NTP3000 1 CHIP 2.1 CHANNEL FULL DIGITAL AMPLIFIER

Features

- Stereo (30W × 2)
- 2.1 channel (15W × 2 + 30W)
- Wide Supply Voltage Range (7V~30V)
- Floating Point Operation
- 18 Programmable Biquad Filters
 - Speaker Compensation
 - DC cut, LPF, HPF
 - Parametric Equalizer
- PWM Output for External Subwoofer
- 3D Surround
- 7 Band Graphic Equalizer
- 100 dB Dynamic Range
- Adaptive Loudness Compensator based on Psycho Acoustics

kHz. It delivers 2x30W in stereo mode or 2x15W + 1x30W in 2.1 channel mode without heat sink.

Combining use of built-in mixer and biquad filters can make additional preprocessing like bass management, loudness control, loudspeaker response compensation and preset parametric equalizers possible.

All the functions of NTP3000 are set by I²C register configuration.

Applications

- Plasma TV, LCD TV
- Docking Station
- Mini-Component Audio

Package |

56 pin MLF 8mm by 8mm

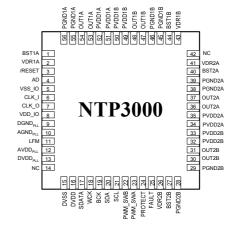


Figure 1 NTP3000 Pin Assignment

Description

NTP3000 is a single chip full digital audio amplifier including power stage for stereo or 2.1 channel amplifier system. NTP3000 is integrated with versatile digital audio signal processing functions, high-fidelity fully digital PWM modulator and two high-power full bridge MOSFET stages.

NTP3000 receives 2-channel serial audio data with sampling frequency from 8 kHz to 192

NeoFidelity, Inc. #1009, Ace Twin Tower 2, 212-30, Guro-dong, Guro-gu, Seoul 152-766 Korea, Phone +82-2-6675-1100, Fax +82-2-6675-1109, Email info@neofidelity.com, Web www.neofidelity.com Copyright © NeoFidelity, Inc. 2005 All rights Reserved. June, 2005

Disclaimer

NeoFidelity, Inc. reserves the right to make changes without notice in the product described in this datasheet

including circuits, software and ICs, described herein for the purpose of improvement of design and performance. NeoFidelity, Inc. assumes no responsibilities and liabilities for the use of the product, conveys no license under any patent or copyright, and makes no warranties that the product is free from patent or copyright infringement, unless otherwise specified.

1. BLOCK DIAGRAM

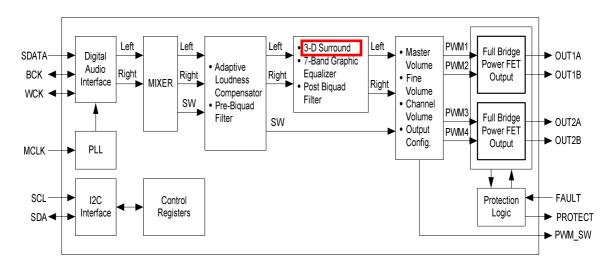


Figure 2 NTP3000 Block Diagram

2. PIN DESCRIPTIONS

	DIV.				
PIN	NAME	TYPE ¹⁾	DESCRIPTION		
1	BST1A	P	Bootstrap supply, external capacitor to OUT1A is required		
2	VDR1A	Р	Gate drive voltage regulator decoupling pin, capacitor to GND		
3	/RESET	I	Active Low to reset NTP3000, Schmitt trigger input		
4	AD	I	I2C device Address selection		
5	VSS_IO	-	Ground		
6	CLK_I	I	System master clock input		
7	CLK_O	0	System master clock output		
8	VDD_IO	Р	voltage supply for I/O, 3.3V		
9	DGND _{PLL}	-	Ground		
10	AGND _{PLL}	-	Ground		
11	LFM	I	External loop filter		
12	AVDD _{PLL}	Р	voltage supply for PLL analog circuit, 1.8V		
13	DVDD _{PLL}	Р	voltage supply for PLL digital circuit, 1.8V		
14	VSS	_	Ground		
15	DVSS	-	Ground		
16	DVDD	Р	voltage supply for core logic, 1.8V		
17	SDATA ²⁾	ı	I ² S serial data input		
18	WCK ²⁾	I/O	I ² S word clock		
19	BCK ²⁾	I/O	I ² S bit clock		
20	SDA ²⁾	I/O	I ² C data		
21	SCL ²⁾	I	I ² C clock		
22	PWM_SWB	0	PWM output for external subwoofer, negative		
23	PWM_SWA	0	PWM output for external subwoofer, positive		
24	PROTECT	0	External power stage on/off control to protect		
25	FAULT	I	input from external power stage		
26	VDR2B	Р	Gate drive voltage regulator decoupling pin, capacitor to GND		
27	BST2B	Р	Bootstrap supply, external capacitor to OUT1A is required		
28, 29	PGND2B	_	Ground		

30, 31	OUT2B	0	Power stage PWM output 2B
32, 33	PVDD2B	Р	Voltage supply for power stage
34, 35	PVDD2A	Р	Voltage supply for power stage
36, 37	OUT2A	0	Power stage PWM output 2A
38, 39	PGND2A	-	Ground
40	BST2A	Р	Bootstrap supply, external capacitor to OUT2A is required
41	VDR2A	Р	Gate drive voltage regulator decoupling pin, capacitor to GND
42	NC	-	No connection
43	VDR1B	Р	Gate drive voltage regulator decoupling pin, capacitor to GND
44	BST1B	Р	Bootstrap supply, external capacitor to OUT2A is required
45, 46	PGND1B	-	Ground
47, 48	OUT1B	0	Power stage PWM output 1B
49, 50	PVDD1B	Р	Voltage supply for power stage
51, 52	PVDD1A	Р	Voltage supply for power stage
53, 54	OUT1A	0	Power stage PWM output 1A
55, 56	PGND1A	-	Ground

- 1) P = Power, I = Input, O = Output, I/O = Input/Output
- 2) 5V tolerant. Normal I/O pins are 3.3V tolerant if not specified.
- 3) TEST0 Pin should be connect Ground Pin.

3. CHRACTERISTICS AND SPECIFICATIONS

3.1. Absolute Maximum ratings

Parameter	Reference	Rating	Unit
DVDD voltage	DVSS	-0.5 ~ 2.5	V
VDD_IO voltage	VSS_IO	-0.5 ~ 4.4	V
Logic Input voltage	VSS_IO	-0.5 ~ 5.5	V
Logic output voltage	VSS_IO	-0.5 ~ 4.4	V
PVDDXX voltage	PGNDXX	32	V
OUTXX voltage	PGNDXX	-0.3 ~ PVDDXX	V
BSTXX voltage	PGNDXX	40	V
VDRXX voltage	PGNDXX	8	V
Storage Temperature	Tstg	-65 ~ 150	°C

3.2. Recommended Operating Conditions

Parameter	Reference	Rating	Unit
DVDD voltage	DVSS	1.62 ~ 1.98	V
VDD_IO voltage	VSS_IO	2.97 ~ 3.63	V
PVDDXX voltage	PGNDXX	7 ~ 30	V
VDRXX voltage	PGNDXX	6	V
Peak output current	-	8	А
Ambient Operating temperature	Tamb	-10 ~ 85	°C

3.3. DC Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input High Voltage	V_{ih}	=	2.0		5.5	V
Input Low Voltage	V _{il}	=	-0.3		0.8	V
Threshold point	V _t	=	1.45	1.58	1.74	V
Schmitt trig. Low to High threshold point	V_{t+}	-	1.44	1.50	1.56	V
Schmitt trig. High to	V_{t-}	-	0.89	0.94	0.99	V

Low threshold point						
Input Leakage Current	I _I	-			±10	uA
Tri-State output Leakage Current	l _{oz}	-			±10	uA
Pull-up Resistor	R_{pu}	-	39k	65k	116k	Ω
Pull-down Resistor	R_{pd}	-	40k	56k	108k	Ω
Output Low Voltage	V _{ol}	I _{ol} =2,4,24mA			0.4	٧
Output High Voltage	V_{oh}	I _{oh} =2,4,24mA	2.4			V
Output Low Current	l _{ol}	V _{ol} =0.4V, 4mA	4.7	8.0	10	mA
Output High Current	l _{oh}	V _{oh} =2.4V, 4mA	5.6	11.9	19	mA
OUT On Resistance	R_{dson}	PVDDXX=7.5V		0.1		Ω
OUT Current Limit		Sourcing and Sinking		8		Α
Thermal Shutdown Temperature				160		°C

3.4. Performance Specification

Parameter	Condition	Min	Тур	Max	Unit
SNR	AES17, A-weighting filter		100		dB
THD+N	1W, 1kHz		0.01		%
Output Power	Unclip		2x30		W
Output Power	Unclip		2x15+30		W

3.5. Switching Characteristics – I²C Control Port

Parameter	Symbol	Min	Max	Unit
SCL Clock Frequency	f _{scl}	-	400	kHz
Hold time for START Condition	T _{hdsta}	4000	-	ns
Low period of the SCL clock	T_low	4700	-	ns
High period of the SCL clock	T_{high}	4000	-	ns
Rise time of SDA and SCL signals	T _{rise}	ı	1000	ns
Fall time of SDA and SCL signals	T_{fall}	ı	300	ns
Setup time for STOP Condition	T _{susto}	4000	-	ns

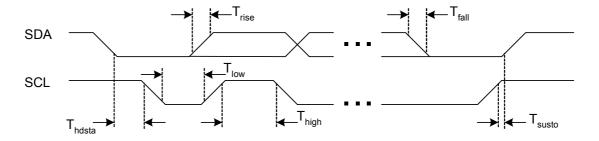


Figure 3 I²C Mode timing

4. I2C Control of NTP3000

All the functions of NTP3000 are controlled by register setting through built-in I²C host interface.

