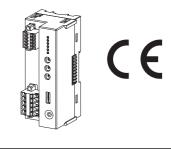
Remote I/O R8 Series

POWER/NETWORK MODULE


(CC-Link Ver.2.00; for 64-point analog signals)

Functions & Features

- Free combination of analog and discrete I/O
- Space-saving

Typical Applications

• Remote I/O for DCS and PLC

MODEL: R8-NC3-R[1]

ORDERING INFORMATION

• Code number: R8-NC3-R[1] Specify a code from below for [1]. (e.g. R8-NC3-R/O)

 Specify the specification for option code /Q (e.g. /C01)

I/O TYPE

NC3: CC-Link

POWER INPUT

DC power

R: 24 V DC

(Operational voltage range: ±10 %; ripple 10 %p-p max.)

[1] OPTIONS

blank: none

/Q: With options (specify the specification)

SPECIFICATIONS OF OPTION: Q

COATING (For the detail, refer to M-System's web site.)

/C01: Silicone coating /C02: Polyurethane coating

RELATED PRODUCTS

PC Configurator cable (model: COP-US)

• PC configurator software (model: R8CFG)

Downloadable at M-System's web site.

PACKAGE INCLUDES...

· Protective cover

GENERAL SPECIFICATIONS

Connection

• Power input: Tension clamp (Front Twin connection)

Applicable wire size: 0.2 - 2.5 mm²

Stripped length: 10 mm

•CC-Link: Tension clamp (Front Twin connection)

Applicable wire size: 0.2 - 1.5 mm²

Stripped length: 10 mm

•Internal bus, intenal power, exc. supply: Via connector

Max. number of I/O modules: 16

(Max. consumption current of I/O modules: 1.6 A)

Isolation: CC-Link to internal bus or internal power or power

input to exc. supply to FE1

Status indicators: Power, Run, Error, SD, RD

Data allocation: Mode 1, 2

CC-Link COMMUNICATION

Protocol: CC-Link. Conforms to Version 2.00

Device type: Remote device station

Required nodes: 4 (112 I/O points, 16 words) × m (m =

Cyclic expansion setting)

Network cable: CC-Link cable designated by Mitsubishi

Electric

Cyclic expansion: 2, 4 (Function selected with DIP SW)

Station address setting: Rotary switch; 1 to 64

Baud rate setting: Rotary switch

156kbps, 625kbps, 2.5Mbps, 5Mbps, 10Mbps

Terminating resistor: Built-in (DIP Switch, default: disable)

INSTALLATION

Power consumption

• DC: Approx. 12 W 24 V DC (@ internal power max. current 1.6 A))

Internal power supply (power supply for I/O module):

DC power supply: 5 V DCCurrent capacity: 1.6 A

Excitation supply output (excitation for I/O module)

•DC: 24 V DC ±10 %
•Operational current: 10 A

(From power supply (exitation supply) connector, via connector for internal bus, supplied to each I/O module. Power output current consumption must be under

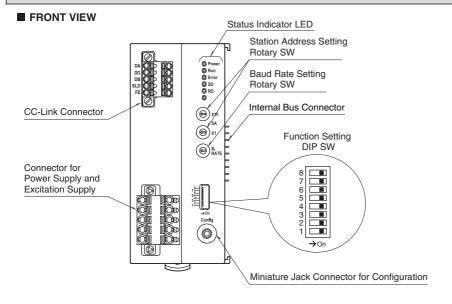
operational current.)

Operating temperature: 0 to 55°C (32 to 131°F)
Operating humidity: 30 to 90 %RH (non-condensing)
Atmosphere: No corrosive gas or heavy dust

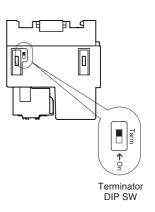
Mounting: DIN rail Weight: 180 g (0.40 lb)

PERFORMANCE

Insulation resistance: $\ge 100 \text{ M}\Omega$ with 500 V DC Dielectric strength: 500 V AC @ 1 minute


(CC-Link to internal bus or internal power or power input to

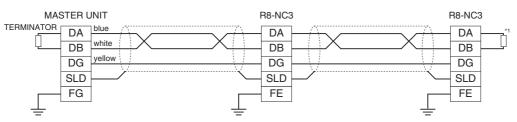
exc. supply to FE1)


STANDARDS & APPROVALS

EU conformity: EMC Directive EMI EN 61000-6-4 EMS EN 61000-6-2 RoHS Directive EN 50581

EXTERNAL VIEW

■ TOP VIEW


■ STATUS INDICATOR LED

	1	
ID	COLOR	FUNCTION
Power	Green	ON when the internal 5V power is in normal status.
Run	Green	ON with normal communication *1
Error	Red	ON when abnormal data is received.
SD	Green	ON with data transmitting
RD	Green	ON with data receiving

^{*1.} Run LED turns off when no command is received from the master device.

CONNECTION DIAGRAMS

■ MASTER CONNECTION

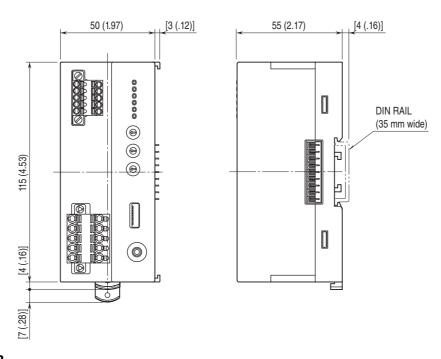
*1. Turn on the terminator DIP switch to activate the internal terminating resistor.

■ POWER SUPPLY, EXCITATION SUPPLY CONNECTOR TERMINAL ASSIGNMENT

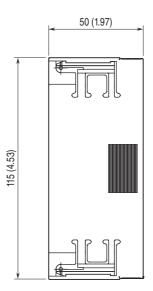
Printed-circuit board connector (Phoenix Contact)
Unit side connector: MSTBV2,5/5-GF-5,08AU
Cable side connector: TFKC2,5/5-STF-5,08AU

PIN No.	ID	FUNCTION	
1	24V	Power supply 24V DC	
2	0V	Power supply 0V DC	
3	+	Excitation supply 24V DC	
4	_	Excitation supply 0V DC	
5	FE1	Grounding	

■ NETWORK CONNECTOR ASSIGNMENT

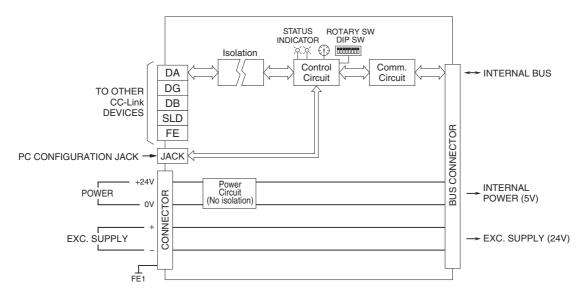

Printed-circuit board connector (Phoenix Contact)
Unit side connector: MC1,5/5-GF-3,5
Cable side connector: TFMC1,5/5-STF-3,5

PIN	ID	FUNCTION
No.		
1	DA	DA
2	DG	DG
3	DB	DB
4	SLD	Shield
5	FE	Functional earth


EXTERNAL DIMENSIONS unit: mm (inch)

■UNIT

■PROTECTIVE COVER



SCHEMATIC CIRCUITRY & CONNECTION DIAGRAM

Note: In order to improve EMC performance, bond the FE1 terminal to ground.

Caution: FE1 terminal is NOT a protective conductor terminal.

 Λ

Specifications are subject to change without notice.