

2010

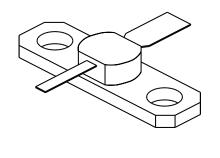
10 Watt - 28 Volts, Class C Microwave 2000 MHz

GENERAL DESCRIPTION

The 2010 is a COMMON BASE transistor capable of providing 10 Watts Class C, RF output power at 2000 MHz. Gold metalization and diffused ballasting are used to provide high reliability and supreme ruggedness. The transistor uses a fully hermetic High Temperature Solder Sealed package.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C 30 Watts


Maximum Voltage and Current

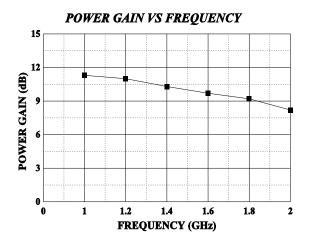
BVces Collector to Emitter Voltage 50 Volts
BVebo Emitter to Base Voltage 3.5 Volts
Ic Collector Current 2.0 A

Maximum Temperatures

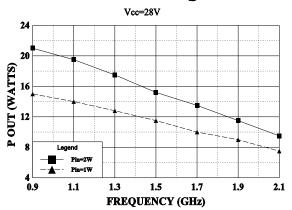
 $\begin{array}{ll} \text{Storage Temperature} & -65 \text{ to} + 200 ^{\circ} \text{C} \\ \text{Operating Junction Temperature} & +200 ^{\circ} \text{C} \end{array}$

CASE OUTLINE 55BT-1, Style

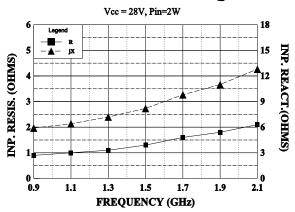
ELECTRICAL CHARACTERISTICS @ 25 °C

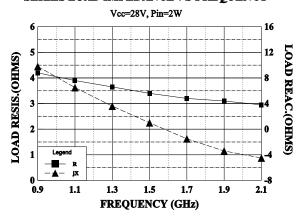

SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout Pin Pg η _c VSWR ₁	Power Out Power Input Power Gain Collector Efficiency Load Mismatch Tolerance	F = 2 GHz Vcb = 28 Volts Po= 10 Watts As Above F = 2 GHz, Po = 10 W	10 7.0	8.0 40	2 20:1	Watt Watt dB %

BVces BVcbo BVebo Icbo h _{FE}	Collector to Emitter Breakdown Collector to Base Breakdown Emitter to Base Breakdown Collector to Base Current Current Gain	Ic = 20 mA Ic = 4 mA Ie = 4 mA Vcb = 28 Volts Vce = 5 V, Ic = 400 mA	50 45 3.5 20	4.0	Volts Volts Volts mA
h _{FE} Cob θjc	Current Gain Output Capacitance Thermal Resistance	Vce = 5 V, Ic = 400 mA F = 1 MHz, Vcb = 28 V	20	6.0	pF °C/W

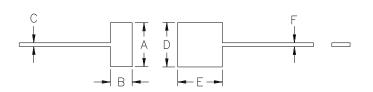

Issue August 1996

GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.



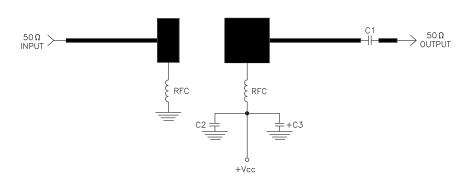

POWER OUTPUT VS FREQUENCY

SERIES INPUT IMPEDANCE VS FREQUENCY



SERIES LOAD IMPEDANCE VS FREQUENCY

August 1996



DIM	INCHES
Α	.480
В	.240
С	.040
D	.490
E	.490
F	.040

2000 MHz TEST AMPLIFIER

Vcc = 28V

NOTE 1. Under the normal operating conditions as specified, junction temperature to be 200° maximum as measured by I.R. scan of the chip.

Thermal Resistance = 6° C/W Junction to Case.

= Microstrip on 0.020" Teflon Fiberglass, Er=2.55 C1,C2 = 47 pf chip cap C3 = $10\mu \text{fd}$ @ 35 VOLTS

cage 0PJR2	DWG NO. 2010			REV A	
	SCALE	1/1	SHEET		