
6W, wide input, isolated & regulated single output, DIP/SMD package, DC-DC converter

FEATURES

- Wide input voltage range (2:1)
- High efficiency up to 86%
- No-load power consumption as low as 0.12W
- Isolation voltage: 500VAC/1500VDC
- Operating temperature range: -40[°]C to +85[°]C
- Input under-voltage protection, output short circuit, over-current, over-voltage protection
- Optional package:DIP/SMD

VRB_J(M)D/T-6W series are isolated 6W DC-DC products with 2:1 input voltage. 500VAC/500VDC isolation, input under-voltage protection, output over-voltage, over-current, short circuit protection, which make them widely applied in industrial control, electricity, instruments, communication fields.

Selection	Guide						
	Part No. [®]	Input Voltage (VDC)			Output		Max. Capacitive
Certification	Fall No.	Nominal (Range)	Max.®	Output Voltage (VDC)	Output Current (mA) (Max./Min.)	(%,Min./Typ.) @ Full Load	Load (µF)
	VRB1205J(M)D/T-6W	12 (9-18)	20	5	1200/0	79/81	1000
	VRB1212J(M)D/T-6W			12	500/0	82/84	680
	VRB1215J(M)D/T-6W			15	400/0	83/85	470
-	VRB2403J(M)D/T-6W			3.3	1500/0	77/79	1800
	VRB2405J(M)D/T-6W	24	40	5	1200/0	81/83	1000
	VRB2412J(M)D/T-6W	(18-36)	40	12	500/0	83/85	680
	VRB2415J(M)D/T-6W			15	400/0	84/86	470

Notes:

³ Efficiency is measured in nominal input voltage and rated output load.

Input Specifications						
Item	Operating Conditions		Min.	Тур.	Max.	Unit
		5V output	-	617/7	633/25	
	12VDC nominal input series, nominal input voltage	12V output	-	595/10	610/30	
		15V output		588/9	603/30	
Input Current (full load / no-load)	24VDC nominal input series, nominal input voltage	3.3V output		261/3	268/15	mA
, ,		5V output	-	301/4	308/18	
		12V output	-	294/5	302/20	
		15V output	-	291/5	298/20	
Reflected Ripple Current			-	20	-	
Commo Moltana (lana many)	12VDC nominal input series		-0.7		25	
Surge Voltage (1sec. max.)	24VDC nominal input series		-0.7		50	VDC
Starting Voltage	12VDC nominal input series				9	
	24VDC nominal input series				18	

MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

 $[\]textcircled{VRB_J(M)D/T-6W}$ contains 4 types of products, include VRB_JD-6W (DIP package without housing) \checkmark VRB_JMD-6W (DIP package with housing) \checkmark VRB_JT-6W (SMD package without housing) and VRB_JMT-6W (SMD package with housing);

②Absolute maximum rating without damage on the converter, but it isn't recommended;

Chutdour Voltago	12VDC nominal input series	5.5	6.5		\/DC
Shutdown Voltage	24VDC nominal input series	13	15		VDC
Input Filter			Pi	filter	
Hot Plug			Unav	/ailable	
	Module switch on	Ctrl suspended or connected to TIL low level (0-0.3VDC)			
Ctrl [®]	Module switch off	Ctrl pin c	onnected t	to high leve	(2-12VDC)
	Input current when switched off		5	10	mA
Note: ①The voltage of Ctrl pin is relative to input pin GND.					

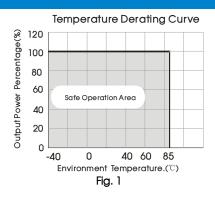
ns					
Operating Conditions		Min.	Тур.	Max.	Unit
0% -100% load			±1	±3	
Full load, the input voltage is from	low voltage to high voltage		±0.2	±0.5	%
5% -100% load			±0.5	±1	
25% load step change,nominal input voltage			300	500	μs
25% load step change,nominal input voltage	3.3V, 5V output		±5	±8	%
	Others		±3	±5	
Full load				±0.03	%/℃
20MHz bandwidth, 5% -100% load				100	mVp-p
			±5		an 1
		110	_	160	%Vo
Over-current Protection Input voltage range Short circuit Protection			140	200	%lo
			Continuous, self-recovery		
	0% -100% load Full load, the input voltage is from 5% -100% load 25% load step change,nominal in 25% load step change,nominal input voltage Full load 20MHz bandwidth, 5% -100% load	Operating Conditions 0% -100% load Full load, the input voltage is from low voltage to high voltage 5% -100% load 25% load step change,nominal input voltage 25% load step change,nominal input voltage Conditional input voltage 7. Strong of the step of the strong	Operating Conditions Min. 0% -100% load Full load, the input voltage is from low voltage to high voltage 5% -100% load 25% load step change,nominal input voltage 25% load step change,nominal input voltage 25% load step change,nominal input voltage Cothers Full load 20MHz bandwidth, 5% -100% load Input voltage range 110	Operating Conditions Min. Typ. 0% -100% load ±1 Full load, the input voltage is from low voltage to high voltage ±0.2 5% -100% load ±0.5 25% load step change,nominal input voltage 300 25% load step change,nominal input voltage ±5 Others ±3 Full load 20MHz bandwidth, 5% -100% load 110 Input voltage range 110 140	Operating Conditions Min. Typ. Max. 0% -100% load ±1 ±3 Full load, the input voltage is from low voltage to high voltage ±0.2 ±0.5 5% -100% load ±0.5 ±1 25% load step change,nominal input voltage 300 500 25% load step change,nominal input voltage ±5 ±8 Others ±3 ±5 Full load ±3 ±5 Full load ±0.03 20MHz bandwidth, 5% -100% load ±5 Input voltage range 110 140 200

