iC-PT H-Series

Rev B2, Page 1/14

FEATURES

- Compact, high resolution incremental encoder ICs with up to 2048 CPR (native) and 8,192 CPR (interpolated)
- For code discs of $\varnothing 26 \mathrm{~mm}, \varnothing 33 \mathrm{~mm}, \varnothing 39 \mathrm{~mm}$
- Monolithic HD Phased Array with excellent signal matching
- Moderate track pitch for relaxed assembly tolerances
- Low-noise signal amplifiers with high EMI tolerance
- Pin-selectable operating modes: analog, comparated (x1), interpolated (x2, x4)
- Pin-selectable index gating: ungated (1 T), B-gated (0.5 T), AB-gated (0.25 T)
- Complementary quadrature outputs: A, B, Z and NA, NB, NZ
- Commutation signal outputs: U, V, W
- Short-circuit-proof, current-limited, +/-4 mA push-pull
- Analog signal output for ease of alignment and resolution enhancement by external interpolation
- LED power control with 40 mA high-side driver
- Low power consumption from single 3.5 V to 5.5 V supply
- Operating temperature range of $-40^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
- Evaluation kits with LED and code disc available for sampling

APPLICATIONS

- Incremental encoder
- Brushless DC motor commutation
- Industrial drives

PACKAGES

optoQFN32-5x5
$5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.9 \mathrm{~mm}$

BLOCK DIAGRAM

DESCRIPTION

The iC-PT H-series represents advanced optical encoder ICs featuring integrated photosensors arranged as an HD Phased Array, providing signal fidelity at relaxed alignment tolerances.

Its typical application are incremental encoders for motor speed control and commutation. To this end, the devices provide differential A / B tracks, a differential index track and three more tracks to generate block commutation signals.

Where the optical radius and the native cycles per revolution (CPR) are determined by the device version (refer to iC-PT26xxH, iC-PT33xxH, iC-PT39xxH details given further below), the adaption to the motor polecount is carried out by the code disc, for instance with 4 CPR and 90 degree phase shift to operate 4 -phase brushless motors ${ }^{1)}$.

Blue-enhanced photosensors allow the application of LEDs with short wavelenght leading to an outstanding jitter performance due to improved signal contrast (recommended LED: iC-TL46). However, for most devices the photosensors are IR compatible as well (recommended LED ${ }^{2)}$: iC-TL85).

Low-noise transimpedance amplifiers, arranged in a paired layout to ensure excellent channel matching, are used to convert the scanner's signals into voltages of several hundred millivolts ${ }^{3)}$.

Precision comparators with hysteresis generate the digital signals subsequently, either native or interpolated, which are then output by differential $\pm 4 \mathrm{~mA}$ push-pull drivers.

The built-in averaging LED power controller with its 40 mA driver permits a direct connection of the encoder LED. The received optical power is kept con-
stant regardless of aging effects or changes in temperature.

Various operating modes are selectable at multi-level input SEL ${ }^{4)}$: digital output with native (x1) or interpolated resolution (x2 or $x 4$), analog output or mixed analog/digital output; the latter combines an output of sine/cosine signals with comparated UVW commutation signals. During analog operation the amplified signal voltages are available at the outputs for inspection and monitoring of encoder assembly, or to feed external interplation circuits.

Index gating is also pin-selectable at input T14): the options are ungated, respectively T-gated if using interpolated output, B-gated and AB-gated.

All devices run at single-sided supplies from 3.5 V up to 5.5 V and feature a low power consumption.

iC-PT26xxH Series

Optical radius 11.0 mm , code disc $\varnothing 26.0 \mathrm{~mm}$; Native CPR: 256, 500, 1000, 1250, 1500.

iC-PT33xxH Series

Optical radius 14.5 mm , code disc $\varnothing 33.0 \mathrm{~mm}$;
Native CPR: 360, 500, 1000, 1024, 1250, 1500, 1800 CPR.
For 2000, 2048, and 2500 CPR refer to iC-PT33xxH Encoder blue ${ }^{\circledR}$ Series.

iC-PT39xxH Series

Optical radius 17.5 mm , code disc $\varnothing 39.0 \mathrm{~mm}$; Native CPR: 512, 1000, 1024, 2048.
${ }^{1}$) Standard on code discs available for sampling.
${ }^{2}$) Except for Encoder blue ${ }^{\circledR}$ series: iC-PT3320H, PT3348H, PT3325H.
${ }^{3}$) Operating point varies by device version and CPR.
${ }^{4}$) For ease of replacement, iC-PT H-Series pin functions are backwards compatible to iC-PT series ICs.