4.1. Start Condition and Stop Condition

I²C bus of NTP3000 is composed of serial clock line (SCL) and serial data line (SDA). SDA can be changed only when SCL is in low state with exceptions of start condition or stop condition. START condition means that master is to start transferring data to slave. To make START condition, transit SDA state from high to low when SCL is high. STOP condition means that master is to finish transferring data to slave. To make STOP condition, transit SDA state from low to high when SCL is high.

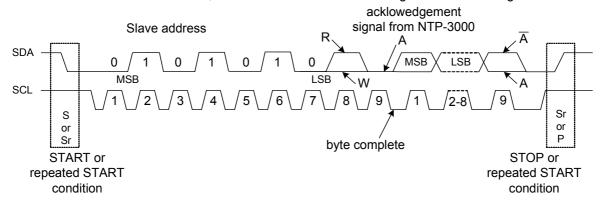


Figure 4 START Condition and STOP Condition

4.2. I2C Address

The I2C Address of NTP3000 is composed of 7-bit except for Acknowledge bit with 7th bit depending on AD pin input (**Table 1**). If AD is low or pulled down, the Address is 0x54 and if AD is high or pulled up it is 0x56.

AD	I2C Address
0	0x54
1	0x56

Table 1 I2C Address

4.3. Write or Read

A bit after 7-bit slave Address means to WRITE (0) or to READ (1).

4.3.1. Writing to NTP3000

I2C data can be written on NTP3000 by using modified I²C write operation. **Figure 5** (a) shows writing 1-byte register data procedure. Followed by START condition, master notices the data transfer mode to NTP3000 by sending slave Address with WRITE operation bit (W). NTP3000 sends acknowledgement bit (ACK) to master when it receives the slave Address correctly and is ready for response. After checking the ACK, master sends NTP3000 the sub-Address which means the register Address of NTP3000. The sub-Address is composed of 7-bit register Address and 1-bit Auto Increment Flag (AIF). When NTP3000 receives the sub-Address correctly, NTP3000 sends ACK to master. After checking the ACK, master sends data which means the register value to NTP3000. Master checks ACK and 1-byte register data writing procedure is finished by initiating the STOP condition.

Notice)

If the sub-Address is floating point coefficient register (0x40 \sim 0x5F), 4-byte register data should be written.

AIF is used for writing multi-byte to NTP3000. Multi-byte register data writing procedure is shown in **Figure 5** (b), (c).

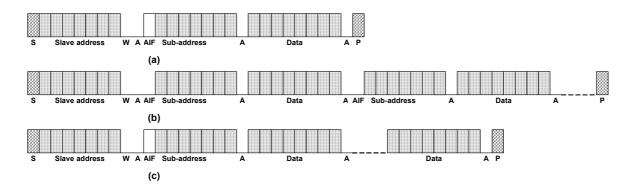


Figure 5 Write Mode Sequence

If AIF=0, sub-Address and data can be repeatedly written after master sends NTP3000 the slave Address with write operation bit (W) and checks ACK from NTP3000.

If AIF=1, data can be repeatedly written with auto-incremented Address.

4.3.2. Read Operation from NTP3000

Master can read data from NTP3000 by using combined format. **Figure 6** shows all the possible procedures of read operation in NTP3000.

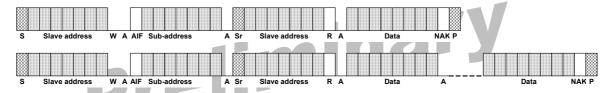


Figure 6 Read Mode Sequence

Followed by START condition, master notices the data transfer mode by sending the slave Address with write operation bit (W). After checking ACK, master sends NTP3000 the sub-Address with AIF=1 and checks ACK from NTP3000. To change the operation from writing to reading, master sends the START condition without STOP condition as repeated start condition (Sr). Followed by Sr, master resends the slave Address with reading operation bit (R) and checks ACK. Then master can read 1-byte or multibytes from NTP3000. To finish the reading operation, master sends NAK data and STOP condition after reading the last byte.

4.3.3. Downloading biquad filter coefficients and loudness gain

There are 33 programmable biquad filters. To download the filter coefficients of each biquad, the biquad filter page flag should be set appropriate value.

The number of registers is shown in Table 2.

	0x40 ~ 0x44	0x45 ~ 0x49	0x4A ~ 0x4E	0x4F ~ 0x53	0x54 ~ 0x58
Post Biquad of CH1 (0x3F = 0x01 case)	BQ1	BQ2	BQ3	BQ4	BQ5
Post Biquad of CH2 (0x3F = 0x02 case)	BQ1	BQ2	BQ3	BQ4	BQ5
GEQ of CH1 (GEQC flags of 0x06 register = 0b11 & 0x3F = 0x04 case)	BQ1	BQ2	BQ3	BQ4	BQ5

GEQ of CH2 (GEQC flags of 0x06 register = 0b11 & 0x3F = 0x08 case)	BQ1	BQ2	BQ3	BQ4	BQ5
3D filter (0x3F = 0x10 case)	BQ1 of CH1	BQ2 of CH1	BQ1 of CH2	BQ2 of CH2	Х
Various1	BQ of ALC	BQ1 of Ch1	BQ2 of Ch1	BQ1 of Ch2	BQ2 of Ch2
(0x3F = 0x20 case)		Pre-biquad	Pre-biquad	Pre-biquad	Pre-biquad
Various2	BQ1 of Ch3	BQ2 of Ch3	BQ8 in Post-	BQ9 in Post-	Х
(0x3F = 0x40 case)	Pre-biquad	Pre-biquad	Biquad	Biquad	

Table 2 Biquad filters

When the filter coefficients to download are same for, e.g. post biquad of ch1 and ch2 then set the register 0x3F as 0x3.

There are 8 loudness gains in post-biquad chain. To download loudness gain of each biquad, page flag register 0x3F should be set as in the case of downloading the filter coefficients.

	0x59	0x5A	0x5B
loudness gains of CH1(0x3F = 0x01 case)	L11	L12	L13
loudness gains of CH2(0x3F = 0x02 case)	L21	L22	L23
loudness gains of CH3(0x3F = 0x80 case)	L31	L32	Х

Table 3 Loudness gain

5. Clock, Reset & Control

5.1. System Clock

The internal system clock of NTP3000 is generated from external master clock by PLL. NTP3000 supports external master clock frequency from 8.192 MHz to 24.576MHz. For proper operation, PLL should be set correctly according to master frequency (Table).

5.2. Reset

When hardware RESET pin is set to low state, NTP3000 is brought into the reset state to bring up the actions as follow.

- 1) Each control register resets to the default value.
- 2) All the internal registers, multipliers, adders, counters, and etc. are cleared to zero.
- 3) All of the output pins keep low state as long as the RESET is active.

It takes about $7\mu s$ after reset pin is remained low for more than 0.1usec to finish the above operations as shown in Figure 7.

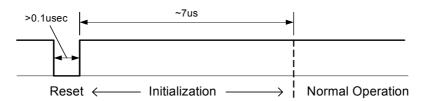
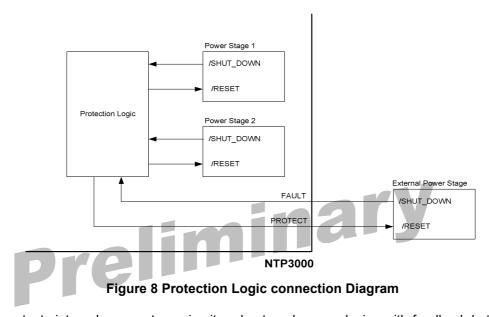



Figure 7 Reset timing

5.3. Fault and protect Control

NTP3000 protects internal power stage circuit and external power device with feedback between power stage and protection logic as shown in Figure 8. When a power stage falls in protection condition, it shuts down by itself informing protection logic 'fault' as shown in Figure 9. As soon as protection logic receives the information, the output of 'PROTECT' becomes low to turn off all the power stages for a 'Hold Time' which is configurable. After 'Hold Time' has passed, protection logic tries to turn on power stage circuits again. If power stage circuit still suffers from protection problem, protection logic keeps on turning on and off until the condition which is configured on control registers.

