Features

Technology*

- +115°C Maximum Case Temperature
- -45°C Minimum Case Temperature

• Built-in EMC Filter

- Ribbed Case Style
- 2250VDC Isolation
- Built-in EMC Filter, EN-55022 Class B

Description

ICF

The RPP30 series 2:1 input range DC/DC converters are ideal for high end industrial applications and COTS Military applications where a very wide operating temperature range of -45°C to +115°C is required. Although the case size is very compact, the converter contains a built-in EMC filter EN-55022 Class B without the need for any external components. The RPP30 is available in a ribbed case style for active cooling. They are UL-60950-1 certified.

RECOM DC/DC Converter

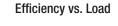
RPP30-2424D

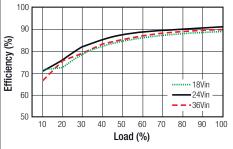
30 Watt 2:1 2" x 1.2" Ribbed Style Dual Output

Selection Guide						
Part	Input	Input	Output	Output	Efficiency	Max. Capacitive
Number	Voltage Range	Current	Voltage	Current	typ.	Load
	(VDC)	(mA)	(VDC)	(mA)	(%)	(µF)
RPP30-2424D	18-36	1400	±24	±630	90	±220

Notes:

Note1: Typical values at nominal input voltage and full load.




Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

BASIC CHARACTERISTICS					
Parameter	Condition	Min.	Тур.	Max.	
Input Voltage Range		18VDC	24VDC	36VDC	
Transient Input Voltage	≤100ms			50VDC	
Inrush Current	with EMC Filter without EMC Filter			20A 40A	
Under Voltage Lockout	DC-DC ON DC-DC OFF	17.5VDC		17VDC	
Remote ON/OFF	ON / high logic OFF / low logic	Open, 4.5V Short, 0V		5.5V 1.2V	
Remote OFF Input Voltage	nominal input		5mA		
Start-up Time	when use CTRL function		5ms	20ms	
Operating Frequency Range		270kHz	300kHz	330kHz	
Efficiency	typ. Vin, full load	89%	90%		
Minimum Load		10%			
Output Ripple and Noise	20MHz limited, 1µF output MLCC		240mVp-p	360mVp-p	

UL-60950-1 Certified EN-55022 Certified

100 90 Efficiency (%) 80 70 60 50 18 20 22 24 26 28 30 32 34 36 Input Voltage (V)

Efficiency vs. Input Voltage

* ICE Technology

ICE (Innovation in Converter Excellence) uses state-of-the-art techniques to minimise internal power dissipation and to increase the internal temperature limits to extend the ambient operating temperature range to the maximum.

RPP30-2424D

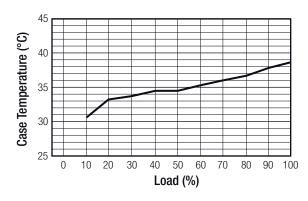
Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

REGULATIONS			
Parameter	Condition	Value	
Output Voltage Accuracy	50% load	±1.5% max.	
Line Voltage Regulation	low line to high line	±0.3% max.	
Load Voltage Regulation	10% to 100% load	±0.5% max.	
Cross Regulation	10% to 100% load	3% typ. / 5% max.	
Transient Response	25% load step change, $\Delta lo/\Delta t=2.5A/us$	800µs typ.	
Transient Peak Deviation	25% load step change, $\Delta lo/\Delta t=2.5A/us$	±2%Vout max.	

PROTECTION	۱S
------------	----

Parameter	Condition	Value
Output Power Protection (OPP) (2)	Hiccup Mode	120% typ.
Over Voltage Protection (OVP)	10% load	120% typ.
Over Temperature Protection (OTP)	case temperature	120°C, auto-recovery
Isolation Voltage	I/P to O/P, at 70% RH I/P to Case, O/P to Case	2250VDC / 1 Minute 1500VDC / 1 Minute
Isolation Resistance	I/P to O/P , at 70% RH	100MΩ min.
Isolation Capacitance	I/P to O/P	1500pF typ.


