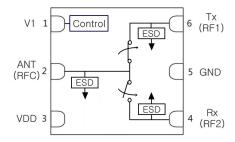


Product Description

The BSW6321 is a reflective SPDT RF switch that can be used in high power and good performance WiMAX 802.16, WLAN 802.11 a/b/g/n/ac/ax and DOCSIS 3.0/3.1 applications.


This device is packaged in RoHS-compliant with 1.5x1.5mm, 6-lead UDFN package. It must be used with back side ground soldering.

The BSW6321 has robust ESD protection circuits at all pins and temperature performance (operating temperature range : -40 $^{\sim}$ +105°C), furthermore this switch does not require blocking capacitors.

This device also has a high linearity performance over all temperature range such as IIP3, IIP2.

A functional block diagram is shown in Figure 1.

Block Diagram

Figure 1 Functional Block Diagram

Applications

- WiMAX 802.16
- WLAN 802.11 a/b/g/n/ac/ax
- DOCSIS 3.0/3.1
- Drone
- NFC
- Bluetooth
- Smart Card
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

6-Lead 1.5x1.5mm, UDFN Package Figure 2 Package Type

Device Features - Common

• Output frequency range: 5 MHz to 6.0 GHz

Supply Voltage: 2.7V to 5.5VESD protection: 2.5kV @ all pins

6-lead DFN package: 1.5mm x 1.5mm x 0.5mm
Operating temperature range: -40°C - +105°C

Device Features - 50Ω

- Low insertion loss
 - : 0.50dB @ 2.45GHz
 - : 0.75dB @ 5.75GHz
- High isolation
 - : 40dB @ 2.45GHz
 - : 30dB @ 5.75GHz
- Input 1 dB output compression (ANT-Tx)
 - : 39dBm @ 2.45GHz
 - : 36dBm @ 5.75GHz
- High IIP3 (ANT-Tx)
 - : 63dBm @ 2.45GHz
 - : 67dBm @ 5.75GHz

Device Features - 75Ω

- Low insertion loss
 - : 0.29dB @ 204MHz
- High isolation
 - : 50dB @ 204MHz
- High IIP3
 - : 72dBm @ 633MHz
- 2nd / 3rd Harmonic
 - : 111dBc / 120dBc @ 633MHz

Electrical Specifications - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Table 1 Electrical Specifications - 50Ω

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		6000	MHz
		13.56MHz		0.34		
		1GHz		0.42		
		2GHz		0.48		
	ANT - Tx	2.45GHz		0.50		
Insertion Loss		3GHz		0.58		dB
	ANT - Rx	4GHz		0.60		
		5GHz		0.73		
		5.75GHz		0.75		
		6GHz		0.80		
		13.56MHz		82		
		1GHz		52		
		2GHz		43		
	ANT - Tx	2.45GHz		40		
Isolation		3GHz		38		dB
	ANT - Rx	4GHz		33		
		5GHz		32		
		5.75GHz		30		
		6GHz		28		
		13.56MHz		82		
		1GHz		43		
		2GHz		36		
	Tx - Rx	2.45GHz		35		
Isolation		3GHz		32		dB
	Rx - Tx	4GHz		29		
		5GHz		25		
		5.75GHz		25		
		6GHz		25		
Return Loss	ANT, Tx, Rx	5MHz – 6GHz (Active port)		20		dB
	ANT To	2.45GHz		39		
Input P1dB	ANT - Tx	5.75GHz		36		dBm
	ANT - Rx	2.45GHz		38		asm
	ANI - KX	5.75GHz		34		

 $[\]ensuremath{^{*}}$ Tone Power is 18dBm and Tone spacing is 20KHz.