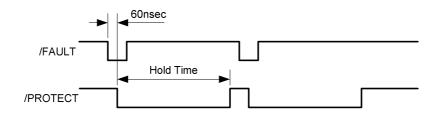
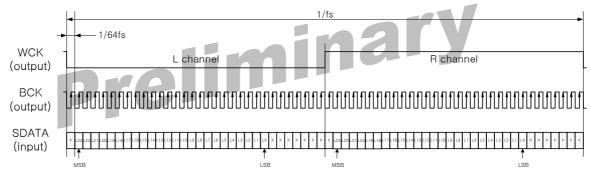


Figure 9 Fault, Protect pin Timing Diagram

When FAULT signal is changed from high to low, PROTECT signal changes from high to low after 0.06usec. When this happens, PROTECT signal remains low even the FAULT signal changes to high.

PROTECT signal is changed to high by the FAULT signal after Hold Time and at the same time it increases Auto PROTECT restore counter value by 1.


If the counter value reaches AVRCT (Auto PROTECT Restore Counter Threshold) in Auto PROTECT restore interval, the PROTECT signal becomes low permanently. Designers can detect this permanent low state by reading PPM flag in register Address 0x75 and change the permanent low state to high by setting Auto PROTECT restore counter value to 0 by using FPMLD flag in register Address 0x1E. Also, designers can control the PROTECT signal directly by using PWMM flag in register Address 0x1E.

Auto PROTECT restore interval is defined by PHT, AVRCT, IRC flags in register Address 0x1D and the default value is PHT * AVRCT * IRC = 4 * 5 * 2 = 40msec.

6. Audio Input

6.1. I²S and Serial Audio Interface

Serial audio port of NTP3000 can be configured as either the master or slave mode, and BCK(bit clock) and WCK(word clock) are bi-directional pins depending on the clock mode setting. In the master mode, WCK(f_s) and BCK(configurable) are output signals from the NTP3000, and the external DSP receiver delivers SDATA signal synchronized with them. NTP3000 accepts WCK and BCK signal along with SDATA coming from external devices in the slave mode. INS flag determines clock mode between master and slave mode.

^{*} WCK and BCK are output when master mode, and input when slave mode.

Figure 10 Serial audio interface format

For general serial mode other than I²S, the format of data can be changed by LRJ(Left, Right Justify), MLF(MSB, LSB First)and BS(Bit Size) flags of register Address 0x01. <u>Figure 11</u> shows some examples of general serial audio formats and their register settings.

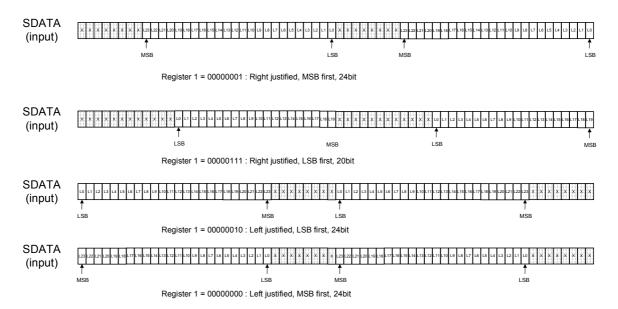


Figure 11 General serial audio data formats

7. Mixer

Channel mixer can be used in lots of application needs like bass management, subwoofer signal generation, pseudo stereo, etc. Mixer cross-connects two input channels to three output channels. Mixer can control both gain and polarity of each channel input. Step size of mixer gain change is also variable according to the gain level as shown below.

Table 4 Variable step mixing gain

Volume Range(dB)	Step(dB)
+18 ~ + 6	1
+5.5 ~ -5.5	0.5
-6 ~ -32	1
< -32	-8

In total, 6 mixing gain coefficients denoted as M00, M01, M10,..., M21 are defined as shown in the equation below. Each Mxx stores volume value in dB scale, and the number values versus gain in dB are shown in the <u>appendix</u>. There are some places in the mixing matrix that are considered as trivial connections and thus predefined as $-\infty$ dB.

[Output Channels] = [Mixer Matrix] x [Input Channels]

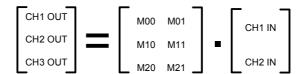


Figure 12 Mixer matrix

In order to load mixer coefficients into internal memory, send the coefficient value itself to the register Address $0x37 \sim 0x3C$. Total 6 registers are preserved and matched to M00, M01, M10, M11, M20, M21, sequentially.

8. Pre-processing

8.1. Adaptive Loudness Compensation

NTP3000 supports Adaptive Loudness Control (ALC) function. This function makes the identical input signal level without sacrificing the dynamic range.

The difference with the Dynamic Range Compression (DRC) function described in <u>Section 9</u> is as follows; DRC sustains the signal level when volume is operating but ALC sustains the signal level when volume is not operating – that means ALC sustains the signal level of the original input source. Also, DRC operation is performed by peak detection scheme and ALC is performed by energy detection scheme.

ALC structure of NTP3000 is shown in Figure 13.

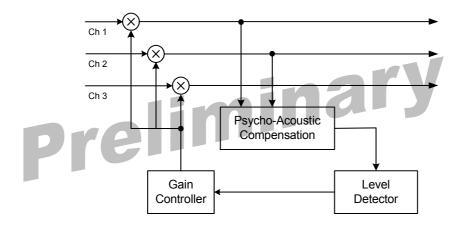


Figure 13 Adaptive Loudness Compensation Diagram

ALC can be useful to compensate the signal level difference of different channels and different programs in same channel in TV related product applications. There is a biquad filters in the Psycho-Acoustic Compensation block. To download the filter coefficients of this biquad, the page flag register 0x3F should be set to 0x20 and the five 32 bit coefficients should be downloaded to 0x40 ~ 0x44. See the system register Addresses 0x07~09, 0x3F, 0x40~44 in the <u>Appendix 1</u>. The downloading method will be described in detail on the separate application note.

8.2. Pre Biguad Filter Chain

NTP3000 has two kinds of biquad filter chains. One is Pre biquad filter chain and the other is Post Biquad filter chain for bass management, loudness control, loud-speaker EQ, etc. The former is called pre-biquad filter chain and two 2nd order floating point biquad filters are connected serially to all the three channels. The structure is shown in Figure 14.

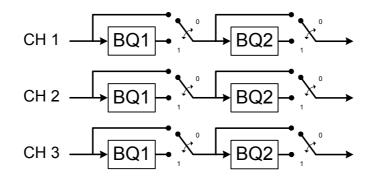


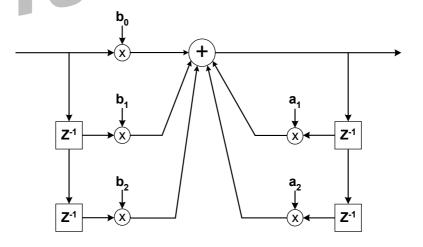
Figure 14 Biquad Filter Structure

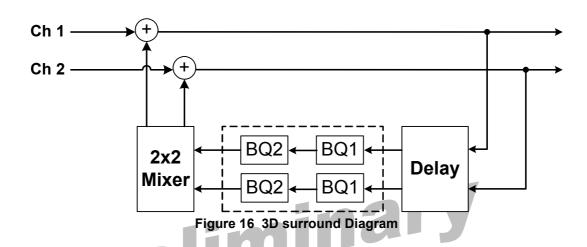
Filter coefficients are 32-bit floating point numbers and can be downloaded thru I²C interface. To download the pre-biquad filter coefficients to internal memory of NTP3000, designer should change the Various 1 for Channel 1&2 and Various 2 for Channel 3 flags of register Address 0x3F to 'enable coefficient write' status. And then write the actual coefficient values to ten register Addresses, from 0x40 to 0x53.

When Various 1 Flag of Address 0x3F is set to 1, Address 0x40~44 designates coefficients of 1st prebiquad filter chain of channel 1 and indicates b0, b1, b2, a1, a2 respectively. Address 0x45~49 designates the coefficients of 2nd chain of channel 1, 0x4A~4E for 1st chain of channel 2, and 0x4F~53 for 2nd chain of channel 2.

When Various 2 Flag of Address 0x3F is set to 1, Address 0x40~44 designates coefficients of 1st prebiquad filter chain of channel 3 and Address 0x45~49 designates the coefficients of 2nd chain of channel 3

The biquad filter structure is shown in Figure 15




Figure 15 Biquad Filter Structure

8.3. 3D Surround

3D surround expands the sound field of two channel stereo to the extent that is wider than the actual speaker spacing. Because this feature is acoustically valid for two channel signal, no other channels except channel 1/2 have this internal block.

NTP3000 realizes the 3D effect by combining delay and band-pass filter. At first, define the size of delay by using register Address 0x60. Possible maximum delay is 40 samples delay and this is about 0.4msec based on 96kHz signal input.

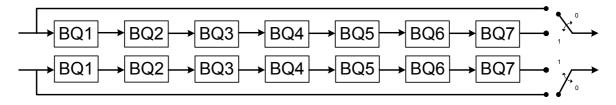
And then download the band-pass filter coefficients to internal memory of NTP3000(same with the biquad filter coefficient download procedure). The BPF is two 2nd order IIR filter. Each channel can have different BPF. Change the 3D flag status of register Address 0x3F to 'enable coefficient write' status and write the actual coefficient values to twenty register Addresses 0x40~ 0x53. Also, internal 2x2 mixer helps ease of design. For using 3D mixer, download the gain values to four register Addresses 0x5C~0x5F.

