

FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

16 路双缓存恒流输出 LED 驱动芯片

概述

FM6126QC 是一款专为 LED 模块和显示器设计的驱动 IC, 具有 16 路恒定的电流输出驱动能力。FM6126QC 是一款专为 LED 显示屏设计的驱动 IC, 采用 16 路恒流灌电流输出。FM6126QC 采用了"输出钳位"专利技术,可以有效消除第一行偏暗现象,同时可以防止灯珠损坏。同时 FM6126QC 具有极佳的抗干扰特性,恒流及低灰效果不受 PCB 板的影响。并可选用不同的外挂电阻对输出级电流大小进行调节,精确控制 LED 的发光亮度。 FM6126QC 内部采用了电流精确控制技术,可使片间误差 低于±3.0%,通道间误差低于±2.0%

FM6126QC 在显示过程中(OE=0)会缓存 16bit 显示数据,所以系统在 FM6126QC 显示的过程中可以再继续存 入 16bit 串行数据,相比通用恒流源芯片,刷新率可以提高 50%以上。

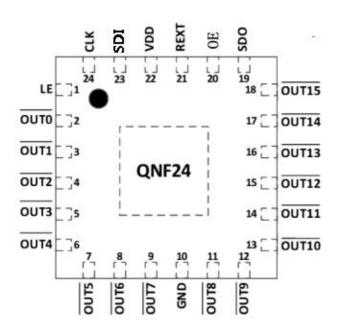
FM6126QC 在 FM6124 基础上集成 6 位电流增益调节,并加入了寄存器配置。有效消除下鬼隐,改善低灰偏色,麻点,第一行偏暗等问题。

特点

- ▶ 16 路恒流灌电流输出
- ▶ 输出电流设定范围:
 - $0.5 \sim 38 \text{mA@VDD} = 5 \text{V}$
 - $0.5 \sim 25 \text{mA@VDD} = 3.3 \text{V}$
- ▶ 电流精度
 - 通道间: ±0.9%(典型值) ±2.0%(最大值) 芯片间: ±2.5%(典型值) ±3.0%(最大值)
- ▶ 快速输出电流响应 OE (最小值): 40ns@VDD=5V
- ▶ 6 位电流增益调节: 25%~100%
- ▶ I/0 施密特触发器触发输入
- ➤ 数据传输频率: fMAX=25MHz
- ▶ 芯片工作电压: VDD=3.3~5.5V
- ▶ 工作温度范围: -40~85℃
- ▶ 消除下鬼隐
- ▶ 集成双缓存,刷新率比通用恒流芯片提高 50%以上
- ▶ 通道内集成双向钳位保护电路,能够有效减少灯珠 的损坏
- ▶ 有效解决低灰色块,偏色,麻点,第一行偏暗
- ▶ 具有极佳的抗干扰能力和低灰度效果
- ▶ 封装形式: QFN-24-4×4(0.85mm)

产品应用

- ➤ 室内表贴模组系列: P2、P2.5、P3、P3.91、P4、P4.81、P5.
- ▶ 户外表贴模组系列: P4.81、P5、P6、P8、P10、P10 直插灯、P13.33 插灯。



FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

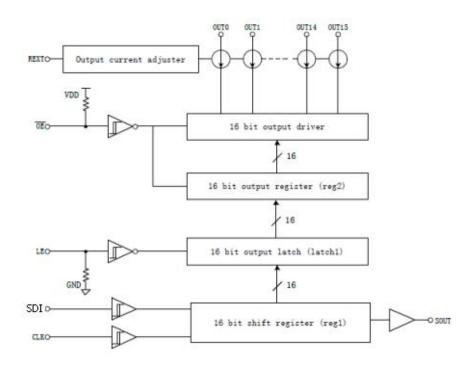
16 路双缓存恒流输出 LED 驱动芯片

管脚图

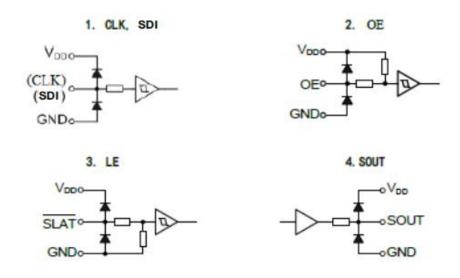
QFN-24

管脚功能描述

引脚定义	引脚名称					
GND	芯片接地引脚					
SDI	输入到移位寄存器的串行数据输入端					
CLK	时钟信号输入端					
LE	数据锁存输入端 3 个 clk 宽度的 LE 高电平时,数据被传入到锁存器中。					
OUT0—OUT15	恒电流输出端					
OE	输出使能信号输入端,并在下降沿处缓存数据 OE 高电平时,关断 OUTO-OUT15 OE 低电平时,打开 OUTO-OUT15					
SD0	串行数据输出端,可接到下一个驱动芯片的 SDI 端					
REXT	外接调节电阻的输出端,可调节所有通道的输出电流大小					
VDD	3. 3V/5V 电源输入端					



FINE MADE MICROELECTRONICS GROUP CO., LTD.


FM6126QC(文件编号: S&CIC2040)

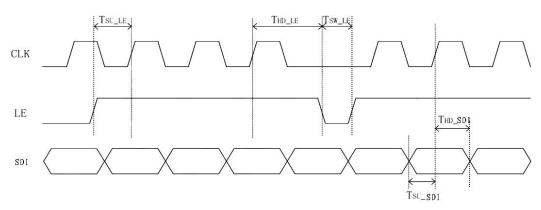
16 路双缓存恒流输出 LED 驱动芯片

内部框图

I/0 等效电路

FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)


16 路双缓存恒流输出 LED 驱动芯片

指令定义

芯片包含一个简单的 16bit 移位寄存器,灰度值和配置值都会锁存到移位寄存器里面。通过计数 LE 信号的 长度来解 析控制命令,不同的 LE 长度表示不同的命令。例如长度为 3 的 LE 信号表示"Data_Latch"命令,用来控制移位寄存器锁 存灰度值,将移位寄存器里的 16bit 数据送给输出通道。下表列出了所有命令及其释义。

指令名称	LE	指令描述
RESET_OEN	>1	软复位信号
DATA_LATCH	3	锁存16bit 数据送给输出通道
	4~10	Reserved
WR_REG1	11	写配置寄存器1
WR_REG2	12	写配置寄存器2

备注: LE 的长度是指当 LE 为高电平时,CLK 的上升沿个数。如下图所示,第一个 LE 信号的长度为 3,亦即该命令为"Data Latch"命令。

建立保持时间

LE 信号和SDI 信号的建立保持时间如下表所示。

信号名称	MIN	备注
$T_{ m SU_LE}$	7ns	
$T_{\mathrm{HD_LE}}$	7ns	
$T_{ m SW_LE}$	10ns	
$T_{ m SU_SDI}$	3ns	
$T_{\mathrm{HD_SDI}}$	3ns	

FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

16 路双缓存恒流输出 LED 驱动芯片

FM6126QC 消影电路时序

芯片消影时间(Tghost)之定义如下图所示,在 OE 信号为高时,锁存信号(LAT)上升沿到使能信号(OEN)下降沿 区间为消影时间。

真值表

CLK	LE	0E	SDI	OUTO ··· OUT7 ··· OUT15	SOUT
<u></u>	Н	L	Dn	D _n ⋅ ⋅ ⋅ D _n −7 ⋅ ⋅ ⋅ D _n −15	Dn-15
<u>_</u>	L	L	Dn+1	无变化	Dn-14
<u>_</u>	Н	L	Dn+2	D _n +2 ⋅⋅⋅ D _n −5 ⋅⋅⋅ D _n −13	Dn-13
Ł	×	L	Dn+3	D _n +2 ⋅⋅⋅ D _n −5 ⋅⋅⋅ D _n −13	Dn-13
Ŧ	×	Н	Dn+3	OFF	Dn-13

规格参数

最大工作范围 (Ta=25℃)