^{**} DC transient test at RF all ports (ANT,Tx,Rx) when V1 is switched from High to Low or from Low to High in a 50Ω setup. Excluding SMA Connector and PCB loss. 1GHz (0.12dB), 2GHz (0.20dB), 3GHz (0.27dB), 4GHz (0.35dB), 5GHz (0.51dB), 6GHz (0.52dB)

Electrical Specifications - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Table 2 Electrical Specifications - 50Ω

Parameter	Path	Condition	Min	Тур	Max	Unit
	ANIT To	2.45GHz		63		
Immut ID2*	ANT - Tx	5.75GHz		67		dBm
Input IP3*	ANT - Rx	2.45GHz		56		asm
	ANI - KX	5.75GHz		67		
	ANT - Tx	2.45GHz		98		
Input IP2*	ANT - IX	5.75GHz		105		dBm
	ANT - Rx	2.45GHz		90		abiii
	AINT - KX	5.75GHz		115		
2 nd Harmonic	ANT - Tx	2.45GHz		85		dBc
		5.75GHz		95		
	ANT - Rx	2.45GHz		80		UBC
		5.75GHz		105		
	ANT - Tx	2.45GHz		100		
2 rd Harmonia	ANT - IX	5.75GHz		108		dBc
3 rd Harmonic	ANT Dv	2.45GHz		85		UBC
	ANT - Rx	5.75GHz		108		
Video Feedthrough**		5ns rise-time pulse		15		mVpp
Conitabia a Tima	ANT - Tx	50% control to 90% RF		500		
Switching Time	ANT - Rx	50% control to 10% RF		400		ns

^{*} Tone Power is 18dBm and Tone spacing is 20KHz.

^{**} DC transient test at RF all ports (ANT,Tx,Rx) when V1 is switched from High to Low or from Low to High in a 50Ω setup. Excluding SMA Connector and PCB loss. 1GHz (0.12dB), 2GHz (0.20dB), 3GHz (0.27dB), 4GHz (0.35dB), 5GHz (0.51dB), 6GHz (0.52dB)

Electrical Specifications - 75Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 75 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Table 3 Electrical Specifications - 75Ω

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			1		6000	MHz
		5MHz		0.25		
		204MHz		0.29		
Insertion Loss	RFC - RFx	1218MHz		0.45		dB
		1700MHz		0.39		
		1794MHz		0.36		
		5MHz		85		
		204MHz		50		
Isolation	RFC to RFx	612MHz		40		dB
		1218MHz		34		
		1794MHz		27		
		5MHz		85		
		204MHz		60		
Isolation	RFx to RFx	612MHz		48		dB
		1218MHz		38		
		1794MHz		35		
Return Loss	RFC, RFx	5MHz – 3GHz (Active port)	15	20		dB
Input P1dB	RFC - RFx	50Ω Impedance @2140MHz		33		dBm
Input IP3* (note)	RFC - RFx	633MHz (Pin=18dBm/tone)		72		dBm
Input IP2* (note)	RFC – RFx	633MHz (Pin=18dBm/tone)		110		dBm
2 nd Harmonic	RFC – RFx	633MHz (Pin=25dBm)		111		dBc
3 rd Harmonic	RFC – RFx	633MHz (Pin=25dBm)		120		dBc
Video Feedthrough**		5ns rise-time pulse		15		mVpp
6 11 11 71	250 25	50% control to 90% RF		500		
Switching Time	RFC – RFx	50% control to 10% RF		400		ns

^{*} Tone spacing is 20KHz.

^{**} DC transient test at RF all ports (RFC, RF1, RF2) when V1 is switched from High to Low or from Low to High in a 75Ω setup. Excluding SMA Connector and PCB loss. 5MHz(0.02dB), 204MHz(0.05dB), 1218MHz(0.13dB), 1700MHz(0.17dB), 1794MHz(0.19dB)

Product Description

Figure 3 Functional Block Diagram

Table 4 Pin Descriptions

No.	Pin Name	Descriptions
1	V1	Digital Control Logic Input.
2	ANT (RFC)	ANT RF port (RFC).
3	VDD	Supply Voltage.
4	Rx (RF2)	Rx RF port (RF2).
5	GND	Ground
6	Tx (RF1)	Tx RF port (RF1).
Pad	Exposed Pad	Ground

Table 5 V1 Control Truth Table

V1	ANT-Tx	ANT-Rx
0	OFF	ON
1	ON	OFF

Table 6 Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	5.5	V
Supply Current	IDD	-	140	-	μΑ
Digital Input Control (V1)	V1 High	1.0	-	3.3	V
	V1 Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C

Table 7 Absolute Maximum Ratings

	Parameter		Symbol	Min	Max	Unit
Supply Voltage			VDD	-0.3	5.5	V
Digital Input Voltage (V1)			V1	-0.3	3.6	V
Maximum Input Power			-	-	41	dBm
Storage Temperature range			-	-65	+150	°C
ESD	НВМ	All pins	-	-	2500	V
ESD	CDM	All pins	-	-	1000	V

Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs. Vdd (RFC - RFx)

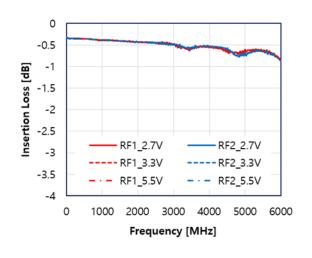


Figure 5 Insertion Loss vs. Temp (RFC - RFx)

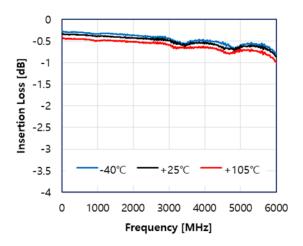


Figure 6 Return Loss (RFC, RFx)

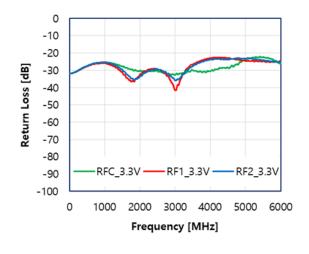
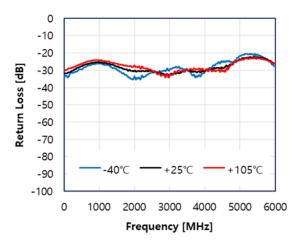



Figure 7 Return Loss vs. Temp (RFC)

Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8 Isolation vs. Vdd (RFC - RFx)

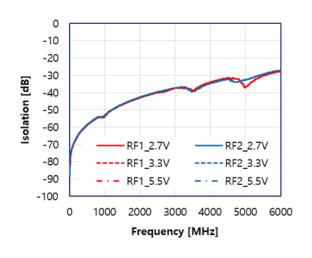


Figure 9 Isolation vs. Temp (RFC-RFx)

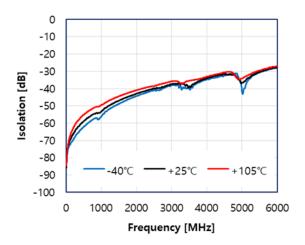


Figure 10 Isolation vs. Vdd (RFx - RFx)

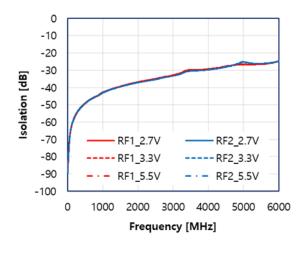
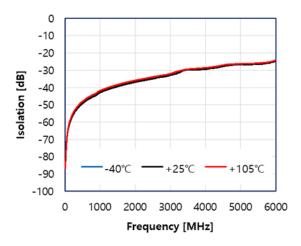



Figure 11 Isolation vs. Temp (RFx - RFx)

Ver. 2.1

Typical Performances - 75Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 75 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 12 Insertion Loss (RFC - RFx)

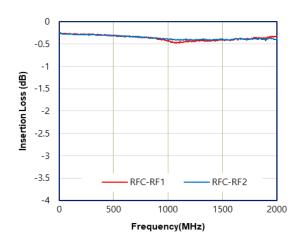


Figure 13 Insertion Loss vs. Temp (RFC - RFx)

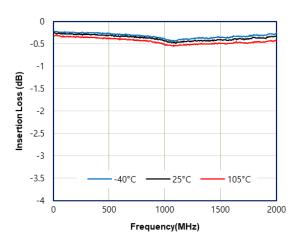


Figure 14 Return Loss (RFC, RFx)

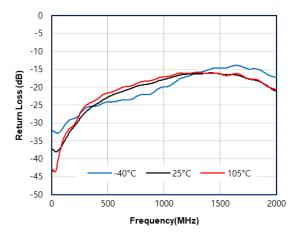



Figure 15 Return Loss vs. Temp (RFC)

Typical Performances - 75Ω

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 75 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 16 Isolation (RFC - RFx)

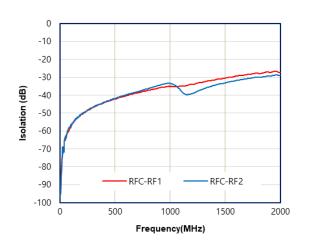


Figure 17 Isolation vs. Temp (RFC - RFx)