PACKAGING INFORMATION

CHIP LAYOUT

Chip layout example for chip release W2 and W3 featuring alignment markings.
Grey sections represent sensor layout areas;
fill factors vary.

Rev B2, Page 4/14

PIN CONFIGURATION oQFN32-5x5 ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$)

3231302928272625

PIN FUNCTIONS
No. Name Function
1 VCC +3.5 V...+5.5 V Supply Voltage
2 LED LED Controller, High-Side Current Source Output
3 PA Push-Pull Output A+ / Analog Sin+ ${ }^{1}$
4 NA Push-Pull Output A- / Analog Sin-
5 PB Push-Pull Output B+ / Analog Cos+
6 NB Push-Pull Output B- / Analog Cos-
7 PZ Push-Pull Output Z+ / Analog Z+
8 NZ Push-Pull Output Z- / Analog Z-
$9 . .16$ n.c. ${ }^{2}$
17 SEL Op. Mode Selection Input: 100\% VCC = x2 interpolated 75% VCC = ABZ analog, UVW digital 50% VCC (or pin open) $=$ all analog 25% VCC $=x 4$ interpolated 0% VCC $=x 1$ comparated (native res.)
18 W Push-Pull Output W / Analog W
19 TIN Negative Test Current Input ${ }^{3}$
$20 \mathrm{~V} \quad$ Push-Pull Output V / Analog V
21 TIP Positive Test Current Input ${ }^{3}$
22 U Push-Pull Output U / Analog U
23 T1 Index Gating Selection Input: $\mathrm{lo}=0.5 \mathrm{~T}$ (B-gated), hi $=1 \mathrm{~T}$ (ungated/T-gated), open $=0.25 \mathrm{~T}$ (AB-gated)
24 GND Ground
25.32 n.c.

BP Backside Paddle ${ }^{4}$

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);
${ }^{1}$ Capacitive pin loads must be avoided when using the analog output signals.
${ }_{2}^{2}$ Pin numbers marked n.c. are not connected.
${ }^{3}$ The test pins TIP and TIN may remain unconnected.
${ }^{4}$ Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.

PACKAGE DIMENSIONS

All dimensions given in mm. Tolerances of form and position according to JEDEC MO-220.
Positional tolerance of sensor pattern: $\pm 70 \mu \mathrm{~m} / \pm 1^{\circ}$ (with respect to center of backside pad).
G4: radius of chip center (refer to the relevant encoder disc and code description).
Maximum molding excess $+20 \mu \mathrm{~m} /-75 \mu \mathrm{~m}$ versus surface of glass/reticle.
dra_oqfn32-5x5-2_ptxxxxh_w2_pack_1, 10:1

iC-PT H-Series

6-CH. PHASED ARRAY OPTO ENCODERS

Rev B2, Page 6/14

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
G001	VCC	Voltage at VCC		-0.3	6	V
G002	I(VCC)	Current in VCC		-20	170	mA
G003	V()	Voltage at all Pins		-0.3	VCC + 0.3	V
G004	I()	Current in Output Pins PA, NA, PB, NB, PZ, NZ, U, V, W, TIP, TIN, SEL, T1		-20	20	mA
G005	I()	Current in LED		-120	20	mA
G006	Vd()	ESD Susceptibility, all pins	HBM, 100 pF discharged through $1.5 \mathrm{k} \Omega$		2	kV
G007	Tj	Junction Temperature		-40	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Operating conditions: VCC $=3.5 \ldots 5.5 \mathrm{~V}$

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
T01	Ta	Operating Ambient Temperature Range		-40		120	${ }^{\circ} \mathrm{C}$
T02	Ts	Permissible Storage Temperature Range		-40		120	${ }^{\circ} \mathrm{C}$
T03	Tpk	Soldering Peak Temperature	tpk < 20 s, convection reflow tpk < 20 s, vapor phase soldering MSL 5A (max. floor life 24 h at $30^{\circ} \mathrm{C}$ and 60% RH); Please refer to customer information file No. 7 for details.			$\begin{aligned} & 245 \\ & 230 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC $=3.5 \ldots 5.5 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}, \lambda_{\mathrm{LED}}=\lambda r=740 \mathrm{~nm}$, unless otherwise noted

