Dual Channel Synchronous Buck DC/DC Converter

Description

The SD8911 is a high efficiency synchronous, dual channel PWM step-down DC/DC converter working under an input voltage range of 2.5 V to 5.5 V . It integrates two PWM synchronous step-down DC-DC converters. 100% duty cycle capability extends battery life in portable devices, while the quiescent current (one channel) is $200 \mu \mathrm{~A}$ with no load, and drops to $<1 \mu \mathrm{~A}$ in shutdown.

Each DC-DC converter has independent enable input and short-circuit protection allowing versatile power sequence combination.

The SD8911 converters are available in the industry standard DFN3*3-10L packages (or upon request).

Applications

> Digital cameras and MP3
> Palmtop computers / PDAs
> Cellular phones
> Wireless handsets and DSL modems
> Portable media players
> PC cards

Order Information

SD8911-(1) (2):

Symbol	Description
(1)	Denotes Output Voltage: A : Adjustable Output
(2)	Denotes Package Types: J: DFN3*3-10L

Typical Application Circuit

*Adjustable Output Voltage: $\mathrm{V}_{\text {OUT1 }}=0.6 \mathrm{~V} \cdot[1+(\mathrm{R} 1 / \mathrm{R} 2)] ; \mathrm{V}_{\text {OUT2 }}=0.6 \mathrm{~V} \cdot[1+(\mathrm{R} 3 / \mathrm{R} 4)]$.

Model	VOUT (V)	VIN(V)	Package
SD8911-AJ	$0.6 \sim 5.5$	$2.5 \sim 5.5$	DFN3*3-10L

Pin Assignment and Description

	$\begin{aligned} & \text { SW1 } \\ & \text { GND } \\ & \text { VIN1 } \\ & \text { FB2 } \\ & \text { EN2 } \end{aligned}$	PIN	NAME	DESCRIPTION
		1	EN1	ON/OFF Control 1 (High Enable)
		2	FB1	Output feedback 1
		3	VIN2	Input 2
		4	GND	Ground
		5	SW2	Switch Output 2
		6	EN2	ON/OFF Control 2 (High Enable)
		7	FB2	Output feedback 2
		8	VIN1	Input 1
		9	GND	Ground
		10	SW1	Switch Output 1

Absolute Maximum Ratings (Note 1)


```
> VIN ....................................................................................0.3V ~ +6V
```



```
> }\mp@subsup{V}{SW}{}\ldots\ldots\ldots\ldots........................................................................0.3V ~ (VIN +0.3)V
```



```
> Operating Temperature Range (Note 2)............................................40.4.
> Storage Temperature Range ......................................................... 
```



```
> Lead Temperature (Soldering 10 sec.) .......................................................................... 
```

Note 1: Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2: The SD8911 is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

Electrical Characteristics (VOUT1 or VOUT2)

Operating Conditions: $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{I}}=3.6 \mathrm{~V}$, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V ${ }_{\text {OUT 1,2 }}$	Output Voltage		0.6		5.5	V
$\mathrm{V}_{\text {IN }}$	Operating Voltage Range		2.5		5.5	V
I_{Q}	Quiescent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{FB}}=0.5 \mathrm{~V} \text { or } \mathrm{V}_{\text {OUT }}=90 \%, \\ & \mathrm{I}_{\text {LOAD }}=0 \mathrm{~A} \end{aligned}$		200		$\mu \mathrm{A}$
$I_{\text {SHDN }}$	Shutdown Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.2 \mathrm{~V}$		0.1	1	$\mu \mathrm{A}$
$V_{\text {FB }}$	Regulated Voltage	$\mathrm{TA}=25^{\circ} \mathrm{C}$	0.588	0.6	0.612	V
$\Delta \mathrm{V}_{\mathrm{FB}}$	$\mathrm{V}_{\text {REF }}$	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$		0.03	0.4	\%/V
$\mathrm{I}_{\text {FB }}$	Feedback Current				± 30	nA
fosc	Oscillator Frequency	$\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}$ or $\mathrm{V}_{\text {OUT }}=100 \%$		1		MHz
$\mathrm{R}_{\text {PFET }}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of P-Channel FET	$\mathrm{I}_{\text {SW }}=100 \mathrm{~mA}$		0.3		Ω
$\mathrm{R}_{\text {NFET }}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of N -Channel FET	$\mathrm{I}_{\text {SW }}=-100 \mathrm{~mA}$		0.39		Ω
$\Delta \mathrm{V}_{\text {LINE }}$	V out Line Regulation	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$		0.03	0.3	\%/V
$\Delta \mathrm{V}_{\text {LOAD }}$	V out Load Regulation			0.33		\%
EFFI	Efficiency	When connected to ext. components, $\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{EN}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA} \end{aligned}$		94		\%

Typical Performance Characteristics (VOUT1 or VOUT2)

Efficiency vs. Output Current
(Vout=2.5V)

Output Voltage vs. Load Current (Vin=3.6V,Vout=1.2V)

