| CUSTOMER | | ESA8111-17 | 9 | Rev. 0 | page | 4/6/2020 | |-------------|------------------------|-------------------|----------|--------|------|----------| | KEMET | TOKIN Cor
MSABG - I | Magnetics, Sensor | A | nsor | | | | Corporation | Actuator Ur | III. | | | | | | Part | FG-R05-3A | ESA8111-179 | page | 2/11 | |------|-----------|-------------|--------|------| | | | | 4/6/20 | 020 | ## 1. Scope This datasheet applies to the specification of Residual current sensor FG-R05-3A ### 2. Introduction This sensor FG-R05-3A is a high-sensitivity DC/AC current sensor that can detect leakage current of DC and AC. If DC fault occurs, PIN 4 will change state from low level to high impedance. If AC fault occurs, PIN5 will change state form low level to high impedance. This sensor has a test coil for testing the operation of the sensor, and by inputting a signal from the outside it is possible to pass a test current to the test coil. It also outputs a digital signal informing that leakage current of DC/AC has been detected. #### Features - For IC-CPD to the standard IEC 62752:2016 - UL2231(CCID20) - Open-loop, Flux-gate type current sensor - PCB mounting - Digital output of fault detection # 3. Pin assignment | Parameter | Specification
Typ. | Units | |----------------|-----------------------|-------| | Dimension | 38 x 31 x 13 | mm | | Inner diameter | φ12.6 | mm | | Mass | 18 | g | | Pin No. | Symbol | Pin type | Functions | |---------|----------|-------------|---| | 1 | VDD | Power | Power supply, 5V | | 2 | GND | Power | Ground | | 3 | AOUT | Analog out. | Analog output. This is for monitoring purposes and is not safety function! Offset voltage is 2.25 V(Typ.). Sensitivity is 40V/A(Typ.) | | 4 | DC Alarm | Digital Out | Active high if DC current is in the range of 3 to 6mA. Pull up to VDD with 1k-ohm resistor. | | 5 | AC Alarm | Digital Out | Active high if AC current is in the range of 15 to 20mA. Pull up to VDD with 1k-ohm resistor IEC62752 & UL2231(CCID20) | | 6 | TEST | Input | Test input. Internal pull-down with 100kohm. When input positive pulse input(>120usec), test sequence is start. | # 4. Marking 2D Code: Purpose for Internal manufacturing control * out of spec. | Part | FG-R05-3A | ESA8111-179 | page | 3/11 | |------|-----------|-------------|----------|------| | | | | 1 4/6/20 | 020 | ## **5.Absolute maximum ratings** ## 5-1. Environmental characteristics | Parameter | Min | Max | Units | |-----------------------------|-----|-----|-------| | Operating temperature range | -40 | +85 | °C | | Storage temperature range | -40 | +85 | °C | #### 5-2. Electrical characteristics | Parameter | Min | Max | Units | |---|------|---------|-------| | Supply voltage | -0.3 | 6.0 | V | | Primary rated voltage | | 250 | V | | Maximum input voltage of digital output | | Vdd+0.3 | V | | Maximum sink current of digital output | | 10 | mA | | Input voltage of TEST (LOW) | 0 | 0.6 | V | | Input voltage of TEST (HIGH) | 2.5 | Vdd | V | # 6. Specifications ### 6-1. Electrical characteristics Unless otherwise specified, each electrical operating condition is TA = 25°C, Vdd = 5 V. | Parameter | Symbol | Min. | Тур. | Max. | Units | Comments | |--------------------------|----------|------|-------|-------|-------|-------------------| | Primary nominal current | In | | | 80/40 | Α | 1phase/3phase | | Supply voltage | Vdd | 4.75 | 5.0 | 5.25 | V | | | Current consumption | lc | | 13 | | mA | Ip = 0mA | | DC6mA detection current | Idn (DC) | 3 | 4.5 | 6 | mA | -40 to 85°C | | AC30mA detection current | Idn (AC) | 15 | 17.5 | 20 | mA | -40 to 85°C, 55Hz | | Frequency characteristic | | -2 | -1 | | % | @45Hz/55Hz | | of Idn(AC) | | | +1 | +2 | % | @65Hz/55Hz | | Recovery level | | | ldn/2 | | | | | | | | 140 | 1000 | ms | Ip = DC6mA | | DC Fault response time | | | 12 | 250 | ms | Ip = DC60mA | | | | | 3 | 15 | ms | Ip = DC300mA | | | | | 100 | 250 | ms | Ip = AC30mArms | | AC Fault response time | | | 40 | 100 | ms | Ip = AC60mArms | | AC Fault response time | | | 5 | 15 | ms | Ip = AC150mArms | | | | | 3 | 15 | ms | Ip > AC 5Arms | | Sensitivity (pin 3) | G | | 40 | | V/A | -40 to 85°C | | Offset voltage (pin 3) | Vo | | 2.25 | | V | -40 to 85°C | | Measurement range(pin 3) | lp | -50 | | 50 | mA | | | Frequency range (pin 3) | fBW | DC | | 150 | Hz | -3dB *Note1 | ^{*} Parameter without Max or Min values are designed values, are not guaranteed values. Note1: Please refer to Appendix 1 for frequency characteristics of Pin3. | Part | FG-R05-3A | ESA8111-179 | page | 4/11 | |------|-----------|-------------|--------|------| | | | | 4/6/20 | 020 | #### 6-2. ESD Judgment: Idn (DC) within Specification of 6-1 items after ESD test | Parameter | Judge | |---|--------| | Electrostatic Discharge Voltage