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Total Device							
001	VCC	Permissible Supply Voltage		3.5		5.5	V
002	I(VCC)	Supply Current	photocurrents within op. range, no load		6		mA
Photosensors							
101	$\lambda \mathrm{ar}$	Spectral Application Range	$\mathrm{Se}(\lambda \mathrm{ar})=0.25 \times \mathrm{S}(\lambda \mathrm{pk})$	400		950	nm
Photocurrent Amplifiers							
201	Z()	Equivalent Transimpedance Gain	```Z = Vout() / Iph(), Tj= 27 }\mp@subsup{}{}{\circ}\textrm{C} for PA, PB, NA, NB for PZ,NZ for U, V, W```		$\begin{gathered} 0.5 \\ 1.25 \\ 2 \ldots 3.2 \end{gathered}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Analog Outputs: PA, NA, PB, NB, PZ, NZ, U, V, W							
301	Vout()mx	Permissible Maximum Output Voltage		1.8			V
303	Vout()ac	AC Signal Level	$\begin{aligned} & \text { LED iC-TL85 } \\ & \text { LED iC-TL46 } \end{aligned}$		$\begin{array}{\|l\|} \hline 0.2 \ldots 0.4 \\ 0.3 \ldots 0.5 \end{array}$		Vpp Vpp
304	Vout()d	Dark Signal Level	l()$<10 \mu \mathrm{~A}$	560	770	985	mV
305	Ri()	Output Resistance		250	750	2250	Ω
306	Isc()hi	Short-Circuit Current hi	SEL open, load current to ground	500	1000	1700	$\mu \mathrm{A}$
307	Isc()lo	Short-Circuit Current lo	SEL open, load current to IC	50	85	130	$\mu \mathrm{A}$
Comparators							
401	Vt()hys	Switch Hysteresis			24		mV
LED Power Control							
501	lop()	LED Output Current Control Range		0		40	mA
502	Ictrl()	Controlled LED Output Current	refer to Table 5 for details		5... 12		mA
503	Vs() hi	Saturation Voltage hi	Vs() $\mathrm{hi}=\mathrm{VCC}-\mathrm{V}(\mathrm{LED}) ; \mathrm{I}()=-40 \mathrm{~mA}$			0.6	V
504	Isc()hi	Short-Circuit Current hi	V()$=0 \mathrm{~V}$	-150		-50	mA
Digital Outputs: PA, NA, PB, NB, PZ, NZ, U, V, W							
601	fout	Maximum Output Frequency	x1 comparated (native resolution) x2 interpolated x4 interpolated	$\begin{gathered} \hline 400 \\ 800 \\ 1600 \\ \hline \end{gathered}$			kHz kHz kHz
602	AArel	AB Duty Cycle Variation	AC signal according to item 303, comparated or interpolated, see Figure 1	-10		10	\%
603	Vs()lo	Saturation Voltage lo	l()$=4 \mathrm{~mA}$			0.6	V
605	Isc()lo	Short-Circuit Current lo	V()$=\mathrm{VCC}$	7		70	mA
606	Vs() hi	Saturation Voltage hi	Vs() $\mathrm{hi}=\mathrm{VCC}-\mathrm{V}(), \mathrm{l}()=-4 \mathrm{~mA}$			0.6	V
608	Isc()hi	Short-Circuit Current hi	V()$=0 \mathrm{~V}$	-70		-7	mA
Operating Mode Selection Input: SEL							
701	Vmod()	Mode Selection (see Figure 2)	```x2 interpolated analog ABZ, digital UVW all analog x4 interpolated x1 comparated (native resolution)```	$\begin{gathered} 95 \\ 70 \\ 45 \\ 20 \\ 0 \end{gathered}$		$\begin{gathered} 100 \\ 80 \\ 55 \\ 30 \\ 5 \end{gathered}$	\%VCC \%VCC \%VCC \%VCC \%VCC
702	Vmod()hys	Hysteresis			10		\%VCC
704	V 0 ()	Pin-Open Voltage		45	50	55	\%VCC
705	$\operatorname{Rpd}()$	Pull-Down Resistor	$\mathrm{V}(\mathrm{SEL})=\mathrm{VCC}$	65			k Ω
706	Rpu()	Pull-Up Resistor	$V(S E L)=0 \mathrm{~V}$	65			$\mathrm{k} \Omega$
Index Gating Selection Input: T1							
801	Vgate()	Gating Selection (see Figure 3)	$\begin{aligned} & \text { ungated (1 T with interpolation) } \\ & \text { AB-gated }(0.25 \mathrm{~T}) \\ & \text { B-gated }(0.5 \mathrm{~T}) \\ & \hline \end{aligned}$	$\begin{gathered} 82 \\ 32 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ 68 \\ 18 \\ \hline \end{gathered}$	
802	Vgate()hys	Hysteresis			10		\%VCC
803	VO()	Pin-Open Voltage	for index length 0.25 T (AB-gated)	45	50	55	\%VCC
804	Rpd()	Pull-Down Resistor	$\mathrm{V}(\mathrm{T} 1)=\mathrm{VCC}$	65			$\mathrm{k} \Omega$