Output Voltage vs. Load Current
(Vin=4.2V,Vout=1.8V)

Output Voltage vs. Load Current (Vin=3.6V,Vout=2.5V)

Switching node \& output wave (Vin=5V, Vout=1.8V, lout=200mA)

Tek $\quad N^{\prime} L_{m} \quad$ Stop M Pos: $-1.6000 \mu 5$

$\mathrm{CH} 220.0 \mathrm{~m} W \mathrm{EW} \mathrm{M} 5.00 \mathrm{\mu s}$

Switching node \& output wave (Vin=5V, Vout=1.8V, Iout=800mA)

Pin Functions

EN1 (Pin 1): En Control Input. Forcing this pin above 1.3V enables the VOUT1. Forcing this pin below 0.7 V can shuts down the VOUT1. In shutdown, all functions are disabled drawing $<1 \mu \mathrm{~A}$ supply current. Do not leave EN1 floating.

FB1 (Pin 2): Output Feedback 1. Receive the feedback voltage from an external resistive divider across the output 1. The output voltage is set by a resistive divider according to the following formula: $\mathrm{V}_{\mathrm{OUT} 1}=$ $0.6 \mathrm{~V} \cdot[1+(\mathrm{R} 1 / \mathrm{R} 2)]$.

VIN2 (Pin 3): Supply Pin for VOUT2. It must be closely decoupled to GND, or with a $10 \mu \mathrm{~F}$ or greater ceramic capacitor.

GND (Pin 4, 9): Ground Pin.
SW2 (Pin 5): Switch Node for VOUT2 Connection to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.

EN2 (Pin 6): En Control Input. Forcing this pin above 1.3 V enables the VOUT2. Forcing this pin below 0.7 V can shuts down the VOUT2. In shutdown, all functions are disabled drawing <1 $\mu \mathrm{A}$ supply current. Do not leave EN2 floating.

FB2 (Pin 7): Output Feedback 2. Receive the feedback voltage from the external resistive divider across the output. The output voltage is set by a resistive divider according to the following formula: $\mathrm{V}_{\text {OUT2 }}=0.6 \mathrm{~V} \cdot[1+(\mathrm{R} 3 / \mathrm{R} 4)]$.

VIN1 (Pin 8): Supply Pin for VOUT1. It must be closely decoupled to GND, or with a $10 \mu \mathrm{~F}$ or greater ceramic capacitor.

SW1 (Pin 10): Switch Node for VOUT1 Connection to Inductor. This pin connects to the drains of the internal main and synchronous power MOSFET switches.

Block Diagram

Application Information

The basic SD8911 application circuit is shown in Typical Application Circuit. External component selection is determined by the maximum load current and begins with the selection of the inductor value and operating frequency followed by C_{IN} and $\mathrm{C}_{\text {out }}$.

Inductor Selection

For most applications, the value of the inductor will fall in the range of $1 \mu \mathrm{H}$ to $4.7 \mu \mathrm{H}$. Its value is chosen based on the desired ripple current. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ also increases the ripple current as shown in equation. A reasonable starting point for setting ripple current is $\triangle I_{L}=320 \mathrm{~mA}(40 \%$ of 800 mA$)$.

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{1}{(\mathrm{f})(\mathrm{L})} \mathrm{V}_{\mathrm{OUT}}\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 960 mA rated inductor should be enough for most applications $(800 m A+160 m A)$. For better efficiency, choose a low DC-resistance inductor.

Different core materials and shapes will change the size/current and price/current relationship of an inductor. Toroid or shielded pot cores in ferrite or perm alloy materials are small and don't radiate much energy, but generally cost more than powdered iron core inductors with similar electrical characteristics. The choice of which style inductor to use often depends more on the price vs. size requirements and any radiated field/EMI requirements than on what the SD8911 requires to operate.

Output and Input Capacitor Selection

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle $\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$. To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

$$
\mathrm{C}_{\text {IN }} \text { required } \mathrm{I}_{\mathrm{RMS}} \cong \mathrm{I}_{\mathrm{OMAX}} \frac{\left[\mathrm{~V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)\right]^{1 / 2}}{\mathrm{~V}_{\text {IN }}}
$$

This formula has a maximum at $\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\text {OUT }}$, where $\mathrm{I}_{\mathrm{RMS}}=\mathrm{l}_{\mathrm{OUT}} / 2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer's ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Always consult the manufacturer if there is any question.

The selection of Cout is driven by the required effective series resistance (ESR).Typically, once the ESR requirement for $C_{\text {Out }}$ has been met, the RMS current rating generally far exceeds the $I_{\text {RIPPLE(P-P) }}$ requirement. The output ripple $\Delta \mathrm{V}_{\text {OUT }}$ is determined by:

$$
\Delta \mathrm{V}_{\text {OUT }} \cong \Delta \mathrm{I}_{\mathrm{L}}\left(\mathrm{ESR}+\frac{1}{8 \mathrm{fC} \mathrm{C}_{\text {OUT }}}\right)
$$

Where $f=$ operating frequency, $C_{\text {OUT }}=$ output capacitance and $\Delta L_{L}=$ ripple current in the inductor. For a fixed output voltage, the output ripple is highest at maximum input voltage since ΔI_{L} increases with input voltage.

