PHE13003A

Silicon diffused power transistor

Rev. 01 — 13 August 2009

Product data sheet

1. Product profile

1.1 General description

High voltage, high speed, planar passivated NPN power switching transistor in a SOT54 (TO-92) 3 leads plastic package.

1.2 Features and benefits

Fast switching

■ High voltage capability of 700 V

1.3 Applications

- Compact fluorescent lamps (CFL)
- Electronic lighting ballasts
- Inverters
- Off-line self-oscillating power supplies

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I_{C}	collector current	DC; see Figure 1	-	-	1	Α
P _{tot}	total power dissipation	T _{lead} ≤ 25 °C; see <u>Figure 2</u>	-	-	2.1	W
V _{CESM}	collector-emitter peak voltage	$V_{BE} = 0 V$	-	-	700	V
Static ch	naracteristics					
h _{FE}	DC current gain	$I_C = 0.8 \text{ A}; V_{CE} = 5 \text{ V};$ $T_{lead} = 25 ^{\circ}\text{C};$ see Figure 8 and 9	5	7.5	20	

2. Pinning information

Table 2. Pinning information

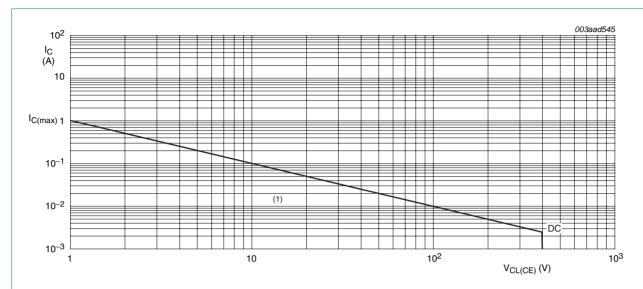
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	В	base		
2	С	collector		C I
3	E	emitter		BE sym123
			SOT54 (TO-92)	

3. Ordering information

Table 3. Ordering information

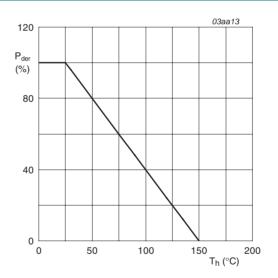
Type number	Package		
	Name	Description	Version
PHE13003A	TO-92	plastic single-ended leaded (through hole) package; 3 leads	SOT54

4. Limiting values


Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CESM}	collector-emitter peak voltage	$V_{BE} = 0 \text{ V}$	-	700	V
V_{CBO}	collector-base voltage	I _E = 0 A	-	700	V
V _{CEO}	collector-emitter voltage	$I_B = 0 A$	-	400	V
I _C	collector current	DC; see Figure 1	-	1	Α
I _{CM}	peak collector current		-	2	Α
I _B	base current		-	0.5	Α
I _{BM}	peak base current		-	1	Α
P _{tot}	total power dissipation	T _{lead} ≤ 25 °C; see <u>Figure 2</u>	-	2.1	W
T _{stg}	storage temperature		-65	150	°C
T _j	junction temperature		-	150	°C
V_{EBO}	emitter-base voltage	I _C = 0 A; I(Emitter) = 10 mA	-	9	V

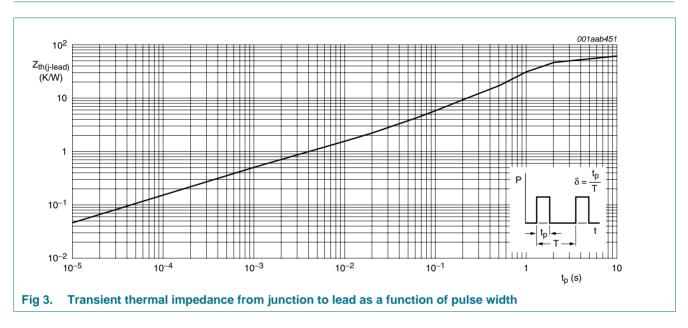

NXP Semiconductors PHE13003A

Silicon diffused power transistor

 $T_{lead} \le 25$ °C(1)Region of permissible DC operation

Fig 1. Forward bias safe operating area

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$


Fig 2. Normalized total power dissipation as a function of heatsink temperature

Silicon diffused power transistor

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j\text{-lead})}$	thermal resistance from junction to lead	see Figure 3	-	-	60	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient		-	150	-	K/W