特性		符号	额定值	单位
电源电压		$V_{ ext{ iny DD}}$	0~7	V
输出电流		I_0	38	mA
输入电压		V_{IN}	-0.4~V _{DD} +0.4	V
输出耐受电压		V_{OUT}	10	V
时钟频率		Fclk	25	MHz
接地端电流		${ m I}_{ m GND}$	+1000	mA
消耗功耗(印刷	DN-type	PD	3. 19	W
电路板上, 25℃)			0.13	"
热阻抗 DN-type		$R_{\rm th(j-a)}$	39. 15	°C/W
工作温度		T_{opr}	-40 ~ 85	$^{\circ}$ C
存储温度		$T_{ m stg}$	−55 [~] 150	$^{\circ}$ C

FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

16 路双缓存恒流输出 LED 驱动芯片

直流特性 (Ta=-40℃~85℃,如不另外说明)

特性	测试条件	最小值	典型值	最大值	单位
电源电压	-	3. 3	5	5. 5	V
ON时的输出电压	OUTn	0.6	_	4	V
高电平逻辑输入电压	-	0.7*V _{DD}	-	V _{DD}	V
低电平逻辑输入电压	-	GND	-	0. 3*V _{DD}	V
SOUT高电平输出电流	V _{DD} =5V	-	-	-1	mA
SOUT低电平输出电流	V _{DD} =5V	=	_	1	mA
恒流输出	OUTn	0. 5	-	38	mA

开关特性 (Ta=25℃, VDD=5.0V, 如不另外说明)

特性		符号	测试电路	测试条件	最小值	典型值	最大值	单位
	OE - OUTO	tpLH3	6	LE=H	_	28	31	
传输延迟时间	OE -OUT1	tpHL3	6	LE=H	-	28	31	ns
	CLK-SOUT	tpHL2	6	_	-	22	30	
输出端上升	时间	tor	6	电压波形 10~90%	_	25	28	ns
输出端下降	时间	tof	6	电压波形的90~10%	-	33	37	ns

动态特性 (VDD=4.5~5.5V, Ta=-40℃~85℃, 如不另外说明)

特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
串行数据传输频率	$F_{\scriptscriptstyle CLK}$	6	_	-	-	30	MHz
时钟脉冲宽度	$t_{ ext{wCLK}}$	6	SCK=H或者L	20	_	-	ns
锁存脉冲宽度	$t_{\mathtt{wLE}}$	6	LE=H	20	-	-	ns
使能脉冲宽度	twoE	6	OE =H或者L,	40	-	_	ns
文书的477907文	Cw0E	U	R _{EXT} =890 Ω				115
保持时间	t _{HOLD1}	6	_	5	ı	_	ns
N/1/1 H.1 IH1	$t_{ ext{HOLD2}}$	6	_	5	-	_	ns
建立时间	t _{SETUP1}	6	_	5	_	_	ns
建立时间	t _{SETUP2}	6	_	5	-	-	ns
最大时钟上升时间	t_{r}	6		-	_	500	ns
最大时钟下降时间	$t_{\scriptscriptstyle\mathrm{f}}$	6		_	_	500	ns

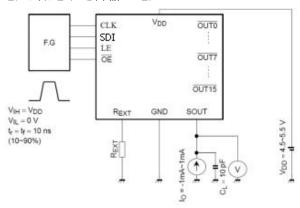
FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

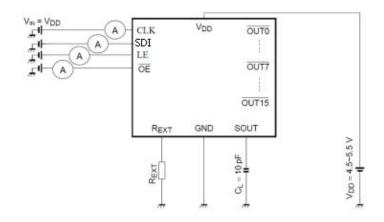
16 路双缓存恒流输出 LED 驱动芯片

电气特性 (VDD=4.5~5.5V, Ta=25℃, 如不另外说明)