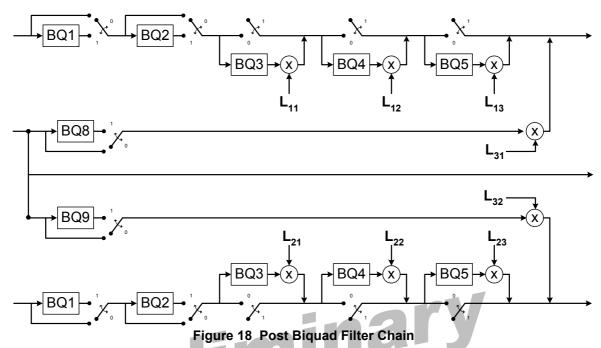
8.4. Configurable Graphic Equalizer

NTP3000 provides 7 or 5 band graphic equalizer and tone control to 1/2 channel. EQ on/off can be selected by GEQC flag of register Address 0x06.

The gains for each band can be controlled by writing the gain values (refer Graphic equalizer band gain table in <u>Appendix 2</u>) to register Addresses 0x32~36 respectively.

In tone control mode the BQ1 ~ BQ5 can be used as programmable biquad filters.




Figure 17 GEQ filter structure

8.5. Post Biquad Filter Chain

The post biquad filter chains of NTP3000 can be used in various purposes - bass management, loudness control, parametric EQ, loud-speaker EQ, etc.Independent filter design for 1, 2 channels are possible and five 2nd order floating point parametric filters are linked serially. Especially for loudness control, as shown in Figure 18, last 3 filters are different from first 2 filters.

Filter coefficients are 32-bit floating point numbers and can be downloaded thru I²C interface. To download post biquad filter coefficients to NTP3000, select download channel by using CH flag in register Address 0x3F first. And then write actual coefficient values to 25 register Addresses, from 0x40 to 0x58.

Address 0x40~44 designates 1st chain coefficients and means b0, b1, b2, a1, a2 in sequence. Address 0x45~49designates 2nd chain, and so on.The enable/disable operation of these biquads can be made by using BQF flag in register Addresses 0x3D~3E.

For the enhancement of 3D effect or redirection of Bass signal back into Main channel, Ch3 fire back structure is integrated like Figure 14.

8.6. Loudness

NTP3000 provides loudness control function using post biquad filter chains. Loudness control means the compensation of frequency characteristics in low volume level to fit the human ear condition.

9. Volume & Dynamic Range Control

Master and channel volumes are independently controlled and softly changed. The system register Address 0x2E is the master volume control that affects all 3 channels simultaneously and the Address 0x2F~31 correspond to the channel volume control register from 1 to 3 respectively.

The possible maximum of signal boost is +48.4375dB using master volume fine control because the master volume varies the gain of input signal independent from a channel volume, and a clipping might occur preventing overflow error if the input signal magnitude is large enough when the combined volume setting is higher than 0dB at the same time.

9.1. Master Volume Control

By setting volume control registers, master volume is controlled between infinity and +24dB with changing step size as follows. For details on the master volume setting, see the register value table shown in <u>Appendix 2</u>.

Table 5 Level dependent master volume steps

Step	Range
0.5 dB	+24 ~ -100 dB
10dB	-100 ~ -150 dB

9.2. Channel Volume Control

By setting volume control registers, channel volumes are independently controlled between infinity and +24dB with changing step size as described below, and in the <u>Appendix 2</u>, exact values for channel volume setting are described.

Table 6 Level dependent channel volume steps

Step	Range
0.5 dB	+24 ~ -100 dB
10dB	-100 ~ -150 dB

9.3. Master Volume Fine Control

Fine control for master volume is possible (+0.0625dB step upto maximum +0.4375dB boost). Refer the system register Address 0x2D in the Appendix 1.

9.4. Master Volume Override

By setting the master volume override flag on each channel, the master volume is not applied to the configured channels. See the system register Address 0x0A in the Appendix 1.

9.5. Mute

NTP3000 enters mute state by setting soft mute flag of register Address 0x20. Soft mute is implemented so that the volume gradually increases or decreases when mute is turned off or on respectively.

Also the soft mute speed and soft volume change speed rates are programmable. Designers can minimize the pop noise by controlling the soft mute speed and volume change intervals. Refer SMC, SVI flag of register Address 0x06.

9.6. Auto-mute

The chip mutes audio signal if the input signal level is below auto mute threshold during auto mute inspection interval that are programmable by register setting. Also, the behavior when auto mute has been entered is changeable between 50:50 switching on or off.

Auto-mute is supported for internal channels 1~3 after 2x3 mixer block. Refer register Addresses 0x04 and 0x05.

9.7. Dynamic Range Control

Dynamic range compression can be turned on or off with programmable compression threshold and attack/release rates. The threshold parameters of DRC can be controlled separately for channel 1/2 and channel 3. For detailed setting, please refer system register Addresses 0x0E~10.

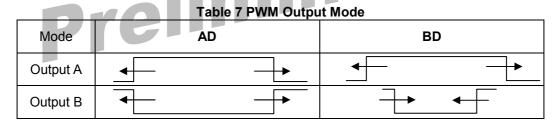
10. Output Interface

10.1. Output mode configuration

The output mode of NTP3000 is 2.0 stereo reproduction mode and 2.1 reproduction mode. For this configuration register 0x0B~0x0D should be set to appropriate values.

10.2. AM Interference relief mode

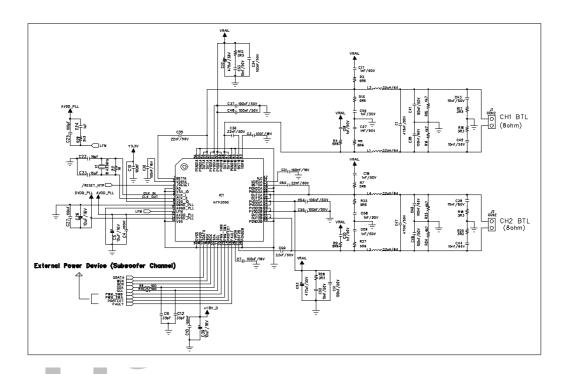
The NTP3000 has AM interference reduction mode. In this mode SNR performance of NTP3000 can be degrade to 90 dB and the PWM switching frequency is spread to 384kHz ~ 768kHz.

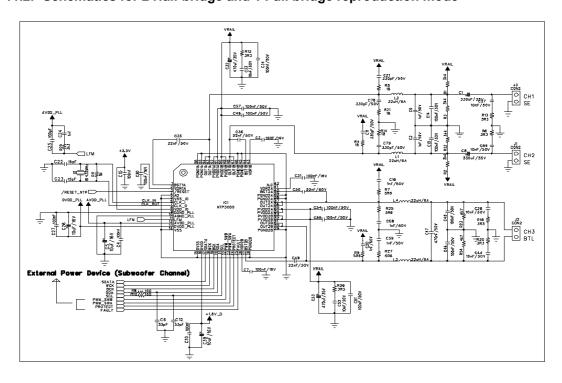

10.3. PWM Output Mapper

Any internal channel from one through three that procedures PWM output can be assigned to any PWM output hardware port(or pin) by mapping output port register. This feature is very helpful for the hardware designer because it can relieve difficulties in the power stage signal routing and channel assignment if the output channel order is fixed. See the system register address 0x0B~0x0D in the <u>Appendix 1</u>.

10.4. Switching Output Mode

There are three selectable switching signal output modes called AD and BD mode in NTP3000. The difference among these output modes is the relative signal pattern relationship between PWM OUTxA and PWM OUTxB for the channel x.


The selection of output mode is dependent upon the topology of the output stage within NTP3000, and the design target and policy. AD mode can be applied to both half bridge and full bridge output stage. BD mode can be used for full bridge output stage only. MD flag of register address 0x03 set the output mode, then set the design stage.


AD asynchronous pair means the normal AD mode PWM output. In other words, A output and B output of each PWM output pair are mutually complement. In the case of AD asynchronous pair, A output and B output is perfectly identical, not in complement relation. That is useful in some special case including single-ended power stage design.