Rev B2, Page 8/14

ELECTRICAL CHARACTERISTICS

Operating conditions: VCC $=3.5 \ldots 5.5 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 125^{\circ} \mathrm{C}, \lambda_{\mathrm{LED}}=\lambda \mathrm{r}=740 \mathrm{~nm}$, unless otherwise noted

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
805	Rpu()	Pull-Up Resistor	$\mathrm{V}(\mathrm{T} 1)=0 \mathrm{~V}$	65			$k \Omega$
Test Inputs: TIP, TIN							
Z101	Ipd()	Pull-Down Current	test mode not active, V()$=0.4 \mathrm{~V}$	60	100		$\mu \mathrm{A}$
Z102	$\mathrm{lt}($)on	Test Mode Activation Threshold			130	190	$\mu \mathrm{A}$
Z103	V ()test	Test Pin Operating Voltage	test mode active, I()$=200 \mu \mathrm{~A}$		1.5		V
Z104	l()test	Permissible Test Current	test mode active	10		1000	$\mu \mathrm{A}$
Z105	CR()	Current Ratio l()test/lph()	test mode active, I()$=200 \mu \mathrm{~A}$		1000		

ELECTRICAL CHARACTERISTICS: Diagrams

Figure 1: Definition of $A B$ duty cycle variation.

Figure 2: Operating mode selection at pin SEL.

Figure 3: Index gating selection at pin T 1 .

Rev B2, Page 9/14
DIGITAL OUTPUT SIGNALS

Figure 4: Encoder quadrature signals and motor commutation signals.
iC-PT H-series devices determine the optical radius and the native cycles per revolution for the quadrature outputs by its phased array design.

The U, V, W commutation signals can be configured independently of the device: the pulse count, period length and phase shift is determined by the code disc.

Standard code discs available for sampling provide 4 CPR each for U/V/W, with a period length of 90 degrees (C). A phase shift of 0 degrees (φ) between U and Z edges must be considered during alignment. Ideally, the rising edge of U meets the index Z.

For detailed specifications, refer to the relevant code disc datasheets, available separately.

ANALOG OUTPUT SIGNALS

Figure 5: Example of analog ABZ / analog UVW (pin SEL = 50\% VCC)

The iC-PT H-series features 5 principle operation modes which are selectable by the voltage applied to pin SEL. A voltage divider as suggested by Table 4 is the easiest way to obtain this.

SEL	R1 11	R2 11	Operation Mode
100% VCC	0Ω	open	x2 interpolated ABZ digital UVW
$75 \% \mathrm{VCC}$	$2.7 \mathrm{k} \Omega$	$8.2 \mathrm{k} \Omega$	analog ABZ digital UVW
$50 \% \mathrm{VCC}$	$4.7 \mathrm{k} \Omega$ (open)	$4.7 \mathrm{k} \Omega$ (open)	analog ABZ analog UVW
$25 \% \mathrm{VCCC}$	$8.2 \mathrm{k} \Omega$	$2.7 \mathrm{k} \Omega$	$\mathrm{x4}$ interpolated ABZ digital UVW
0% VCC	open	0Ω	x1 comparated ABZ digital UVW
1) Exemplary values.			

Table 4: Selection of operation mode by pin SEL.

Figure 6: Example of analog ABZ / digital UVW (pin SEL = 75\% VCC)

If input SEL is left open, the IC biases its input at 50% VCC and analog output signals are available for test and alignment.

Analog output signals may also be used to increase the encoder's resolution by connecting an external interpolation IC. In this case the analog signals are required permanently, so that noise immunity should be improved by wiring pin SEL to an external reference providing VCC/2.

Setting 75% VCC may be considered to obtain analog signals at PA/PB/PZ and NA/NB/NZ outputs feeding the external interpolation IC, together with digital signals at U/V/W directly connecting a line driver. Special attention to the PCB layout should be paid to avoid cross talk; analog and digital lines should be separated carefully.