Human-body model (HBM)
R=1.5kΩ, C=100pF, U=+/-2kV | Passed | | Electrostatic Discharge Voltage
Charged-device model (CDM)
U=+/-800V | Passed | ## 6-3. EMC Judgment: DC Alarm and AC Alarm do not malfunction during noise stimulation | Parameter | Conditions | Judge | |--|--|--------| | IEC 61000-4-3
Radiated, radio-frequency,
electromagnetic field immunity | 30V/m,
80MHz – 1GHz 80%AM 1kHz | Passed | | ISO 11452-2 (ALSE) electrical disturbances from narrowband radiated electromagnetic energy | 50V/m
200MHz – 800MHz 80%AM 1kHz,
800MHz – 2GHz PM | Passed | | ISO 11452-4 (BCI) Electrical disturbances from narrowband radiated electromagnetic energy | 100mA
20MHz – 200MHz 80% AM 1kHz | Passed | 6-4. Dielectric strength | Parameter | Conditions | Value | |---------------------------|---|----------| | U _W , prim-sec | Impulse(1.2us/50us), PIN1-6 vs insulated primary wire, 5 pulse -> polarity +, 5 pulse -> polarity - | 5.5kVrms | | U _d | Test voltage, 60s
PIN1-6 vs insulated primary wire | 1.5kVrms | | U _{PDx1.5} | Partial discharge voltage, PIN1-6 vs insulated primary wire *acc. to table 24 | 1.2kVrms | | U _{PDx1.875} | Partial discharge voltage, PIN1-6 vs insulated primary wire *acc. to table 24 | 1.5kVrms | ^{*} IEC 61800-5-1:2007 #### Note2: The case is Insulation material group III. When designing the primary wire, be careful of clearance and creepage distance from the input/output terminal. Note3: Please See Appendix2 for recommended wire configuration | Part | FG-R05-3A | ESA8111-179 | page | 5/11 | |------|-----------|-------------|----------|------| | | | | 1 4/6/20 | 020 | ## 6-5. Frequency characteristics ^{*}This characteristic is indicated only for reference, and are not guaranteed. # 6-6. Digital Output state | tput state | | | | |----------------|----------------|-----------------------------------|--| | DC Alarm | AC Alarm | State | | | GND | GND | Normal condition | | | High impedance | GND | Idn > 6mA(DC) | | | GND | High impedance | Idn > 20mA(AC) | | | High impedance | High impedance | Idn > 6mA(DC) &
Idn > 20mA(AC) | | ## Other instructions: - · Temperature of primary wire should not exceed 105°C. - The rise time of Vdd is 50us to 100 ms. - UL2231 Recognized component expected Part FG-R05-3A ESA8111-179 page 6/11 4/6/2020 ## 6-7 Self-test operation | | | | [sed | 2] | |-----------|------|------|------|----| | Parameter | Min | Тур | Max | | | t1 | 0.06 | 0.15 | 0.3 | | | t2 | 0.7 | 1.0 | 1.3 | | | t3 | 0.7 | 1.0 | 1.2 | | | t4 | 1.4 | 1.8 | 2.1 | | | Part | FG-R05-3A | ESA8111-179 | page | 7/11 | |------|-----------|-------------|--------|------------| | | | | 4/6/20 | <u>120</u> | ## 6-8 Recovery level When the residual current exceeds the threshold level (Idn(DC) or Idn(AC)), PIN 4(DC Alarm) or PIN 5(AC Alarm) will change from low level(GND) to high impedance. Each output goes back from high impedance to low level when residual current falls below recovery level. | Part | FG-R05-3A | ESA8111-179 | page | 8/11 | |------|-----------|-------------|--------|------| | | | | 4/6/20 | 020 | # 7. PCB footprint (Top view) | Part | FG-R05-3A | ESA8111-179 | page | 10/11 | |------|-----------|-------------|--------|-------| | | | | 4/6/20 | | # 9. Packing The product is packed in a special tray and carton box as shown below. The tray would be an antistatic type. ^{*}This characteristic is indicated only for reference, and are not guaranteed. ## Appendix 2 # Recommended wire configuration ^{*}Reinforced insulation, Insulation material group III, Pollution degree 2, altitude<5000m and overvoltage category II ^{*}Please take enough creepage distance between each pin