

Current Transducer LA 125-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 125 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current			125			Α
I _P	Primary current, measuring range			0 ± 200			Α
$\dot{R}_{_{M}}$	Measuring resistance @		$T_A = 1$	70°C	T _A =	85°C	
141			\mathbf{R}_{Mmin}^{n}	$\mathbf{R}_{\mathrm{Mmax}}$	R _{M min} I	R _{Mmax}	
	with ± 12 V	@ \pm 125 A _{max}	5	52	14	50	Ω
		@ ± 200 A max	5	20	14	18	Ω
	with ± 15 V	@ ± 125 A max	25	74	40	72	Ω
		@ $\pm 200 A_{max}$	25	34	401)	40 1)	Ω
$I_{_{\mathrm{SN}}}$	Secondary nominal r.m.s. current			12	5		mΑ
K _N	Conversion ratio			1:	1000		
V _c	Supply voltage (± 5 %)			± 1	215		V
I _c	Current consumption			16	(@ ±15	V)+ I s	mΑ
V _d	R.m.s. voltage for AC iso	plation test, 50 Hz, 1	mn	3		Ü	kV

Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_A = 25$ °C	@ ± 15 V (± 5 %)	± 0.60		%
		@ ± 12 15 V (± 5 %)	± 0.80		%
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity error		< 0.15		%
			Тур	Max	
I_{\circ}	Offset current @ $I_P = 0$, $T_A =$	25°C		± 0.40	mΑ
I _{OM}	Residual current ²⁾ @ $\mathbf{I}_{p} = 0$,	after an overload of 3 x I _{PN}		± 0.50	mΑ
I _{OT}	Thermal drift of Io	0°C + 70°C	± 0.15	± 0.50	mΑ
	-	- 40°C + 85°C	± 0.30	± 0.95	mΑ
t _{ra}	Reaction time @ 10 % of Ip	N	< 500		ns
t,	Response time 3) 4) @ 90 %	of I _{PN}	< 1		μs
di/dt	di/dt accurately followed4)		> 200		A/µs
f	Frequency bandwidth 4) (- 1	dB)	DC 1	00	kHz

General data

T _A	Ambient operating temperature		- 40 + 85	°C
$T_{\rm s}$	Ambient storage temperature		- 40 + 90	°C
$\mathbf{R}_{\mathrm{s}}^{\mathrm{T}}$	Secondary coil resistance @	$T_A = 70^{\circ}C$	32	Ω
-		$T_A = 85^{\circ}C$	33.5	Ω
m	Mass		40	g
	Standards		EN 50178 : 1997	

Notes: 1) Measuring range limited to ± 180 A max

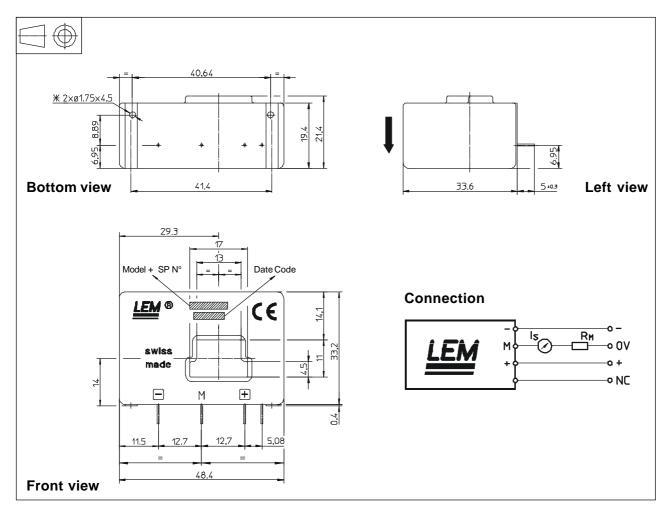
- 2) The result of the coercive field of the magnetic circuit.
- 3) With a di/dt of 100 A/µs
- ⁴⁾ The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer.

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060213/10

Dimensions LA 125-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 0.2 mm
 Primary through-hole 17 x 11 mm
 Fastening & connection of secondary A pins 0.63 x 0.56 mm
 Recommended PCB hole 0.9 mm

Supplementary fastening
 Recommended PCB hole
 Recommended screws
 2 holes Ø 1.75 mm
 2.4 mm
 PT KA 22 x 6

Fastening torque, max. P1 KA 22 X 6

0.5 Nm or .37 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C.
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060213/10