Note2: combines Over Load Protection and Short Circuit Protection

Note3: This Power Module is not internally fused. A input fuse must be always used. Recommended Fuse: T2.5A

ENVIRONMENTAL				
Parameter	Condition		Value	
Relative Humidity			95%, non condensing	
Temperature Coefficient			±0.04% / °C max.	
Thermal Impedance	natural convection, mounting at FR4 (254x254mm) PCB	vertical horizontal	4.6°C/W 6.4°C/W	
Operating Temperature Range	start up at -45°C		-45°C to (see calculation)	
Maximum Case Temperature			+115°C	
MTBF	according to MIL-HDBK-217F (+ according to BellCore-TR-332 (+	,	609 x 10 ³ hours 1541 x 10 ³ hours	

Derating Graph

 $(Ta = +25^{\circ}C, natural convection, typ. Vin and vertical mounting)$

continued on next page

RPP30-2424D

Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

Calculation

$$\begin{split} & \mathsf{R}_{\text{trcase-ambient}} = \ 4.6^{\circ}\text{C/W} \ (\text{vertical}) & \mathsf{T}_{\text{case}} = \ \text{Case Temperature} \\ & \mathsf{R}_{\text{trcase-ambient}} = \ 6.4^{\circ}\text{C/W} \ (\text{horizontal}) & \mathsf{T}_{\text{andent}} = \ \text{Environment Temperature} \\ & \mathsf{R}_{\text{trcase-ambient}} = \ \frac{\mathsf{T}_{\text{case}} - \mathsf{T}_{\text{ambient}}}{\mathsf{P}_{\text{dissipation}}} & \mathsf{P}_{\text{dissipation}} = \ 1 \text{Internal losses} \\ & \mathsf{P}_{\text{IN}} = \ 1 \text{Internal losses} \\ & \mathsf{P}_{\text{OUT}} = \ 0 \text{Utput Power} \\ & \mathsf{P}_{\text{OUT}} = \ 0 \text{Utput Power} \\ & \mathsf{P}_{\text{out}} = \ \text{Efficiency under given Operating Conditions} \\ & \mathsf{P}_{\text{dissipation}} = \ \mathsf{P}_{\text{IN}} - \mathsf{P}_{\text{OUT}} = \ \frac{\mathsf{P}_{\text{OUTapp}}}{\mathsf{\eta}} - \ \mathsf{P}_{\text{OUTapp}} \\ & \mathsf{R}_{\text{trcase-ambient}} = \ \text{Thermal Impedance} \end{split}$$

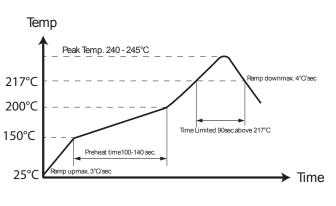
Practical Example:

Take the RPP30-2424D with 50% load. What is the maximum ambient operating temperature? Use converter vertical in application.

$$\begin{aligned} & \text{Eff}_{min} = 89\% @ V_{nom} \\ & P_{OUT} = 30W \\ & P_{OUTapp} = 30 \text{ x } 0.5 = 15W \\ & P_{dissipation} = \frac{P_{OUTapp}}{\eta} - P_{OUTapp} \\ & P_{dissipation} = \frac{P_{OUTapp}}{\eta} - P_{OUTapp} \\ & \eta = -88\% \text{ (from Eff vs Load Graph)} \\ & P_{dissipation} = \frac{15}{0.88} - 15 = 2.05W \end{aligned}$$

Soldering

Hand Soldering

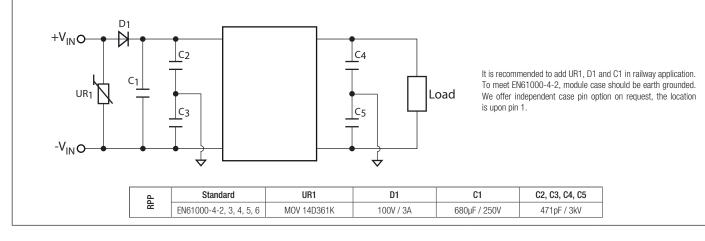

Hand Soldering is the least preferred method because the amount of solder applied, the time the soldering iron is held on the joint, the temperature of the iron and the temperature of the solder joint are variable.

The recommended hand soldering guideline is listed in Table 1. The suggested soldering process must keep the power module's internal temperature below the critical temperature of 217°C continuously.