6. Characteristics

Table 6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
I _{CES}	collector-emitter cut-off	$V_{BE} = 0 \text{ V}; V_{CE} = 700 \text{ V}; T_j = 25 \text{ °C}$	-	-	1	mΑ
	current	V _{BE} = 0 V; V _{CE} = 700 V; T _j = 125 °C	-	-	5	mΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = 9 \text{ V}; I_{C} = 0 \text{ A}; T_{lead} = 25 \text{ °C}$	-	-	1	mA
V_{CEOsus}	collector-emitter sustaining voltage	$I_B = 0 \text{ A}$; $I_C = 1 \text{ mA}$; $L_C = 25 \text{ mH}$; $T_{lead} = 25 ^{\circ}\text{C}$; see Figure 4 and 5	400	-	-	V
V_{CEsat}	collector-emitter saturation voltage	I_C = 0.25 A; I_B = 50 mA; T_{lead} = 25 °C; see Figure 6	-	0.2	0.5	V
		I_C = 0.5 A; I_B = 125 mA; T_{lead} = 25 °C; see Figure 6	-	0.3	1	V
		$I_C = 0.75 \text{ A}$; $I_B = 250 \text{ mA}$; $T_{lead} = 25 ^{\circ}\text{C}$; see Figure 6	-	0.4	1.5	V
V_{BEsat}	base-emitter saturation voltage	I_C = 0.25 A; I_B = 50 mA; T_{lead} = 25 °C; see Figure 7	-	-	1	V
		I_C = 0.5 A; I_B = 125 mA; T_{lead} = 25 °C; see Figure 7	-	-	1.2	V
h _{FE}	DC current gain	I_C = 0.5 mA; V_{CE} = 2 V; T_{lead} = 25 °C; see Figure 8 and 9	12	-	-	
		I_C = 0.4 A; V_{CE} = 5 V; T_{lead} = 25 °C; see Figure 8 and 9	10	-	30	
		I_C = 0.8 A; V_{CE} = 5 V; T_{lead} = 25 °C; see Figure 8 and 9	5	7.5	20	
Dynamic	characteristics					
t _f	fall time	I_C = 1 A; I_{Bon} = 200 mA; V_{BB} = -5 V; L_B = 1 μ H; T_{lead} = 25 °C; inductive load; see Figure 10 and 11	-	80	-	ns

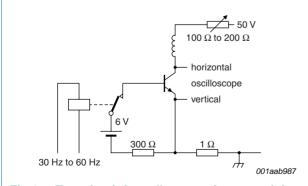


Fig 4. Test circuit for collector-emitter sustaining voltage

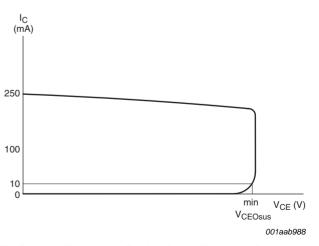


Fig 5. Oscilloscope display for collector-emitter sustaining voltage test waveform

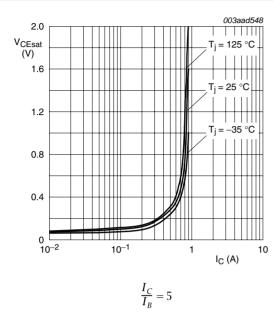


Fig 6. Collector-emitter saturation voltage as a function of collector current; typical values

