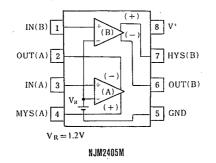
# **VOLTAGE DETECTOR**

## GENERAL DESCRIPTION

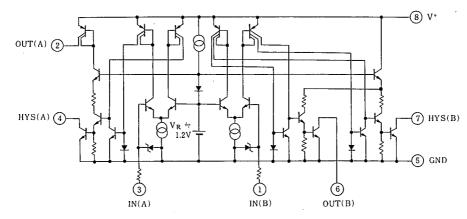
NJM2405 is a dual comparator, including the high precision reference voltage circuit. Both channels have hystersis pins, so it could provide the hysteretic function for systems.

It has the wide range of operating voltage and works with less current consumption, so that it is suitable for detecting abnormal conditions, to change over to back up memories when the voltage drops off in operation.

 $(2.5V \sim 20V)$ 


DMP8

### FEATURES


JRC

- Operating Voltage
- Low Operating Current
- Internal Low Reference Voltage
- Adjustable Hystersis Voltage
  Package Outline
- Package Outline
  Bipolar Technology
- Bipolar Technology

#### PIN CONFIGURATION



EQUIVALENT CIRCUIT



-New Japan Radio Co.,Ltd.-

# PACKAGE OUTLINE



NJM2405M

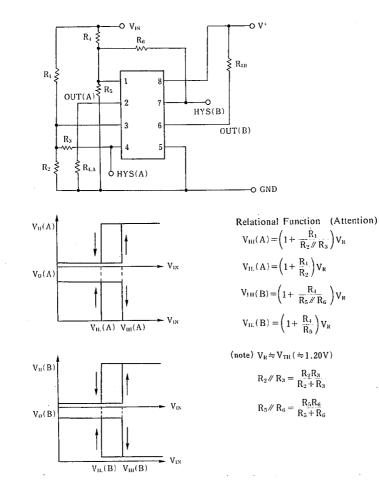
6-42

(Ta=25℃)

# ■ ABSOLUTE MAXIMUM RATINGS

| PARAMETER                   | SYMBOL       | RATINGS   | UNIT<br>. V<br>V |  |
|-----------------------------|--------------|-----------|------------------|--|
| Supply Voltage              | V+           | 21        |                  |  |
| Output Voltage              | Vo           | . 21      |                  |  |
| Output Current              | Io           | lo 50     |                  |  |
| Input Voltage               | VIN          | -0.3~+6.5 | Vdc<br>mW        |  |
| Power Dissipation           | Po           | 300       |                  |  |
| Operating Temperature Range | Topr -20~+75 |           | °C               |  |
| Storage Temperature Range   | Tstg         | -40~+125  | °C               |  |

## ELECTRICAL CHARACTERISTICS


| PARAMETER                                        | SYMBOL              | TEST CONDITION                                              | MIN. | TYP.  | MAX.    | UNIT  |
|--------------------------------------------------|---------------------|-------------------------------------------------------------|------|-------|---------|-------|
| Operating Current                                | Іссн                | $V^+ = 20V, V_{111} = 1.5V$                                 | _    | 250   | 400     | μA    |
| operating out on                                 | Iccr                | $V^+ = 20V, V_{1L} = 1.0V$                                  | _    | 400   | 60<br>0 | μA    |
| Threshold Voltage                                | VTH                 | $I_0 = 2mA$ , $V_0 = iV$                                    | 1.1. | 1.20  | 1.25    | v     |
| Threshold Voltage Deviation vs Supply Voltage    | ΔΫτη                | 2.5V≦V+≦5.5V                                                |      | 3     | 12      | mV    |
|                                                  | $\Delta V_{TH2}$    | 4.5∨≦∨+≦40∨                                                 |      | 10    | 40      | mν    |
| Offset Voltage between Normal Output             |                     | $I_0(A)=20\mu A, V_0(A)=3V$                                 | -    | 2.0   | -       | mV    |
| and Hysteresis Output                            |                     | $I_{\rm H}(A) = 4.5 \text{mA}, V_{\rm H}(A) = 2V$           |      |       |         |       |
|                                                  |                     | $I_0(B)=3mA, V_0(B)=2V$                                     | -    | 2.0   | —       | mν    |
|                                                  |                     | $I_{\rm H}({\rm B})=3{\rm mA}, V_{\rm H}({\rm B})=2{\rm V}$ |      |       |         |       |
| Threshold Voltage Temperature Coefficient        |                     | –20°C≦T"≦70°C                                               |      | ±0.05 | -       | mV/°C |
| Threshold Voltage Difference<br>Between Channels |                     |                                                             | -10  |       | 10      | mV    |
| Input Current                                    | հե                  | I <sub>1L</sub> =1.0V                                       | -    | 5     | -       | nA    |
|                                                  | In                  | V <sub>111</sub> =1.5V                                      | -    | 100   | 500     | nA    |
| Output Leak Current                              | I <sub>OH</sub> (A) | $V^{+}=20V, V_{O}(A)=0V, V_{1H}=1.5V$                       |      | -     | 0.1     | μA    |
|                                                  | IOH(B)              | $V_{O}(B)=20V, V_{HL}=1.0V$                                 |      | -     | 1 -     | μA    |
| Hysteresis Output leak Current                   | I <sub>HH</sub> (A) | $V_{\rm H}(A)=20V, V_{\rm H}=1.5V$                          | -    | -     | 1 1     | μA    |
|                                                  | Inn(B)              | $V_{\rm H}$ (B)=20V, $V_{\rm 1H}$ =1.5V                     | -    | —     | 1       | μA    |
| Output Source Current                            | lol(A)              | $V_0(A)=0V, V_{1L}=1.0V$                                    | 40   | 80    | -       | μA    |
| Output Sink Current                              | IOL(B)              | $V_0(B) = 1.0V, V_{1H} = 1.5V$                              | 4    | 10    | -       | mA    |
| Hysteresis Current                               | I <sub>HL</sub> (A) | $V_{\rm H}(A) = 1.0V, V_{\rm H} = 1.0V$                     | 6    | 12    | -       | mA    |
|                                                  | I <sub>HL</sub> (B) | $V_{\rm H}(B) = 1.0V, V_{\rm H} = 1.0V$                     | 4    | 10    |         | mA    |
| Output Saturation Voltage                        | Vol(A)              | $I_0(A)=20\mu A, V_{1L}=1.0V$                               | -    | 50    | 200     | mV    |
|                                                  | V <sub>OL</sub> (B) | $I_0(B)=3.0mA, V_{1H}=1.5V$                                 | -    | 120   | 400     | mV    |
| Hysteresis Output Saturation Voltage             | V <sub>HL</sub> (A) | $I_{H}(A) = 4.5 \text{mA}. V_{1L} = 1.0 \text{V}$           | -    | 120   | 400     | mV    |
|                                                  | V <sub>HL</sub> (B) | $I_{\rm H}({\rm B})=3.0{\rm mA}, V_{\rm H}=1.0{\rm V}$      |      | 120   | 400     | mV    |
| Delay Time                                       | t <sub>PHL</sub>    | $RL=5k\Omega$                                               |      | 2     | -       | μs    |
|                                                  | t <sub>PLH</sub>    | $RL=5k\Omega$                                               | -    | 3     |         | μs    |

-New Japan Radio Co.,Ltd.—

(V⁺=5V, Ta=25℃)

-6-43

### GENERAL OPERATING INFORMATION (Operation Principle)



6

6-44

# -New Japan Radio Co., Ltd.

------Ne

**MEMO** 

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.