Note: ①When testing from 0% -100% load working conditions, load regulation index of $\pm 5\%$;

©0% - 5% load ripple&Noise is no more than 5%Vo.Ripple and noise are measured by "parallel cable" method, please see DC-DC Converter Application Notes for specific operation.

General Specifica	tion					
Item	Operating Conditions	Min.	Тур.	Max.	Unit	
	Input-output, with the test time of 1 minute and the leak current lower than 5mA	500				
	Input-case, with the test time of 1 minute and the leak current lower than 5mA (Only for VRB_JMD/JMT-6W series products)	500			VAC	
lassiladian Malkaras	output-case, with the test time of 1 minute and the leak current lower than 5mA (Only for VRB_JMD/JMT-6W series products)	500			.,	
Insulation Voltage	Input-output, with the test time of 1 minute and the leak current lower than 1mA	1500				
	Input-case, with the test time of 1 minute and the leak current lower than 1mA (Only for VRB_JMD/JMT-6W series products)	1500			VDC	
	output-case, with the test time of 1 minute and the leak current lower than 1mA (Only for VRB_JMD/JMT-6W series products)	1500				
	Input-output, insulation voltage 500VDC, Ta=25°C, humidity=70%RH	100			M Ω	
Insulation Resistance	Input-case, insulation voltage 500VDC, Ta= 25° C, humidity=70%RH (Only for VRB_JMD/JMT-6W series products)	100				
	output-case, insulation voltage 500VDC, Ta=25 $^{\circ}$ C, humidity=70%RH (Only for VRB_JMD/JMT-6W series products)	100				
Isolation Capacitance	Input-output, 100KHz/0.1V		1000		рF	
Operating Temperature	see Fig. 1	-40		+85	${\mathfrak C}$	
Storage Humidity	Without condensation	5		95	%RH	
Storage Temperature		-55		+125		
Pin Welding Resistance Temperature	Welding spot is 1.5mm away from the casing, 10 seconds			300	℃	

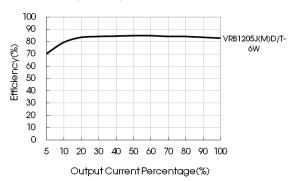
MORNSUN®


MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

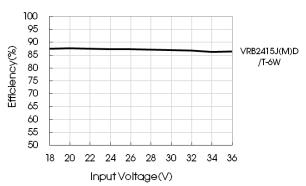
Reflow Soldering Temperature	Only for VRB_J(M)T-6W series	time≤60s	Peak temp. ≤245°C, maximum duration time ≤60s at 217°C. For actual application, please refer to IPC/JEDEC J-STD-020D.1.		
Vibration		10-150H	10-150Hz, 5G, 90 Min. along X, Y and Z		
Switching Frequency ¹⁰	PWM mode	-	330		KHz
MTBF	MIL-HDBK-217F@25℃	1000			K hours
Note: ①This series of products using reduced frequency technology, the switching frequency is test value of full load, When the load is reduced to below 50%, the switching frequency decreases with decreasing load.					