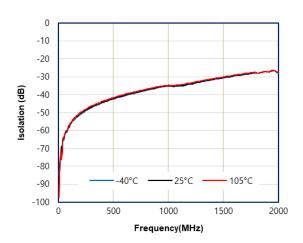


Figure 18 Isolation (RFx - RFx)

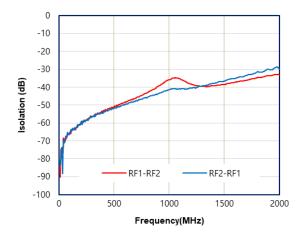
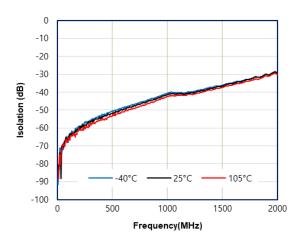



Figure 19 Isolation vs. Temp (RFx - RFx)

Evaluation Board - 50Ω

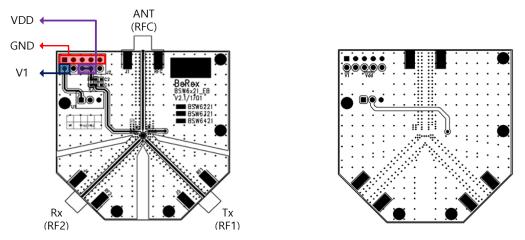


Figure 20 Evaluation Board Layout - 50Ω

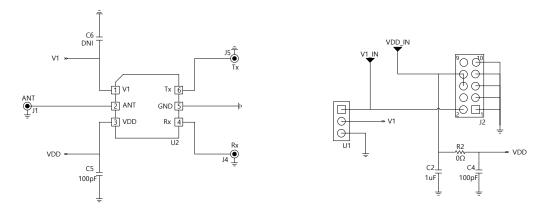


Figure 21 Evaluation Board Schematic - 50Ω

COPPER: 1oz (0.035mm), Top Layer RO4003C Fr: 3.38 RO4003C / 0.305mm COPPER: 1oz (0.035mm), Inner Layer FR-4 Er: 4.5~4.8 FR-4 / 0.36mm FINISH THICKNESS: 1.55T COPPER: 1oz (0.035mm), Inner Layer FR-4 Er: 4.5~4.8 FR-4 / 0.73mm

Figure 22 Evaluation Board PCB Layer Information 50Ω

No.	Ref Des	Part Qty	Part Qty Part Number	
1	C2	1	CAP 1608 1uF J 50V	
2	C4	1	CAP 1608 100pF J 50V	
3	C5*	1	CAP 1005 100pF J 50V	
4	C6	1	CAP 1005 DNI	
5	R2	1	RES 1608 J 0ohm	
6	U1	1	3 Pin Header	
7	J2	1	10 Pin Header	
8	ANT, Tx, Rx	3	3 SMA_END_LAUNCH	
9	U2	1	1 5X1 5 6L BSW6321	

Table 8 Bill of Material - Evaluation Board 50Ω

BeRex

•website: www.berex.com

COPPER: 1oz (0.035mm), Bottom Layer

●email: sales@berex.com

Ver. 2.1

^{*} C5 should be placed near the device.

Evaluation Board - 75Ω

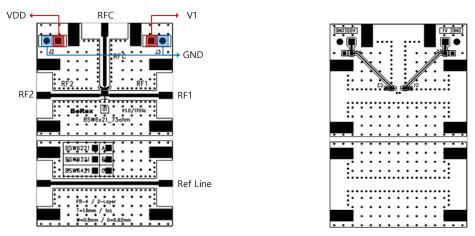


Figure 23 Evaluation Board Layout - 75Ω

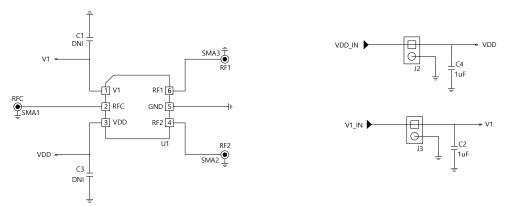
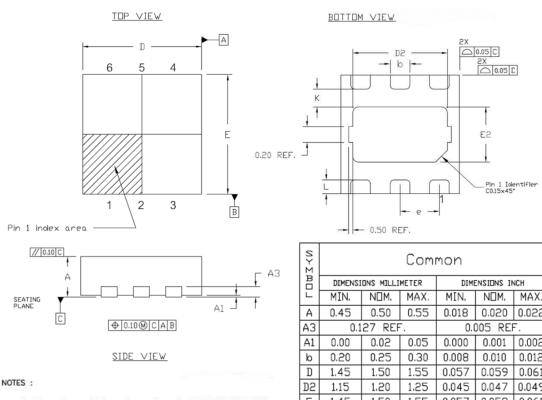