INDEX GATING AND INTERPOLATION

Figure 7: Ungated index (T1 = high),
x1 comparated (SEL = low).

Figure 8: B-gated index ($\mathrm{T} 1=$ low), x1 comparated (SEL = low).

Figure 9: AB-gated index ($\mathrm{T} 1=$ open or $\mathrm{VCC} / 2$), x1 comparated (SEL = low).

Figure 10: T-gated index (T1 = high), x2 interpolated (SEL = high).

Figure 11: B-gated index (T1 = low), x2 interpolated (SEL = high).

Figure 12: AB-gated index (T1 = open or VCC/2), x2 interpolated (SEL = high).

Figure 13: T-gated index (T1 = high), x4 interpolated (SEL = 25\% VCC).

Figure 14: B-gated index (T1 = low) $x 4$ interpolated (SEL $=25 \%$ VCC).

Figure 15: AB-gated index ($\mathrm{T} 1=$ open or VCC/2) x4 interpolated (SEL = 25% VCC).

DEVICE OVERVIEW

| Device | CPR
 native | Code Disc
 P/O Code | Permissible | Typ. LED Current | Comments |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CC-TL85 | Mat-TL46 | | | | |

$\varnothing 26$ Series

iC-PT2656H	250	PT16FS 26-250_4	film 2	96,000			
	256	PT14HFS 26-256_4 PT14FS 26-256_4	film film				

$\varnothing 33$ Series

iC-PT3304H	360	PT23HFS 33-360_4	film	66,000				
iC-PT3350H	500	PT29HS 33-500_4	glass	48,000				
iC-PT3310H	1000	$\begin{aligned} & \text { PT02HFS 33-1000_4 } \\ & \text { PT02S 33-1000_3 } \end{aligned}$	film glass 2	24,000	9 mA	6 mA		
iC-PT3324H	1024	$\begin{aligned} & \text { PT03HFS 33-1024_4 } \\ & \text { PT03S 33-1024_3 } \end{aligned}$	film glass 2	23,200	9 mA	7 mA		
iC-PT3313H	1250	$\begin{aligned} & \text { PT01HFS 33-1250_4 } \\ & \text { PT01S 33-1250_3 } \end{aligned}$	film glass 2	19,200	9 mA	6 mA		
iC-PT3315H	1500	PT25HFS 33-1500_4	film	16,000				
iC-PT3318H	1800	PT26HFS 33-1800_4	film	13,300				
iC-PT3320H ${ }^{3}$	2000							
iC-PT3348H ${ }^{3}$	2048							
iC-PT3325H ${ }^{3}$	2500							

$\varnothing 39$ Series
$\left.\begin{array}{|l|r|l|r|r|r|r|}\hline \text { iC-PT3912H } & 512 & \begin{array}{l}\text { PT18HFS 39-512_4 } \\ \text { PT18S 39-512_4 }\end{array} & \begin{array}{l}\text { film } \\ \text { glass }^{2}\end{array} & 46,800 & 8 \mathrm{~mA} & 5 \mathrm{~mA}\end{array}\right]$
${ }^{1}$ Controlled LED output current of IC (DC average); according to Elec. Char. No. 502.
${ }^{2}$ Code disc design made for iC-PTxx series.
${ }^{3}$ Refer to iC-PT33xxH Encoder blue ${ }^{\circledR}$ Series datasheet available separately.
Table 5: Device overview (availability on request).

Rev B2, Page 12/14

TEST MODE

Figure 16: Output states during test mode (SEL = low: x1 comparated)

State	$\mathrm{I}(\mathrm{TIP})$	Wiring Instruction		
OFF	$\mathrm{I}(\mathrm{TIP}) \leq 10 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \leq 10 \mu \mathrm{~A}$	Normal operation	
S1	$\mathrm{I}(\mathrm{TIP}) \geq 190 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \geq 190 \mu \mathrm{~A}$	Test mode activation	Pull-up TIP and TIN by $10 \mathrm{k} \Omega$ each to 5 V.
S2	$\mathrm{I}(\mathrm{TIP}) \approx 300 \mu \mathrm{~A}) \approx 700 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \approx 300 \mu \mathrm{~A}$	(low-level at PA, PB) $) \approx 300 \mu \mathrm{~A}$	Force high-level at PA
S3	$\mathrm{I}(\mathrm{TIP}) \approx 700 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \approx 700 \mu \mathrm{~A}$	Force high-level at PA, PB, PZ	Add pull-up to TIP of $4.7 \mathrm{k} \Omega$ to 5 V.
S4	$\mathrm{I}(\mathrm{TIP}) \approx 300 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \approx 700 \mu \mathrm{~A}$	Keep high-level at PB (and PZ if B-gated)	Disconnect 4k7 pull-up from TIP.
S5	$\mathrm{I}(\mathrm{TIP}) \approx 300 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \approx 300 \mu \mathrm{~A}$	(low-level at all outputs)	Disconnect 4k7 pull-up from TIN.
OFF	$\mathrm{I}(\mathrm{TIP}) \leq 10 \mu \mathrm{~A}$	$\mathrm{I}(\mathrm{TIN}) \leq 10 \mu \mathrm{~A}$	Normal operation	All pull-ups removed.