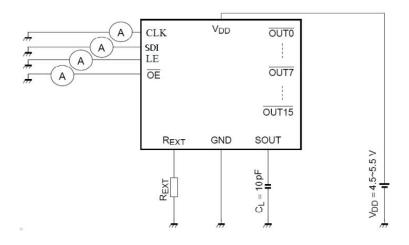
特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
高电平逻辑输出电压	V_{OH}	1	I _{OH} =-1mA, SOUT	V _{DD} -0.4	-	V_{DD}	V
低电平逻辑输出电压	V_{OL}	1	I _{OH} =+1mA, SOUT	-	_	0.4	V
高电平逻辑输入电流	${ m I}_{ ext{IH}}$	2	$V_{\text{IN}}\!\!=\!\!V_{\text{DD}}$, OE , SDI, CLK	-	-	1	μА
低电平逻辑输入电流	${ m I}_{\scriptscriptstyle { m IL}}$	3	V _{IN} =GND, LE, SDI, CLK	-	-	-1	μА
	$I_{ exttt{DD1}}$	4	Rext=未接, OUT off	-	4.8	8	mA
	$I_{ exttt{DD2}}$	4	Rext=1.24K Ω , OUT off	-	7. 2	9	mA
电源电流	$I_{ exttt{DD3}}$	4	Rext= 620Ω , OUT off	-	9. 2	11	mA
	$I_{ ext{DD4}}$	4	Rext=1.24K Ω , OUT on	-	8. 7	10	mA
	${ m I}_{ m DD5}$	4	$\text{Rext=}620\Omega$, OUT on	-	10. 7	12	mA
	I_{01}	5	V _{DD} =5. 0V, V ₀ =1. 0V,	_	15	_	mA
1-12-14			$R_{\text{EXT}}=1.23 \text{k}\ \Omega$				
恒流输出	I_{02}	5	V _{DD} =5. 0V, V ₀ =1. 0V,	_	30	_	mA
	- 02	_	$R_{\text{EXT}}=615~\Omega$				
			$V_{DD}=5.0V$, $V_0=1.0V$,				
恒流误差	$\Delta \ \mathrm{I}_{\mathrm{0}}$	5	$R_{EXT}=1.23~k\Omega$,	_	± 0.15	± 0.37	mA
			OUTO~ OUT15				
			$V_{DD}=4.5^{5}.5V$, $V_{0}=1.0V$,				
恒流电源电压调节	$%V_{DD}$	5	$R_{\text{EXT}} = 1.24 \text{ k} \Omega$, OUTO^{\sim}	_	± 0.2	-	%/V
			OUT15				
			$V_{DD}=5.0V$, $V_0=1.0^{\circ}3.0V$,				
恒流输出电压调节	V_{OUT}	5	$R_{\text{EXT}} = 1.24 \text{ k}\ \Omega$, OUTO^{\sim}	_	± 0.1		%/V
			OUT15				
上拉电阻	R_{UP}	3	0E	200	300	500	kΩ
下拉电阻	R _{DOWN}	2	LE	200	300	500	kΩ


FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)

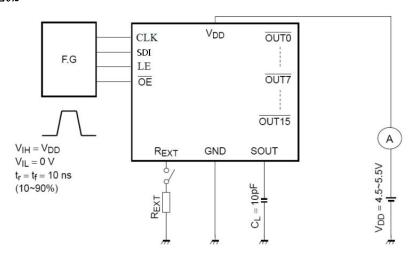

16 路双缓存恒流输出 LED 驱动芯片

测试电路

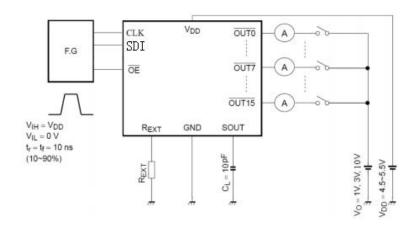

测试电路1: 高电平逻辑输入电压/低电平逻辑输入电压

测试电路2: 高电平逻辑输入电流/下拉电阻

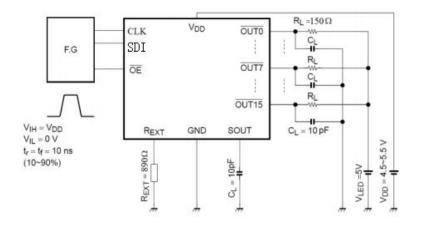
测试电路3: 低电平逻辑输入电流/上拉电阻



FINE MADE MICROELECTRONICS GROUP CO., LTD.