Wave Soldering

High temperature and long soldering time will result in IMC layer increasing in thickness and thereby shorten the solder joint lifetime. Therefore the peak temperature over 245°C is not suggested due to the potential reliability risk of components under continuous high-temperature. In the meanwhile, the soldering time of temperature above 217°C should be less than 90 seconds. Please refer to the sol-dering profile below for recommended temperature profile parameters.

Table 1 Hand-Soldering Guideline				
Parameter	Single-side Circuit Boad	Double-side Circuit Board	Multi-layers Circuit Board	
Soldering Iron Wattage	90W	90W	90W	
Tip Temperature	385 ±10°C	420 ±10°C	420 ±10°C	
Soldering Time	2-6 seconds	4-10 seconds	4-10 seconds	

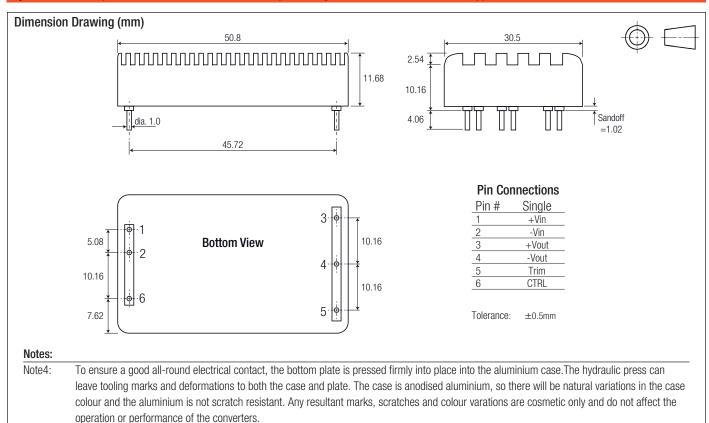

RPP30-2424D

Series

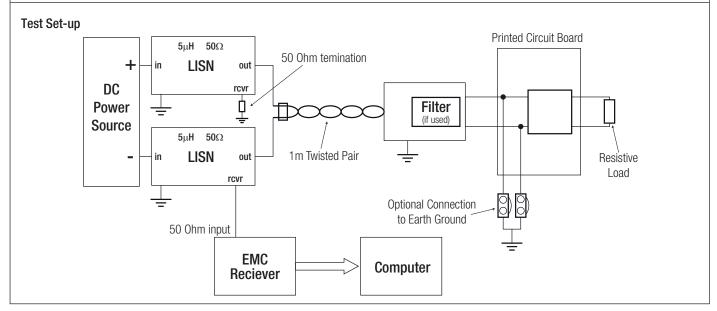
Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

Report Number	Standard
E224236	UL-60950-1, 1st Edition
Condition	Standard / Criterion
	EN55022, Class B
±8kV Air Discharge, ±6kV Contact Discharge	IEC61000-4-2, Criteria B
10V/m	IEC61000-4-3, Criteria A
±4kV Applied	IEC61000-4-4, Criteria B
±4kV Applied	IEC61000-4-5, Criteria B
10V rms	IEC61000-4-6, Criteria A
50-150Hz, along X, Y and Z	EN60068-2-6
12 cycles	EN60068-2-14
5g / 30ms	EN60068-2-27
	E224236 Condition ±8kV Air Discharge, ±6kV Contact Discharge 10V/m ±4kV Applied ±4kV Applied 10V rms 50-150Hz, along X, Y and Z 12 cycles

EMC Filtering - Suggestions



Parameter	Value
Material ⁽⁴⁾	Aluminium
Package Dimension (LxWxH)	50.8 x 30.5 x 12.7mm
Package Weight	39g


RPP30-2424D

Series

Specifications (measured @ ta= 25°C, nominal input voltage, full load and after warm-up)

INSTALLATION

PACKAGING INFORMATION			
Parameter	Туре	Value	
Packaging Dimension (LxWxH)	Tube	160.0 x 55.0 x 20.0mm	
Packaging Quantity		4 pcs	
Storage Temperature Range		-55°C to +125°C	

The product information and specifications are subject to change without prior notice. RECOM products are not authorized for use in safety-critical applications (such as life support) without RECOM's explicit written consent. A safety-critical application is defined as an application where a failure of a RECOM product may reasonably be expected to endanger or cause loss of life, inflict bodily harm or damage property. The buyer shall indemnify and hold harmless RECOM, its affiliated companies and its representatives against any damage claims in connection with the unauthorized use of RECOM products in such safety-critical applications.