLESS		
CW	O	\odot	35mA	SNUBBERLESS		
SW	\bigcirc	0	10mA	LOGIC LEVEL		

O: Available

MARKING INFORMATION

PACKAGE	MARKING					
TO-220	UTC BTB16A ☐ L: Lead Free □□□□□ → G: Halogen Free Data Code					

ABSOLUTE MAXIMUM RATINGS

PARAMETER			SYMBOL	RATINGS	UNIT
RMS On-State Current (Full Sine Wave) T _C =86°C		I _{T(RMS)}	16	А	
Non Repetitive Surge Peak On-State Current (Full	F=50 Hz	t=20ms	Irou	160	А
Cycle, T _J initial=25°C)	F=60 Hz	t=16.7ms	I _{TSM}	168	А
I ² t Value for Fusing	t _P =10ms		l ² t	144	A ² s
Critical Rate of Rise of On-State Current I _G =2xI _{GT} , tr≤100ns	F=120 Hz	TJ=125°C	dl/dt	50	A/µs
Non Repetitive Surge Peak Off-State Voltage	t _P =10ms	TJ=25°C	$V_{\text{DSM}}/V_{\text{RSM}}$	V _{DRM} /V _{RRM} +100	V
Peak Gate Current	t _P =20µs	Т _Ј =125°С	I _{GM}	4	А
Average Gate Power Dissipation T _J =125°C		P _{G(AV)}	1	W	
Operating Junction Temperature		TJ	-40~+125	°C	
Storage Junction Temperature			T _{STG}	-40~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ _{JA}	60	°C/W
Junction to Case (AC)	θις	1.2	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise specified.)

FOR SNUBBERLESS TYPE and LOGIC LEVEL TYPE (3 QUADRANTS)

PARAMETER	SYMBOL	TEST CONDITIONS		SW		CW			BW			UNIT	
FARAINETER	STIVIDUL	TEST CONDITION	5113	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Gate Trigger Current (Note 1)	I _{GT}	V _D =12V, R _L =33Ω	- -			10			35			50	mA
Gate Trigger Voltage	V _{GT}		- -			1.3			1.3			1.3	V
Gate Non-Trigger Voltage	V_{GD}	V _D =V _{DRM} , R _L =3.3kΩ, T _J =125°C	- -	0.2			0.2			0.2			v
Holding Current (Note 2)	I _H	I _T =500mA				15			35			50	mA
Latching Current	IL.	I _G =1.2I _{GT}	-			25			50			70	mA
Latening Current	ιL		II			30			60			80	mA
Critical Rate of Rise of Off-State Voltage (Note 2)	dV/dt	V _D =67%V _{DRM} , Gate Open, T _J =125°C		40			500			1000			V/µs
		(dV/dt)c=0.1V/µs, TJ=125°C		8.5									A/ms
Critical Rate of Rise of Off-State Voltage at	(dl/dt)c	(dl/dt)c $(dV/dt)c=10V/\mu s,$ T _J =125°C		3.0									A/ms
Commutation(Note 2)		Without Snubber T _J =125°C					8.5			14			A/ms

Note: 1. Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

2. For both polarities of MT2 referenced to MT1.

STATIC CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Peak On-State Voltage(Note 2)	V _{TM}	I _{TM} =22.5A, t _p =380μs T _J =25°C				1.55	V
Threshold Voltage(Note 2)	V _{TO}		TJ=125°C			0.85	V
Dynamic Resistance(Note 2)	R₀		TJ=125°C			25	mΩ
Repetitive Peak Off-State Current	I _{DRM}		TJ=25°C			5	μA
	I _{RRM}	V _{DRM} =V _{RRM}	TJ=125°C			2	mA

Note: 1. Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

2. For both polarities of MT2 referenced to MT1.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