Table 6: Selection of output states.

DESIGN REVIEW: Notes On Chip Functions

PTxxxxH	Chip release W	
No.	Function, Parameter/Code	Description and Application Hints
		Refer to former datasheet release A3, 2014.

Table 7: Design review

PTxxxxH	Chip release W1, W2, W3	
No.	Function, Parameter/Code	Description and Application Hints
		None at time of printing.

Table 8: Design review

APPLICATION NOTES

Application notes for iC-PT H-series devices are available separately.

REVISION HISTORY

Rel.	Rel. Date ${ }^{1}$	Chapter	Modification	Page
A2	$2014-11-06$	\ldots	Initial release	all

Rel.	Rel. Date	Chapter	Modification	
A3	$2014-12-19$	\ldots	Exclusion of Encoder blue series (re. Features, Description, Elec.Char. 302, Table 5)	1,2,6,10

Rel.	Rel. Date ${ }^{1}$	Chapter	Modification	Page
B1	2016-08-01	PACKAGING INFORMATION	Chip layout supplemented, update of drawings (chip rel. W2)	
		ELECTRICAL CHARACTERISTICS	Adaptions for chip releases W1, W2: Item 201: typ. UVW gain, item 303: min. value Block Z supplemented for test inputs	
		TEST MODE	New chapter added	

Rel.	Rel. Date 1	Chapter	Modification	Page
B2	$2018-10-10$	DESCRIPTION	Native CPR of 500 added (for iC-PT3350H)	2
		ABSOLUTE MAXIMUM RATINGS	Redundant G008 (Ts) deleted	6
		ELECTRICAL CHARACTERISTICS	Figure 2 updated	8
	DEVICE OVERVIEW	PT3350H added; P/O code corrected for PT01S, PT02S, PT03S glass discs; Listing extended to Encoder blue ${ }^{\text {P }}$ devices	11	
		DESIGN REVIEW: Notes On Chip Functions	Updated to include chip rel. W3, and exclude chip rel. W	12

[^0][^1]
ORDERING INFORMATION

Type	Package	Options	Order Designation
iC-PTnnnnH	32-pin optoQFN, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, 0.9 mm thickness RoHS compliant	nnnn = device version	iC-PTnnnnH oQFN32-5x5
Code Disc	film disc 0.18 mm	$\mathrm{nn}=$ design number $\mathrm{aa}=$ diameter xxxx = AB pulse count ID u = UVW pulse count ID	PTnnHFS aa-xxxx_u
Evaluation Kit	Kit with Scanner Module IC273 (61 mm x 64 mm), LED Module IC274 and Code Disc	nnnn = device version	iC-PTnnnn EVAL IC273
Illumination	Infrared LED module ($28 \mathrm{~mm} \times 29 \mathrm{~mm}$)	assembled with iC-SD85 (850 nm)	iC-SD85 EVAL IC274
	Blue LED module ($28 \mathrm{~mm} \times 29 \mathrm{~mm}$)	assembled with iC-TL46 (460 nm)	iC-TL46 EVAL IC274
Mother Board	Adapter PCB ($80 \mathrm{~mm} \times 110 \mathrm{~mm}$)	incl. ribbon cable	iC277 EVAL IC277

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35-92 92-692
E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	Tel.: $+49(0) 6135-9292-0$
Am Kuemmerling 18	Fax: $+49(0) 6135-9292-192$
D-55294 Bodenheim	Web: http://www.ichaus.com
GERMANY	E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners

[^0]: iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.

 The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.
 No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
 iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.
 iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

 Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

[^1]: ${ }^{1}$ Release Date format: $Y Y Y Y-M M-D D$