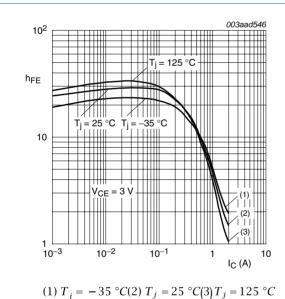


Fig 8. DC current gain as a function of collector current; typical values

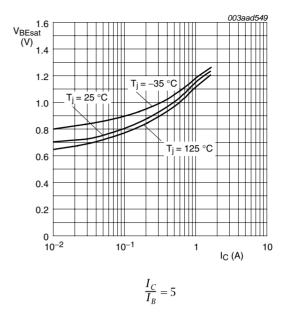
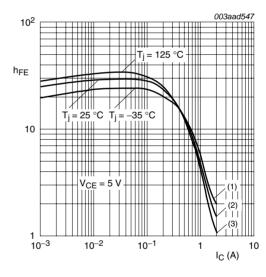
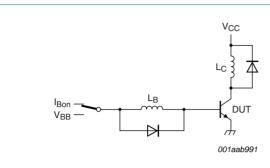



Fig 7. Base-emitter saturation voltage as a function of collector current; typical values



(1) $T_i = -35 \, ^{\circ}C(2) \, T_j = 25 \, ^{\circ}C(3) \, T_j = 125 \, ^{\circ}C$

Fig 9. DC current gain as a function of collector current; typical values

NXP Semiconductors PHE13003A

Silicon diffused power transistor

 $V_{CC} = 300 \text{ V}; V_{BB} = -5 \text{ V}; L_C = 200 \mu\text{H}; L_B = 1 \mu\text{H}$

Fig 10. Test circuit for inductive load switching

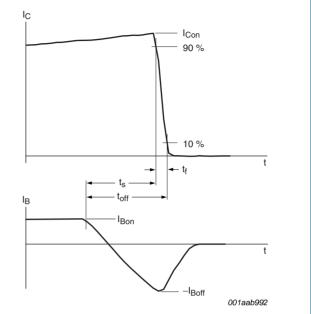
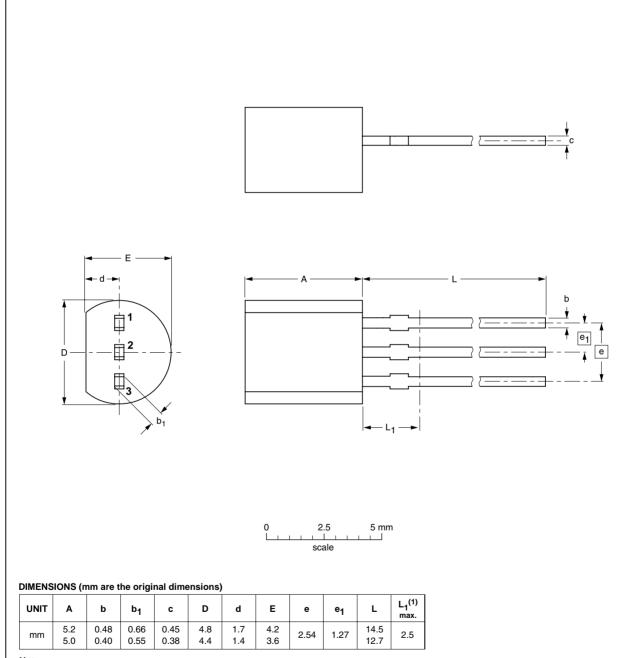



Fig 11. Switching times waveforms for inductive load

7. Package outline

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

Note

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

	OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION		IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
	SOT54		TO-92	SC-43A		-04-06-28- 04-11-16

Fig 12. Package outline SOT54 (TO-92)

PHE13003A

Silicon diffused power transistor

Revision history

Table 7. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes
PHE13003A_1	20090813	Product data sheet	-	-

Silicon diffused power transistor

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

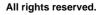
10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

NXP Semiconductors

PHE13003A


Silicon diffused power transistor

11. Contents

1	Product profile
1.1	General description1
1.2	Features and benefits
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline8
8	Revision history9
9	Legal information10
9.1	Data sheet status
9.2	Definitions10
9.3	Disclaimers
9.4	Trademarks10
10	Contact information10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