11. Typical Application Schematics

11.1. Schematics for 2 Full bridge reproduction mode

11.2. Schematics for 2 Half bridge and 1 Full bridge reproduction mode

A1. Configuration Register Summary

Table 8 Address 0x00: Input Format

Bit	7	6	5	4	3	2	1	0
Name	X	X	X		FSM		IN	IS

Name	Description	Value	Meaning	Ref.
		00	I ² S, slave mode	
INS	Input format	01	I ² S, master mode	
ING	input ioimat	10	General serial audio, slave mode	
		11	General serial audio, master mode	
		000	48 kHz	
		001	8 kHz	
	Compling	010	16 kHz	
FSM	Sampling Frequency in Master mode IIS	011	32 kHz	
FSIVI		100	12 kHz	
		101	24 kHz	
		110	96 kHz	
		111	192 kHz	

Та	Table 9 Address 0x01: General Serial Audio Format								
	Bit	7	6	5 4	3 2	1	0		
	Name	X	X	BCKS	BS	MLF	LRJ		

Name	Description	Value	Meaning	Ref.
LRJ	Serial data justify	0	Left justify	
LKJ	Serial data justily	1	Right justify	
MLF	Serial bit order	0	MSB first	
IVILI	Serial bit order	1	LSB first	
	Serial bit size	00	24 bit	
BS		01	20 bit	
ВЗ		10	18 bit	
		11	16 bit	
		00	64 BCK/WCK	
BCKS	Bit clock size select	01	48 BCK/WCK	
		10	32 BCK/WCK	

Table 10 Address 0x02: Master clock frequency control

Bit	7	6	5	4	3	2	1	0
Name	Х	Х	Х	Х	Х	Х	M	CF

Name	Description	Value	Meaning	Ref.
		00	12.288 MHz	
	Master Clock	01	24.576 MHz	
MCF		10	18.432 MHz	
	Frequency	11	User defined frequency. Required to set	See
			address 0x7D and address 0x7E first.	Table

Table 11 User defined master clock frequency

Master Clock Frequency	Address 0x7D	Address 0x7E
8.192MHz	0xC0	0x16
16.384MHz	0xE1	0x16

Caution 1) Register values different from those on the table are forbidden.

Caution 2) Writing values on Address 0x7D and 0x7E with MCF user defined frequency mode can make system unstable. Address 0x7D and 0x7E must be configured **before** MCF is set as user defined frequency.

Table 12 Address 0x03: Miscellaneous Control

Bit	7	6	5	4	3	2	1	0
Name	Х	Х	BHL	AHL	Х	POL	MD	

Name	Description	Value	Meaning	Ref.
		00	AD mode with asynchronous signal pair	
MD	PWM output mode	01	AD mode with synchronous signal pair	
IVID	Pyvivi output mode	10	BD mode	
		11	AM Interference mode	
POL	Ch. 3 polarity	0	Normal	
FOL	Control	1	Inverse polarity	
AHL	A-out state	0	Low	
ALL	When switching off	1	High	
BHL	B-out state	0	Low	
ВПС	when switching off	1	High	

Table 13 Address 0x04: Front Auto-mute control for channel 1, 2

Bit	7	6	5	4	3	2	1	0
Name	EAMC		ll l		AT			

Name	Description	Value	Meaning	Ref.
AT	AT Auto-mute detection threshold		See Auto-mute detection threshold tables	
		00	5 msec	
l II	Auto-mute	01	50 msec	
"	response time	10	500 sec	
		11	2 sec	
		00	Auto mute disable(No-Effect)	
EAMC	Effect of Auto-mute	01	Channel SoftMute	
EAIVIC	condition	10	50:50 switching if auto-mute	
		11	Stop switching if auto-mute	

Table 14 Address 0x05: Front Auto-mute control for channel 3

Bit	7	6	5	4	3	2	1	0
Name	EAMC				AT			
Name	Description		Value		Ref.			

AT	Auto-mute detection threshold	00 ~0F	See Auto-mute detection threshold tables	
		00	5 msec	
II	Auto-mute	01	50 msec	
"	response time	10	500 sec	
		11	2 sec	
		00	Auto mute disable(No-Effect)	
EAMC	Effect of Auto-mute	01	Channel SoftMute	
LAIVIC	condition	10	50:50 switching if auto-mute	
		11	Stop switching if auto-mute	

Table 15 Address 0x06 : Various configuration

Bit	7	6	5	4	3	2	1	0
Name			GEQC		SVI		SMC	

Name	Description	Value	Meaning	Ref.
		00	42 / 46 msec (at 96 / 88.2kHz)	
SMC	Soft mute	01	85 / 92 msec	
SIVIC	Speed control	10	21 / 23 msec	
		11	0 msec (Hard change)	
		00	Medium speed	
SVI	Soft volume change	_01	High speed	
371	Soft volume change	10	Low speed	
		11	Soft volume change disable	
	Graphic EQ	00	Bypass	
GEQC	configuration	10	Configuration 1	
	Confingulation	11	User defined	

Table 16 Address 0x07: ALC configuration 1

Bit	7	6	5	4	3	2	1	0
Name	LB				Х	Х	Х	Х

Name	Description	Value	Meaning	Ref.
	Lower Bound	0000	0 dB	
LB	for Up condition	~		
	relative scale	1101	-12 dB with 1 dB step]

Table 17 Address 0x08: ALC configuration 2

Bit	7	6	5	4	3	2	1	0
Name	X	X	APR			CC		

Name	Description	Value	Meaning	Ref.
		00000	0 dB	
CC	C control	~		
		11111	31 dB with 1 dB step	
APR	ALC enable	0	ALC off	
AFK	ALC enable	1	ALC on	

Table 18 Address 0x09: ALC configuration 3

Bit	7	6	5	4	3	2	1	0	
Name	Χ	Х	С			A			

Name	Description	Value	Meaning	Ref.
Α	ALC attack rate		Attack and release rate	
В	ALC release rate		See attack and release rate tables.	

Table 19 Address 0x0A: Master volume override

Bit	7	6	5	4	3	2	1	0
Name	X	X	X	X	X	MVO3	MVO2	MVO1

Name	Description	Value	Meaning	Ref.
MVOn	Master volume	0	Master volume is effective for channel n	
WWOII	override on/off	1	Master volume is ineffective for channel n	

Table 20 Address 0x0B: PWM output port Control for PWM port 1A & 1B

Bit	7	6	5	4	3	2	1	0
Name	Χ	X		OPM1B			OPM1A	

Name	Description	Value	Meaning	Ref.
		000	PWM1A is connected to PWM port 1A	
	Select source	001	PWM1B is connected to PWM port 1A	
OPM1A	channel for	010	PWM2A is connected to PWM port 1A	
OFWIA	PWM output port	011	PWM2B is connected to PWM port 1A	
	1A	100	PWM3A is connected to PWM port 1A	
		101	PWM3B is connected to PWM port 1A	
		000	PWM1A is connected to PWM port 1B	
	Select source	001	PWM1B is connected to PWM port 1B	
OPM1B	channel for	010	PWM2A is connected to PWM port 1B	
OFWITE	PWM output port	011	PWM2B is connected to PWM port 1B	
	1B	100	PWM3A is connected to PWM port 1B	
		101	PWM3B is connected to PWM port 1B	

Table 21 Address 0x0C: PWM output port Control for PWM port 2A & 2B

Bit	7	6	5	4	3	2	1	0
Name	X	Х		OPM2B			OPM2A	

Name	Description	Value	Meaning	Ref.
		000	PWM1A is connected to PWM port 2A	
	Select source	001	PWM1B is connected to PWM port 2A	
OPM2A chanr	channel for	010	PWM2A is connected to PWM port 2A	
OFIVIZA	PWM output port	011	PWM2B is connected to PWM port 2A	
	2A	100	PWM3A is connected to PWM port 2A	
		101	PWM3B is connected to PWM port 2A	
OPM2B	Select source	000	PWM1A is connected to PWM port 2B	

channel for	001	PWM1B is connected to PWM port 2B	
PWM output port	010	PWM2A is connected to PWM port 2B	
2B	011	PWM2B is connected to PWM port 2B	
	100	PWM3A is connected to PWM port 2B	
	101	PWM3B is connected to PWM port 2B	

Table 22 Address 0x0D: PWM output port Control for PWM port 3A & 3B

Bit	7	6	5	4	3	2	1	0
Name	X	X		OPM3B			OPM3A	

Name	Description	Value	Meaning	Ref.
		000	PWM1A is connected to PWM port 3A	
	Select source	001	PWM1B is connected to PWM port 3A	
ОРМЗА	channel for	010	PWM2A is connected to PWM port 3A	
OFINISA	PWM output port	011	PWM2B is connected to PWM port 3A	
	3A	100	PWM3A is connected to PWM port 3A	
		101	PWM3B is connected to PWM port 3A	
		000	PWM1A is connected to PWM port 3B	
	Select source	001	PWM1B is connected to PWM port 3B	
ОРМЗВ	channel for	010	PWM2A is connected to PWM port 3B	
OFINISE	PWM output port	011	PWM2B is connected to PWM port 3B	
	3B	_100	PWM3A is connected to PWM port 3B	
		101	PWM3B is connected to PWM port 3B	

Table 23 Address 0x0E: DRC control for channel 1&2

Bit	7	6	5	4	3	2	1	0
Name				CTS				CPR

Name	Description	Value	Value Meaning		
CPR	DRC enable 0		Dynamic Range Compression off		
CPR DRC enable		1	Dynamic Range Compression on		
CTS	CTS DRC threshold		Unsigned 6-bit DRC threshold		
013			Refer to DRC threshold value table.		