Figure 24 Evaluation Board Schematic - 75Ω

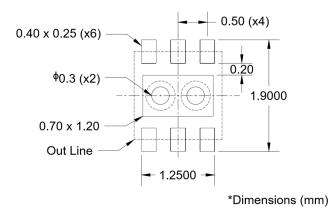
COPPER: 1oz (0.035mm), Top Layer FR-4 Er: 4.5~4.8 FR-4 | 0.58mm COPPER: 1oz (0.035mm), Inner Layer FR-4 Er: 4.5~4.8 FR-4 / 0.3mm FINISH THICKNESS:1.6T COPPER: 1oz (0.035mm), Inner Layer FR-4 Er: 4.5~4.8 FR-4 / 0.58mm COPPER: 1oz (0.035mm), Bottom Layer

Figure 25 Evaluation Board PCB Layer Information 75Ω


Table 9 Bill of Material - Evaluation Board 75Ω

No.	Ref Des	Part Qty	Part Number	Remark
1	C2,C4	2	2 CAP 0603 1uF 50V	
2	C1,C3	2	CAP 0402 DNI	
3	RFC,RF1,RF2	3	F Type_END_LAUNCH	
4	J2,J3	2	2 Pin Header	
5	U2	1	DFN 1.5X1.5_6L_ BSW6321	

Ver. 2.1

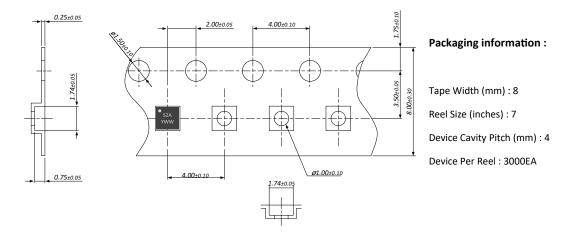

Package Outline Drawing

- 1. Dimension and tolerancing conform to ASME Y14.5M-1994.
- 2. Controlling Dimensions: Millimeter. Converted INCH dimension are not necessarily exact.
- 3. Dimension b applied to Metallized terminal and is measured between 0.15 to 0.30mm from terminal tip.

ロサストロコ			Com	mon		
B	DIMENSIONS MILLIMETER DIMENSIONS INCH				ICH .	
L	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.45	0.50	0.55	0.018	0.020	0.022
АЗ	0.127 REF.			0.0	005 REF	₹.
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.20	0.25	0.30	0.008	0.010	0.012
D	1.45	1.50	1.55	0.057	0.059	0.061
D2	1.15	1.20	1.25	0.045	0.047	0.049
Ε	1.45	1.50	1.55	0.057	0.059	0.061
E2	0.65	0.70	0.75	0.026	0.028	0.030
е	0.500 BSC		0.	020 BS	С	
L	0.125	0.175	0.225	0.005	0.007	0.009
Κ	0,230	_	_	0.009	_	_

Figure 26 Package Outline Drawing

Figure 27 Recommended Land Pattern


BeRex •website: www.berex.com •email: sales@berex.com 12

BSW6321

5MHz-6000MHz High Linearity Reflective SPDT RF switch

Tape & Reel

Package Marking

S2A YWW S : Switch

2: The number of switch throw

B: Sequential Number

Y : Year

WW : Work Week

Figure 28 Package Marking

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 2

Value: Passes < 2500V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020

Caution: ESD Sensitive
Appropriate precautions in handling, packaging and testing devices must be observed.

Proper ESD procedures should be followed when handling this device.

NATO CAGE code:

2 N 9 6 I	F
-----------	---

BeRex ●website: <u>www.berex.com</u>

•em:

•email: sales@berex.com