Aluminum electrolytic and dry tantalum capacitors are both available in surface mount configurations. In the case of tantalum, it is critical that the capacitors are surge tested for use in switching power supplies. An excellent choice is the AVX TPS series of surface mount tantalum. These are specially constructed and tested for low ESR so they give the lowest ESR for a given volume. Other capacitor types include Sanyo POSCAP, Kemet T510 and T495 series, and Sprague 593D and 595D series. Consult the manufacturer for other specific recommendations.

Efficiency Considerations

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Efficiency can be expressed as: Efficiency $=100 \%$ - (L1+ $\mathrm{L} 2+\mathrm{L} 3+\ldots$...) where $\mathrm{L} 1, \mathrm{~L} 2$, etc. are the individual losses as a percentage of input power. Although all dissipative elements in the circuit produce losses, two main sources usually account for most of the losses: VIN quiescent current and $I^{2} R$ losses. The VIN quiescent current loss dominates the efficiency loss at very low load currents whereas the $I^{2} R$ loss dominates the efficiency loss at medium to high load currents. In a typical efficiency plot, the efficiency curve at very low load currents can be misleading since the actual power lost is of no consequence.

1. The VIN quiescent current is due to two components: the DC bias current as given in the electrical characteristics and the internal main switch and synchronous switch gate charge currents. The gate charge current results from switching the gate capacitance of the internal power MOSFET switches. Each time the gate is switched from high to low to high again, a packet of charge $\triangle Q$ moves from VIN to ground. The resulting $\triangle Q / \Delta t$ is the current out of VIN that is typically larger than the DC bias current. In continuous mode, $I_{G A T E C H G}=f\left(Q_{T}+Q_{B}\right)$ where Q_{T} and Q_{B} are the gate charges of the internal top and bottom switches. Both the DC bias and gate charge losses are proportional to VIN and thus their effects will be more pronounced at higher supply voltages.
2. $I^{2} R$ losses are calculated from the resistances of the internal switches, $R_{s w}$ and external inductor R_{L}. In continuous mode the average output current flowing through inductor L is "chopped" between the main switch and the synchronous switch. Thus, the series resistance looking into the SW pin is a function of both top and bottom MOSFET $R_{D S(O N)}$ and the duty cycle (DC) as follows: $R_{S W}=R_{D S(O N) T O P} x$ $\mathrm{DC}+\mathrm{R}_{\mathrm{DS}(\text { ON)вот }} \mathrm{X}(1-\mathrm{DC})$ The $\mathrm{R}_{\mathrm{DS}(\text { ON }}$ for both the top and bottom MOSFETs can be obtained from the Typical Performance Characteristics curves. Thus, to obtain $I^{2} R$ losses, simply add $R_{S w}$ to R_{L} and multiply the result by the square of the average output current. Other losses including $\mathrm{C}_{\mathbb{N}}$ and $\mathrm{C}_{\text {Out }} \mathrm{ESR}$ dissipative losses and inductor core losses generally account for less than 2% of the total loss.

PCB Layout Guidelines

When laying out the printed circuit board, the following checklist should be used to ensure proper operation of the SD8911. Check the following in your layout:

1. The power traces, consisting of the GND trace, the SW1,SW2 trace and the VIN1,VIN2 trace should be kept short, direct and wide.
2. Put the input capacitor as close as possible to the device pins (VIN and GND).
3. SW1, SW2 node is with high frequency voltage swing and should be kept small area. Keep analog components away from SW1, SW2 node to prevent stray capacitive noise pick-up.
4. Connect all analog grounds to a command node and then connect the command node to the power ground behind the output capacitors.
5. Keep the (-) plates of C_{IN} and $\mathrm{C}_{\text {OUt }}$ as close as possible.

Packaging Information

DFN3*3-10L Package Outline Dimension

Top View

Bottom Vlew

Slde Vlew

Symbol	Dimensions In Millimeters		Dimensions In Inches						
	Min	Max	Min	Max					
A	$0.700 / 0.800$	$0.800 / 0.900$	$0.028 / 0.031$	$0.031 / 0.035$					
A1	0.000	0.050	0.000	0.002					
A2	0.153	0.253	0.006	0.010					
D	2.900	3.100	0.114	0.122					
E	2.900	3.100	0.114	0.122					
D1	1.600	1.800	0.063	0.071					
E1	2.300	2.500	0.091	0.098					
k	$0.200 M I N$			0.008 MIN					
b	0.200	0.300	0.008	0.012					
e	0.500 TYP							0.020 TYP	
L	0.300	0.500	0.012	0.020					