Table 24 Address 0x0F: DRC control for channel 3

Bit	7	6	5	4	3	2	1	0
Name				CTS				CPR

Name	Description	Value	Value Meaning			
CPR	DRC enable	0	Dynamic Range Compression off			
CFK	DIC enable	1	Dynamic Range Compression on			
CTS	DDC throshold	57~12dB	Unsigned 6-bit DRC threshold			
CIS	DRC threshold	57~12UB	Refer to DRC threshold value table.			

Table 25 Address 0x10: DRC configuration control

Bit	7	6	5	4	3	2	1	0
Name	X	X		C1C			A1C	

Name	Description	Value	Meaning	Ref.
A1C	DRC attack rate		Attack and release rate	
C1C	DRC release rate		See attack and release rate tables.	

Table 26 Address 0x11: Modulation Index & NS-Type Control

Bit	7	6	5	4	3	2	1	0
Name	X	M0		NT	MD3		MD12	

Name	Description	Value	Meaning	Ref.
	Modulation index	11	Minimum pulse width = 2	
MD12	control by Minimum	10	Minimum pulse width = 4	
IVIDIZ	pulse width	01	Minimum pulse width = 6	
	for Ch 1&2	00	Minimum pulse width = 8	
	Modulation index	11	Minimum pulse width = 2	
MD3	control by Minimum pulse width for Ch3	10	Minimum pulse width = 4	
IVIDS		01	Minimum pulse width = 6	
	puise width for Chis	00	Minimum pulse width = 8	
NT	Noise shaping Type	0	Type 1 4	
INI	for Ch 1&2 &3	1	Type 2 5	
		00	No left shift on dither value = Dither off	
MO	Dither Position	01	1bit left shift on dither value	
IVIO	Selector	10	2bit left shift on dither value	
		11	3bit left shift on dither value	

Table 27 Address 0x12: Prescaler Control for Ch 1&2

Bit	7	6	5	4	3	2	1	0		
Name		PS								

Name	Description	Value	Meaning	Ref.
PS	Prescaler value	unsigned	208 default	

Table 28 Address 0x13: Prescaler Control for Ch 3

	Bit	7	6	5	4	3	2	1	0	
ĺ	Name	PS								

Name	Description	Value	Meaning	Ref.
PS	Prescaler value	unsigned	208 default	

Table 29 Address 0x17: Aout Rising Edge Delay

Bit	7	6	5	4	3	2	1	0		
Name		ARED								

Name	Description	Value	Meaning	Ref.
ARED	Aout Rising Edge Delay	unsigned	0 default	

Table 30 Address 0x18: Aout Falling Edge Delay

Bit	7	6	5	4	3	2	1	0	
Name	AFED								

	Name	Description	Value	Meaning	Ref.
ĺ	AFED	Aout Falling Edge Delay	unsigned	0 default	

Table 31 Address 0x19: Bout Rising Edge Delay

	Bit	7	6	5	4	3	2	1	0
Ī	Name				BREI	D			

Name	Description	Value	Meaning	Ref.
BRED	Bout Rising Edge Delay	unsigned	0 default	

Table 32 Address 0x1A: Bout Falling Edge Delay

Ī	Bit	7	6	5	4	3	2	1	0	
	Name		BFED							

	Name	Description Valu		Meaning	Ref.
ĺ	BFED	Bout falling Edge Delay	unsigned	0 default	

Table 33 Address 0x1B: PWM off & Auto PROTECT Control

Bit	7	6	5	4	3	2	1	0
Name	1	0	1	0	1	0	APM	POF

Name	Description	Value	Meaning	Ref.
	PWM off flag	0	Even if Auto PROTECT condition is met, the PWM output of all channel is not affected.	
POF		1	When Auto PROTECT condition is met, the PWM output of all channel goes to the defined state which is set by the PWM off state control register (Address 0x03 AHL, BHL).	
APM	PROTECT flag	0	Even if Auto PROTECT condition is met, the PROTECT output of all channel is not affected.	
		1	When Auto PROTECT condition is met, the PROTECT output goes to Low state.	

Table 34 Address 0x1C: Auto PROTECT condition Control Masking

Bit	7	6	5	4	3	2	1	0
Name	VMSK3	VMSK2	VMSK1	VMSK0	PMSK3	PMSK2	PMSK1	PMSK0
Name	Desci	rintion	مرياد/\		Меа	nina		₽of

Name	Description	Value	Meaning	Ref.
PMSK	Masking bit of PWM off control			
VMSK	Masking bit of PROTECT signal			

Table 35 Address 0x1D: PROTECT Control

Bit	7	6	5	4	3	2	1	0
Name	IR			AVRCT		PHT		

Name	Description	Value	Meaning	Ref.
		000	0.5 msec Hold Time	
		001	1 msec Hold Time	
PHT	PROTECT Low	010	2 msec Hold Time	
FIII	Hold Time	011	4 msec Hold Time (Default)	
		100	8 msec Hold Time	
		101	16msec Hold Time	
	Auto PROTECT Restore Counter	000	2	
		001	5 (Default)	
		010	10	
AVRCT		011	15	
AVICT	Threshold	100	20	
	Tillesiloid	101	25	
		110	30	
		111	Infinity	
	Auto PROTECT	00	2 (Default)	
IRC	Restore Interval Ratio Control	01	4	

Table 36 Address 0x1E: PROTECT Control

Bit	7	6	5	4	3	2	1	0
Name	0	0	0	0	SRD	FPMLD	PWMM	

Name	Description	Value	Meaning	Ref.
PWMM	PROTECT	10	PROTECT output is low. (reset default)	
F VV IVIIVI	register	otherwise	PROTECT output is high.	
	Permanent	0	No effect	
FPMLD	PROTECT	1	Reset the auto PROTECT restore counter	
	Low disable flag		to 0	
SRD	FAULT disable	0	FAULT is effect for PROTECT	
SKD		1	FAULT is ineffective for PROTECT	

Table 37 Address 0x1F: Switching Off Control

Bit	7	6	5	4	3	2	1	0
Name	Х	X	X	X	X	POF3	POF2	POF1

Name	Description	Value	Meaning	Ref.
POFn	Switching output	0	Channel n PWM switching on	
POFII	On/off control	1	Channel n PWM switching off	

Table 38 Address 0x20: Softmute Control

Bit	7	6	5	4	3	2	1	0
Name	Х	X	X	X	X	SM3	SM2	SM1

Name	Description	Value	Meaning	Ref.
SMn	Softmute	0	increase for channel n	
		1	decrease for channel n	

Table 39 Address 0x2C: FBQ_FLAG for Ch 1&2&3

Bit	7	6	5	4	3	2	1	0
Name	Х	Х	FBQ32	FBQ31	FBQ22	FBQ21	FBQ12	FBQ11

Name	Description	Value	Meaning	Ref.
FBQ11	1 st FBQ flag	0	Bypass	
IDQII	for CH1	1	Enable	
FBQ12	2nd FBQ flag	0	Bypass	
1 DQ12	for CH1	1	Enable	
FBQ21	1 st FBQ flag	0	Bypass	
FBQZI	for CH2	1	Enable	
FBQ22	2nd FBQ flag	0	Bypass	
FBQZZ	for CH2	1	Enable	
FBQ31	1 st FBQ flag	0	Bypass	
FBQ31	for CH3	1	Enable	
FBQ32	2nd FBQ flag	0	Bypass	
FBQ32	for CH3	1	Enable	

Table 40 Address 0x2D: Master Fine volume

Bit	7	6	5	4	3	2	1	0
Name	X	X	X	X	X	MVFC		

Name	Description	Value	Meaning	Ref.
	Master volume	000	0 dB	
MVFC	fine control	~	~	
		111	0.5 dB with 0.0625 dB step	

Table 41 Address 0x2E~0x31: Master volume & Channel 1~3 volume respectively

Bit	7	6	5	4	3	2	1	0
Name				V	DL			

Name	Description	Value	Value Meaning			
VOL	Volume control		See volume control register tables. Reset default is 0 (= $-\infty$ dB)for Master and 207 for Channel			

Table 42 Address 0x32~0x36: GEQ Gain for Band 2~6

Bi	t	7	6	5	4	3	2	1	0
Nar	ne	X	X	X			BG		

Name	Description	Value	Meaning	Ref.
BG	Band Gain		See register value table.	

Name	Address	Band	Frequency	Ref
	0x32	Band 2	220Hz	
	0x33	Band 3	470Hz	
Band	0x36	Band 4	1kHz	
	0x34	Band 5	2.2kHz	
	0x35	Band 6	4.7kHz	

Table 43 Address 0x69 & 0x6A: GEQ Gain for Band 1 & Band 7

Bit	7	6	5	4	3	2	1	0
Name	Х	Х	Χ			BG		

Name	Description	Value	Meaning	Ref.
BG	Band Gain		See register value table.	