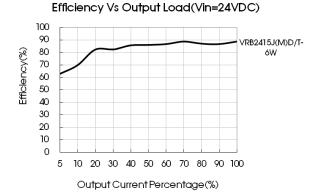
Physical Specifications					
Casing Material		Aluminum alloy			
VRB_JD-6W series		31.60*18.10*6.10mm			
5	VRB_JT-6W series	33.78*18.10*6.30mm			
Dimension	VRB_JMD-6W series	32.60*19.10*6.80mm			
	VRB_JMT-6W series	33.78*19.10*7.00mm			
\4/-!	VRB_JD/JT-6W series	4.7g(Typ.)			
Weight VRB_JMD/JMT-6W series		5.7g(Typ.)			
Cooling method		Free air convection (20LFM)			

EMC Specifications				
EN AL	CE	CISPR32/EN55032	CLASS A (without external components)/ CLASSB (see Fig.3-2) for	r recommended circuit)
EMI	RE CISPR32/EN55032 CLASS B (see Fig.3-3) for recommended circuit)			
	ESD	IEC/EN61000-4-2	Contact ±6KV	perf. Criteria B
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
EMS	EFT	IEC/EN61000-4-4	±2KV (see Fig.3-① for recommended circuit)	perf. Criteria B
	Surge	IEC/EN61000-4-5	line to line ±2KV (see Fig.3-① for recommended circuit)	perf. Criteria B
	CS	IEC/EN61000-4-6	3 Vr.m.s	perf. Criteria A
Note: For the product which is with casing package(VRB_JMD/T-6W series), the case needs to connect to input pin GND when testing the EMC performance.				


Product Characteristic Curve

Efficiency Vs Input Voltage (Full Load)

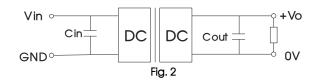

Efficiency Vs Output Load(Vin=12VDC)



MORNSUN®

MORNSUN GUANGZHOU SCIENCE & TECHNOLOGY CO.,LTD.

Efficiency Vs Input Voltage (Full Load)



Design Reference

1. Typical application

All the DC/DC converters of this series are tested according to the recommended circuit (see Fig. 2) before delivery.

If it is required to further reduce input and output ripple, properly increase the input & output of additional capacitors Cin and Cout or select capacitors of low equivalent impedance provided that the capacitance is no larger than the max. capacitive load of the product.

Vout(VDC)	Cin(uF)	Cout(uF)
3.3/5/12/15	10	10

EMC solution-recommended circuit

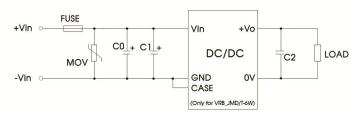


Fig. 3-1

Parameter description:

Model	Vin: 12VDC/24VDC		
FUSE Choose according to actual input curre			
MOV	S20K30		
C0	680µF/100V		
C1	330µF/100V		
C2	10µF/25V		

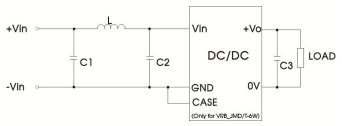
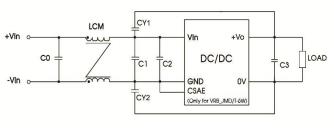
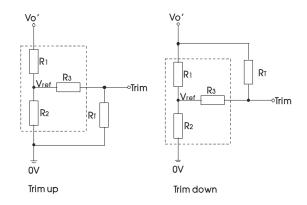


Fig. 3-2

Parameter description:

Vin(VDC)	C1/C2	L	C3
12/24	4.7µF/50V	4.7µH	10µF/25V




Fig. 3-3

Parameter description:

Model	Vin: 12VDC/24VDC
C0	4.7μF/50V
C1	4.7μF/50V
C2	4.7μF/50V
C3	10µF/25V
LCM	3.3mH
CY1/CY2	1000pF/≥2000VDC

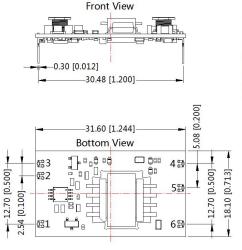
Fig. 3

3. Application of Trim and calculation of Trim resistance

Calculation formula of Trim resistance:

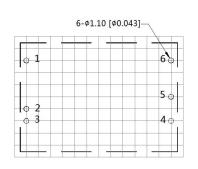
up:
$$RT = \frac{aR_2}{R_2 - a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$

down:
$$R_T = \frac{\alpha R_1}{R_1 - \alpha} - R_3$$
 $\alpha = \frac{Vo' - Vref}{Vref} \cdot R_2$


 R_{T} is Trim resistance ,a is a self-defined parameter, with no real meaning. Vo' for the actual needs of the up or down reaulated voltage

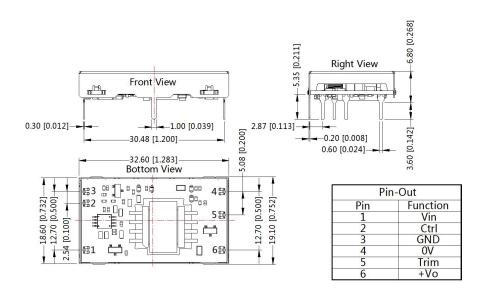

Applied circuits of Trim (Part in broken line is the interior of models)