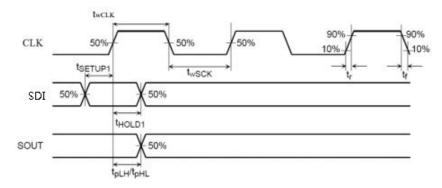

FM6126QC(文件编号: S&CIC2040)

16 路双缓存恒流输出 LED 驱动芯片

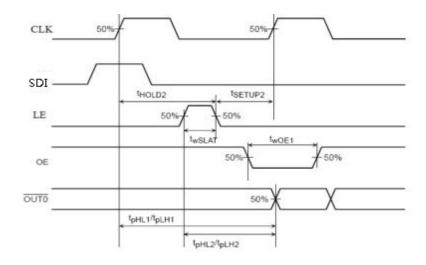

测试电路 4: 电源电流

测试电路 5: 恒流输出/输出 OFF 漏电流/恒流误差 恒流电源电压调节/恒流输出电压调

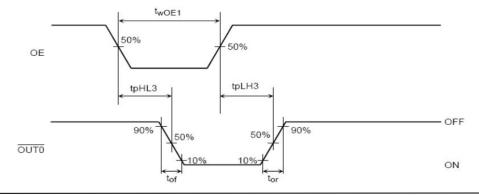
测试电路 6: 开关特性


FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)


16 路双缓存恒流输出 LED 驱动芯片

时序波形


1. CLK, SDI, SOUT

2. CLK, SDI, LE, OE, OUTO

1. **OUTO**

FINE MADE MICROELECTRONICS GROUP CO., LTD.

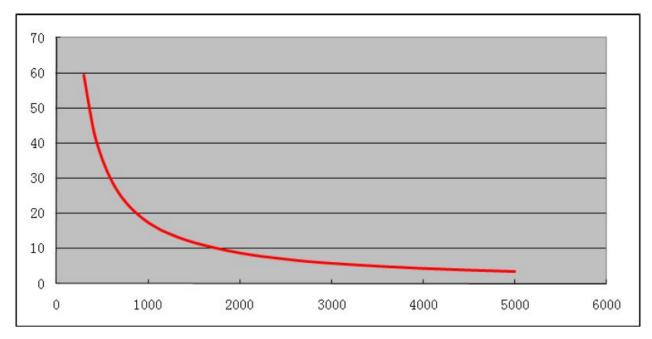
FM6126QC(文件编号: S&CIC2040)

16 路双缓存恒流输出 LED 驱动芯片

应用信息

FM6126QC 采用了精确电流驱动控制技术,同一芯片的不同通道间,不同芯片之间的电流差异极小。

- 1) 通道间电流差异<±2%, 芯片间的电流差异<±3.0%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流将不随 LED 顺向电压 V_F 的变化而变化。

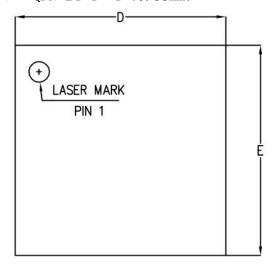


调节输出电流

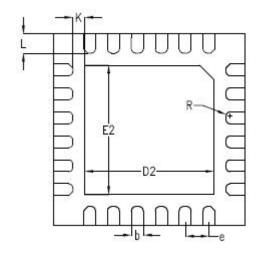
FM6126QC 通过外接电阻 Rext 来调节输出电流(Iout), 计算公式为:

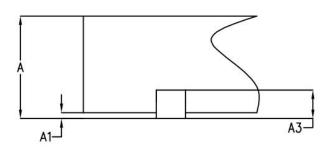
 $V_{R-EXT}=1.23V$;

 $Iout = (V_{R-EXT}/Rext)*15$


FINE MADE MICROELECTRONICS GROUP CO., LTD.

FM6126QC(文件编号: S&CIC2040)


16 路双缓存恒流输出 LED 驱动芯片


封装信息

ightharpoonup QFN-24-4×4 (0.85mm)

SYMBOL	MI	LLIMETE	R		
JIMDOL L	MIN	NOM	MAX		
A	0.83	0.85	0.87		
A1	0	0.02	0.05		
A2	•••	-			
A3		0. 20REF	ř		
ь	0. 18	0. 25	0. 30		
D	3. 90	4. 00	4. 10		
D2	2.65	2.70	2.75		
Е	3. 90	4.00	4. 10		
E2	2. 65	2. 70	2.75		
е	0.40	0.50	0.60		
K	0. 25REF				
L	0.35	0.40	0. 45		
L1		2	823		
R	0.09		121		