Name	Address	Band	Frequency	Ref
Band -	0x69	Band 1	80Hz	
Dallu	0x6A	Band 7	12kHz	

Table 44 Address 0x37~0x3C: Mixer Gain

	Bit	7	6	5	4	3	2	1	0
ſ	Name	X				MG			

Name	Description	Value	Meaning	Ref.
MG	Mixer gain		Mixer gain download register	

Table 45 Address 0x3D~0x3E: Back Biquad Filter Configuration for Ch 1~2 respectively

Bit	7	6	5	4	3	2	1	0
Name	BQ	F5n	BQ		BQ	F3n	BQF2n	BQF1n

Name	Description	Value	Meaning	Ref.
BQF1n	On/Off biquad 1	0	Bypass biquad 1 of channel n	
DQI III	of CH n (= CH 1,2,3)	1	Enable biquad 1 of channel n	
BQF2n	On/Off biquad 2		Bypass biquad 2 of channel n	
DQI ZII	of CH n (= CH 1,2,3)	1	Enable biquad 2 of channel n	
	BQF3n On/Off biquad 3 of CH n (= CH 1,2,3)	00	Bypass biquad 3 of channel n	
BQF3n		01	Enable biquad 3 of channel n	
		10	Enable biquad 3 as Loudness Filter	
	On/Off bigued 4	00	Bypass biquad 4 of channel n	
BQF4n	On/Off biquad 4 of CH n (= CH 1,2,3)	01	Enable biquad 4 of channel n	
	01 01111 (= 011 1,2,3)	10	Enable biquad 4 as Loudness Filter	
	On/Off bigued 5	00	Bypass biquad 5 of channel n	
BQF5n	of CH n (= CH 1,2,3)	On/Off biquad 5 of CH n (= CH 1 2 3) O1 Enable biquad 5 of channel n		
	01 01111 (= 011 1,2,0)	10	Enable biquad 5 as Loudness Filter	

Table 46 Address 0x3F: Biquad Filter Coefficient Page

able 46 Add	ie 46 Address UX3F: Biquad Filter Coeπicient Page									
Bit	7	6	5	4	3	2	1	0		
Name	CH3L	Various2	Various1	3D	GEQ2	GEQ1	CH2	CH1		

Name	Description	Value	Meaning	Ref.
CHn	Write enable	0	Disable channel n coefficient write	
Cilli	Wille chable	1	Enable Channel n coefficient write	
GEQ1 Write enable for		0	Disable coefficient write	
GEQT	GEQ UD mode Ch1	1	Enable coefficient write	
GEQ2 Write enable for		0	Disable coefficient write	
GEQZ	GEQ UD mode CH2	1	Enable coefficient write	
3D	Write enable for		Disable coefficient write	
30	3D filter	1	Enable coefficient write	
Various1	Write enable for	0	Disable coefficient write	
various i	FBQ, ALC	1	Enable coefficient write	
Various2	Write enable for FBQ	0	Disable coefficient write	
variousz	and BBQ of CH3	1	Enable coefficient write	
CH3L	Write enable for	0	Disable coefficient write	
CITSL	CH3 Loudness gain	1	Enable coefficient write	

Table 47 Address 0x40~0x58: Biquad Filter Coefficient

32-bit floating point

Table 48 Address 0x59~0x5B: Loudness Gain for BQ 3,4,5 of Ch 1& 2 &3

32-bit floating point

Table 49 Address 0x5C~0x5F: Mixer Gain value for 3D

32bit floating point

Table 50 Address 0x60: 3D delay amount

Bit	7	6	5	4	3	2	1	0
Name	X	X			3D D	elay		

Name	Description	Value	Meaning	Ref.
3D Delay	3D Delay	unsigned	1 ~ 40	

Table 51 Address 0x61 3D effect control configuration

Bit	7	6	5	4	3	2	1	0
Name	X	X	X	X	X	X	X	3BF

Name	Description	Value	Meaning	Ref.
3BF	2D Dynasa Flag	0	Bypass	
SDF	3D Bypass Flag	1	3D on	

Table 52 Address 0x62 PWM Mode Control Register

Bit	7	6	5	4	3	2	1	0		
Name	X	Х	Х	X	Х	X	PM			

Name	Description	Value	Meaning	Ref.				
		00	00 Forbidden. Must be set as below.					
PM	PWM Mode	01	1 chip, 2.1 channel mode					
FIVI	PVVIVI IVIOGE	10	1 chip 2.0 channel mode or 2.1 channel					
		10	with external power stage					

Table 52 Address 0x63 Stand-by in 2 Channel mode

Bit	7	6	5	4	3	2	1	0
Name	X	X	X	X	X	X	X	SB

Name	Description	Value	Meaning	Ref.
		0	Stand-by operation	
SB	stand-by in 2 Channel mode	1	Normal operation	

Table 53 Address 0x75: System Status (Read-only)

Bit	7	6	5	4	3	2	1	0
Name		F:	SI		MPW	LSRC	ULCK	PPM

Name	Description	Value	Meaning	Ref.
ULCK	sampled PLL	0	PLL is locked state.	
OLCK	unlock error	1	PLL is unlocked state.	
MPW	MCK/WCK 0 Ratio is incorrect.		Ratio is incorrect.	
IVIEVV	ratio error	1	Ratio is correct.	
	Permanent	0		
PPM	PROTECT Indication flag	1	Indicated that PROTECT is in Permanent LOW state	
LSRC	ASRC lock status	0	ASRC is unlocked state.	

		1	ASRC is locked state.	
		0000	8kHz	
		0001	11.025kHz	
		0010	12kHz	
		0011	16kHz	
	Complian	0100	24kHz]
FSI	Sampling Frequency	0101	24 kHz	
	Information	0110	32 kHz	
	IIIIOIIIIalioii	0111	44.1 kHz	
		1000	48 kHz	
		1001	88.2 kHz	
		1010	96 kHz	
		1011	192 kHz	

A2. Configuration Register Value Reference

Master & Channel Volume

_ , _			,_		,_	I _ ,	,_	1_,	-,-	I _ ,	,_
Index	dB	Index	dB	Index	dB	Index	dB	Index	dB	Index	dB
FF	24.0	D4	2.5	A9	-19.0	7E	-40.5	53	-62.0	28	-83.5
FE	23.5	D3	2.0	A8	-19.5	7D	-41.0	52	-62.5	27	-84.0
FD	23.0	D2	1.5	A7	-20.0	7C	-41.5	51	-63.0	26	-84.5
FC	22.5	D1	1.0	A6	-20.5	7B	-42.0	50	-63.5	25	-85.0
FB	22.0	D0	0.5	A5	-21.0	7A	-42.5	4 F	-64.0	24	-85.5
FA	21.5	CF	0.0	A4	-21.5	79	-43.0	4E	-64.5	23	-86.0
F9	21.0	CE	-0.5	A3	-22.0	78	-43.5	4 D	-65.0	22	-86.5
F8	20.5	CD	-1.0	A2	-22.5	77	-44.0	4C	-65.5	21	-87.0
F7	20.0	CC	-1.5	A1	-23.0	76	-44.5	4B	-66.0	20	-87.5
F6	19.5	CB	-2.0	A0	-23.5	75	-45.0	4A	-66.5	1F	-88.0
F5	19.0	CA	-2.5	9F	-24.0	74	-45.5	49	-67.0	1E	-88.5
F4	18.5	С9	-3.0	9E	-24.5	73	-46.0	48	-67.5	1D	-89.0
F3	18.0	C8	-3.5	9 D	-25.0	72	-46.5	47	-68.0	1C	-89.5
F2	17.5	C7	-4.0	9C	-25.5	71	-47.0	46	-68.5	1B	-90.0
F1	17.0	С6	-4.5	9B	-26.0	70	-47.5	45	-69.0	1A	-90.5
F0	16.5	C5	-5.0	9A	-26.5	6F	-48.0	44	-69.5	19	-91.0
EF	16.0	C4	-5.5	99	-27.0	6E	-48.5	43	-70.0	18	-91.5
EE	15.5	С3	-6.0	98	-27.5	6D	-49.0	42	-70.5	17	-92.0
ED	15.0	C2	-6.5	97	-28.0	6C	-49.5	41	-71.0	16	-92.5
EC	14.5	C1	-7.0	96	-28.5	6B	-50.0	40	-71.5	15	-93.0
EB	14.0	C0	-7.5	95	-29.0	6A	-50.5	3F	-72.0	14	-93.5
EA	13.5	BF	-8.0	94	-29.5	69	-51.0	3E	-72.5	13	-94.0
E9	13.0	BE	-8.5	93	-30.0	68	-51.5	3D	-73.0	12	-94.5
E8	12.5	BD	-9.0	92	-30.5	67	-52.0	3C	-73.5	11	-95.0
E7	12.0	BC	-9.5	91	-31.0	66	-52.5	3B	-74.0	10	-95.5
E6	11.5	BB	-10.0	90	-31.5	65	-53.0	3A	-74.5	0F	-96.0
E5	11.0	BA	-10.5	8F	-32.0	64	-53.5	39	-75.0	0E	-96.5
E4	10.5	В9	-11.0	8E	-32.5	63	-54.0	38	-75.5	0 D	-97.0
E3	10.0	В8	-11.5	8D	-33.0	62	-54.5	37	-76.0	0C	-97.5
E2	9.5	В7	-12.0	8C	-33.5	61	-55.0	36	-76.5	0B	-98.0
E1	9.0	В6	-12.5	8B	-34.0	60	-55.5	35	-77.0	0A	-98.5
ΕO	8.5	В5	-13.0	8A	-34.5	5F	-56.0	34	-77.5	09	-99.0
DF	8.0	В4	-13.5	89	-35.0	5E	-56.5	33	-78.0	08	-99.5
DE	7.5	В3	-14.0	88	-35.5	5D	-57.0	32	-78.5	07	-100
DD	7.0	В2	-14.5	87	-36.0	5C	-57.5	31	-79.0	06	-110
DC	6.5	В1	-15.0	86	-36.5	5B	-58.0	30	-79.5	05	-120
DB	6.0	в0	-15.5	85	-37.0	5A	-58.5	2F	-80.0	04	-130
DA	5.5	AF	-16.0	84	-37.5	59	-59.0	2E	-80.5	03	-140
D9	5.0	AE	-16.5	83	-38.0	58	-59.5	2D	-81.0	02	-150
D8	4.5	AD	-17.0	82	-38.5	57	-60.0	2C	-81.5	01	-150
D7	4.0	AC	-17.5	81	-39.0	56	-60.5	2B	-82.0	0.0	-150
D6	3.5	AB	-18.0	80	-39.5	55	-61.0	2A	-82.5		
D5	3.0	AA	-18.5	7F	-40.0	54	-61.5	29	-83.0		