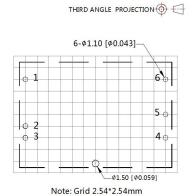
Part No.	R1(K Ω)	R2(K Ω)	R3(K Ω)	Vref(V)
VRB2403J(M)D/T-6W	4.8	2.87	12	1.24
VRB2405J(M)D/T-6W	2.94	2.87	15	2.5
VRB2412J(M)D/T-6W	11	2.87	33	2.5
VRB2415J(M)D/T-6W	14.5	2.87	15	2.5
VRB1205J(M)D/T-6W	2.94	2.87	10	2.5
VRB1212J(M)D/T-6W	11	2.87	15	2.5
VRB1215J(M)D/T-6W	14.5	2.87	15	2.5


- 4. It is not allowed to connect modules output in parallel to enlarge the power
- 5. For more information please find DC-DC converter application notes on www.mornsun-power.com

VRB_JD-6W (DIP package without housing) Dimensions and Recommended Layout

Pin-Out		
Pin	Function	
1	Vin	
2	Ctrl	
3	GND	
4	0V	
5	Trim	
6	+Vo	

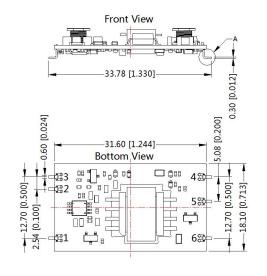


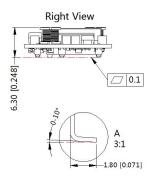

THIRD ANGLE PROJECTION

Note: Grid 2.54*2.54mm

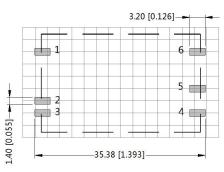
Note: Unit: mm[inch] Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$ The layout of the device is for reference only , please refer to the actual product

VRB_JMD-6W (DIP package with housing) Dimensions and Recommended Layout





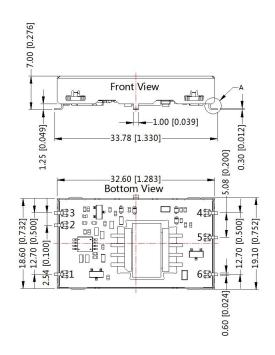
Note: Unit: mm[inch]
Pin section tolerances: ±0.10[±0.004] General tolerances: ±0.50[±0.020] The layout of the device is for reference only , please refer to the actual product

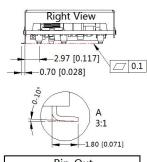

VRB_JT-6W (SMD package without housing) Dimensions and Recommended Layout

Pin-Out		
Pin	Function	
1	Vin	
2	Ctrl	
3	GND	
4	VO	
5	Trim	
6	+Vo	

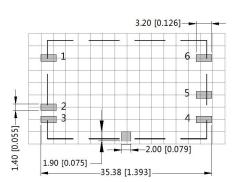
Note: Grid 2.54*2.54mm

Note: Unit: mm[inch]


Pin section tolerances: ±0.10[±0.004] General tolerances: ±0.50[±0.020]


The layout of the device is for reference only , please

refer to the actual product


THIRD ANGLE PROJECTION

VRB_JMT-6W (SMD package with housing) Dimensions and Recommended Layout

Pin-Out		
Pin	Function	
1	Vin	
2	Ctrl	
3	GND	
4	OV	
5	Trim	
6	+Vo	

Note: Grid 2.54*2.54mm

Note: Unit: mm[inch]

Pin section tolerances: $\pm 0.10[\pm 0.004]$ General tolerances: $\pm 0.50[\pm 0.020]$

The layout of the device is for reference only , please refer to the actual product

Note:

- Packing information please refer to Product Packing Information which can be downloaded from <u>www.mornsun-power.com</u>.Packing bag number: 58210056;
- 2. The maximum capacitive load offered were tested at input voltage range and full load;
- 3. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75%RH with nominal input voltage and rated output load;
- 4. All index testing methods in this datasheet are based on Company's corporate standards;
- 5. We can provide product customization service, please contact our technicians directly for specific information;
- 6. Products are related to laws and regulations: see "Features" and "EMC";
- Our products shall be classified according to ISO14001 and related environmental laws and regulations, and shall be handled by qualified units.

Mornsun Guangzhou Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui Development Center, Science Ave., Guangzhou Science City, Luogang District, Guangzhou, P. R. China Tel: 86-20-38601850-8801 Fax: 86-20-38601272 E-mail: info@mornsun.cn

MORNSUN®