Mixer Gain & Polarity

Index	Bolomitu										
	rolality	dB	Index	Polarity	dB	Index	Polarity	dB	Index	Polarity	dB
7E	+	18	7 D	-	18	3E	+	-4	3D	-	-4
7C	+	17	7в	-	17	3C	+	-4.5	3B	-	-4.5
7A	+	16	79	-	16	3A	+	- 5	39	-	-5
78	+	15	77	-	15	38	+	-5.5	37	-	-5.5
76	+	14	75	-	14	36	+	-6	35	-	-6
74	+	13	73	-	13	34	+	-7	33	-	-7
72	+	12	71	-	12	32	+	-8	31	-	-8
70	+	11	6F	-	11	30	+	-9	2F	_	-9
6E	+	10	6D	-	10	2E	+	-10	2D	-	-10
6C	+	9	6B	-	9	2C	+	-11	2B	-	-11
6A	+	8	69	-	8	2A	+	-12	29	-	-12
68	+	7	67	-	7	28	+	-13	27	-	-13
66	+	6	65	-	6	26	+	-14	25	-	-14
64	+	5.5	63	-	5.5	24	+	-15	23	-	-15
62	+	5	61	-	5	22	+	-16	21	-	-16
60	+	4.5	5F	-	4.5	20	+	-17	1F	-	-17
5E	+	4	5D	-	4	1E	+	-18	1D	-	-18
5C	+	3.5	5B	-	3.5	1C	+	-19	1B	-	-19
5A	+	3	59	-	3	1A	+	-20	19	-	-20
58	+	2.5	57	-	2.5	18	+	-21	17	-	-21
56	+	2	55	-	2	16	+	-22	15	-	-22
54	+	1.5	53	-	1.5	14	+	-23	13	-	-23
52	+	1	51	-	1	12	+	-24	11	-	-24
50	+	0.5	4F		0.5	10	+	-25	OF	-	-25
4E	+	0	4 D		0	0E	+	-26	0D	-	-26
4C	+	-0.5	4B		-0.5	0C	+	-27	0B	-	-27
4A	+	-1	49		-1	0A	+	-28	09	-	-28
48	+	-1.5	47	-	-1.5	0.8	+	-29	07	-	-29
46	+	-2	45	-	-2	06	+	-30	05	-	-30
44	+	-2.5	43	-	-2.5	04	+	-31	03	-	-31
42	+	-3	41	-	-3	02	+	-32	01	-	-32
40	+	-3.5	3F	-	-3.5	0.0	+	-150			

Dynamic Range Compression Threshold

Index	dB	Index	dB	Index	dB	Index	dB
3F	-57.0	2F	-11.5	1F	-3.5	OF	4.5
3E	-54.0	2E	-11.0	1E	-3.0	0E	5.0
3D	-51.0	2D	-10.5	1D	-2.5	0 D	5.5
3C	-48.0	2C	-10.0	1C	-2.0	0C	6.0
3B	-45.0	2B	-9.5	1B	-1.5	0B	6.5
3A	-42.0	2A	-9.0	1A	-1.0	0A	7.0
39	-39.0	29	-8.5	19	-0.5	09	7.5
38	-36.0	28	-8.0	18	0	08	8.0
37	-33.0	27	-7.5	17	0.5	07	8.5
36	-30.0	26	-7.0	16	1.0	06	9.0
35	-27.0	25	-6.5	15	1.5	05	9.5
34	-24.0	24	-6.0	14	2.0	04	10.0
33	-21.0	23	-5.5	13	2.5	03	10.5
32	-18.0	22	-5.0	12	3.0	02	11.0
31	-15.0	21	-4.5	11	3.5	01	11.5
30	-12.0	20	-4.0	10	4.0	0.0	12.0

DRC Attack Rate & Release Rate Table

Name	Description	value	rate	
A1C		011	14.458 (slowest)	
	DRC attack rate (msec/3dB down)	010	7.292	
		001	3.646	
		000	1.823 (default)	
		111	0.906	
		110	0.448	
		101	0.219 (fastest)	
		011	7.3	
		010	5.5	
	DRC release rate (sec/6dB up)	001	4.4	
C1C		000	3.6	
		111	2.7	
		110	1.8	
		101	0.9	

Graphic Equalizer Band Gain

Value (HEX)

	14	-12
_ 11	15	-11
	16	-10
oren	17	-9
	18	-8
	19	-7
	1A	-6
	1B	-5
	1C	-4
	1D	-3
	1E	-2
	1F	-1
	0.0	0
	01	1
	02	2
	03	3
	04	4
	05	5
	06	6
	07	7
	08	8
	ı	

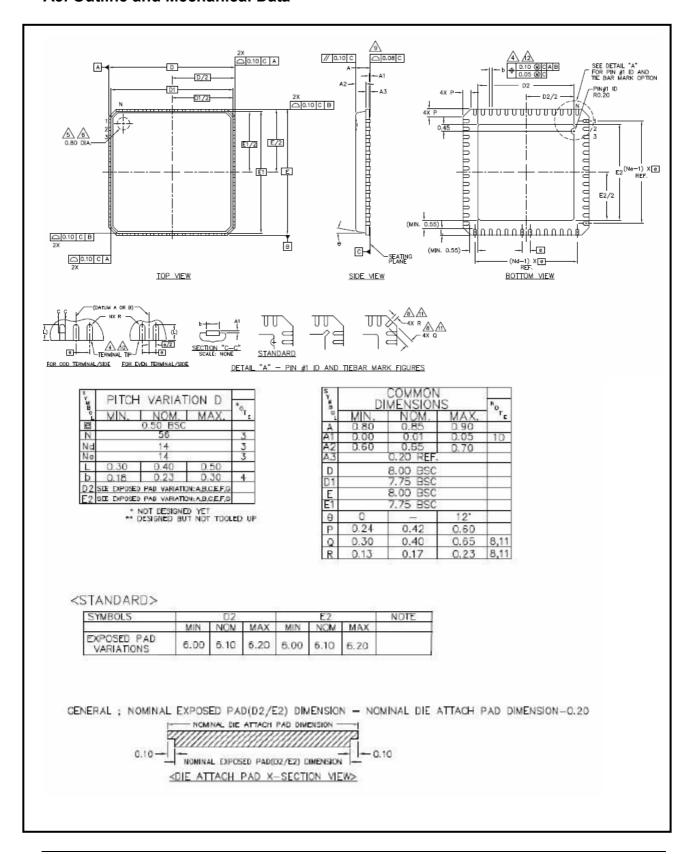
09

0A 0В

0C


10

11


12

Auto-mute detection threshold Table

Name	Description	value	dB
		0000	-126 dB
	Auto-mute Detection threshold	0001	-120 dB
		0010	-114 dB
		0011	-108 dB
		0100	-102 dB
		0101	-96 dB
		0110	-90 dB
AT		0111	-84 dB
		1000	-78 dB
		1001	-72 dB
		1010	-66 dB
		1011	-60 dB
		1100	-54 dB
		1101	-48 dB
		1110	-42 dB
		1111	Auto-mute

A3. Outline and Mechanical Data

NOTES:

- 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM(.012 INCHES MAXIMUM)
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.

3. N IS THE NUMBER OF TERMINALS.
Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &

Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.

/4) DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.

15 THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE

PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.

6 EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.

7. ALL DIMENSIONS ARE IN MILLIMETERS.

/8\ THE SHAPE SHOWN ON FOUR CORNERS ARE NOT ACTUAL I/O.

9 BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

APPLIED ONLY FOR TERMINALS.

1 Q AND R APPLIES ONLY FOR STRAGHT TIEBAR SHAPES.

12 FOR 0.40mm LEAD PITCH, THE LEAD POSITION TOLERANCE MUST BE 0.07mm AT THE ACTUAL MEAN VALUE OF BODY SIZE.

