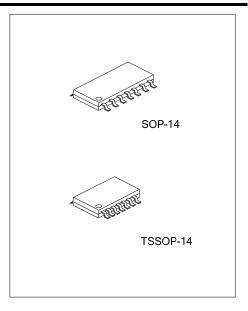


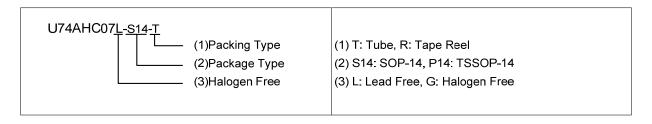
UTC UNISONIC TECHNOLOGIES CO., LTD

U74AHC07 CMOS IC

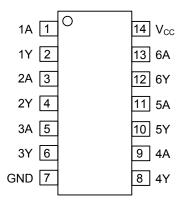

NON-INVERT BUFFERS WITH **OPEN-DRAIN OUTPUT**

DESCRIPTION

The U74AHC07 is a device with six independent non-inverting buffers and the output of the buffer is an open drain. Each buffer provides the Function Y=A.


FEATURES

- * Operate From 2V to 5.5V
- * High Noise Immunity
- * Low Power Dissipation
- * Balanced Propagation Delays
- * Output Capability Standard (Open Drain)


ORDERING INFORMATION

Orderin	Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing
U74AHC07L-S14-T	U74AHC07G-S14-T	SOP-14	Tube
U74AHC07L-S14-R	U74AHC07G-S14-R	SOP-14	Tape Reel
U74AHC07L-P14-T	U74AHC07G-P14-T	TSSOP-14	Tube
U74AHC07L-P14-R	U74AHC07G-P14-R	TSSOP-14	Tape Reel

www.unisonic.com.tw 1 of 4 U74AHC07 cmos ic

■ PIN CONFIGURATION

■ FUNCTION TABLE (Each Gate)

INPUT A	OUTPUT Y
Н	Z
L	L

Note: H: High Voltage Level L: Low Voltage Level

Z: High-Impedance OFF-State

■ LOGIC SYMBOL(each gate)

Logic Symbol

IEC Logic Symbol

U74AHC07 cmos ic

■ ABSOLUTE MAXIMUM RATING (unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CC}	-0.5 ~ +7	V
Input Voltage		V_{IN}	-0.5 ~ +7	V
Output Valtage	Active Mode	\/	-0.5 ~ V _{CC} +0.5	V
Output Voltage High-Impedance Mode		V _{out}	-0.5 ~ +7	V
V _{CC} or GND Current		I _{CC}	±75	mA
Output Sink Current (V _{OUT} >-0.5V)		I _{OUT}	±25	mA
Input Clamp Current (V _{IN} <-0.5V)		I _{IK}	-20	mA
Output Clamp Current (V _{OUT} <-0.5V)		I _{OK}	±20	mA
Operating Temperature		T_{OPR}	-40 ~ +85	°C
Storage Temperature		T _{STG}	-65 ~ + 150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lungation to Ameleiant	SOP-14		76	°C/W
Junction to Ambient	TSSOP-14	$\Theta_{ m JA}$	113	°C/W

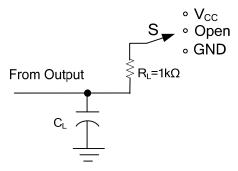
■ RECOMMENDED OPERATING COMDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Supply Voltage	V _{CC}		2.0	5.0	5.5	V	
Input Voltage	V_{IN}		0		5.5	V	
Output Valtage		Active Mode	0		V_{CC}	V	
Output Voltage	V_{OUT}	High-Impedance Mode	0		6.0	V	
	V _{IH}	V _{CC} =2.0V	1.5				
High-Level Input Voltage		V _{CC} =3.0V	2.1			V	
		V _{CC} =5.5V	3.85				
		V _{CC} =2.0V			0.5		
Low-Level Input Voltage V _{IL}	V_{IL}	V _{CC} =3.0V			0.9	V	
	V _{CC} =5.5V			1.65			
Input Transition Rise or Fall Rate	1 /1	V _{CC} =3.3±0.3V			100	/\ /	
	t_R / t_F	V _{CC} =5.0±0.5V			20	ns/V	

■ STATIC CHARACTERISTICS (TA=25°C)

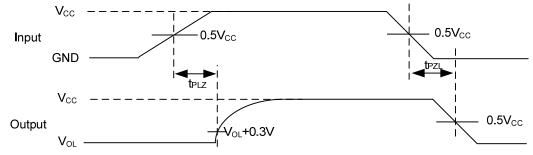
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
	V_{OL}		V _{CC} =2.0V			0.1	
		I _{OL} =50μA	V_{CC} =3.0V			0.1	
Low-Level Output Voltage			V_{CC} =4.5 V			0.1	V
		I _{OL} =4 mA	V _{CC} =3.0V			0.36	
		I _{OL} =8mA	V _{CC} =4.5V			0.36	
Input Leakage Current	I _{I(LEAK)}	V_{IN} =5.5V or GND, V_{CC} =0V to 5.5V				0.1	μΑ
3-State Output OFF-state Current	l _{OZ}	V _{IN} =V _{IH} or V _{IL} , V _{OUT} =V _{CC} or GND, V _{CC} =5.5V				±0.25	μA
Quiescent Supply Current	ΙQ	$V_{IN}=V_{CC}$ or GND, $I_{OUT}=0$, $V_{CC}=5.5V$				1	μA
Input Capacitance	C _{IN}				1.5	10	pF

■ SWITCHING CHARACTERISTICS (TA=25°C)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Propagation Delay From Input(A) To Output(Y)	t_{PZL}		C _L =15 pF		3.5	5.6	ns
			C _L =50 pF		5.0	8.0	
	t _{PLZ}	1 V cc = 3 .3 ± U .5 V	C _L =15 pF		5.8	7.9	
			C _L =50 pF		8.3	11.5	
Propagation Delay From Input(A) To Output(Y)	t _{PZL}	V _{CC} =5±0.5 V	C _L =15 pF		2.5	3.9	
			C _L =50 pF		3.6	5.5	ns
	t_{PLZ}	V _{CC} =5±0.5 V	C _L =15 pF		4.2	5.1	

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

U74AHC07 cmos ic


	C _L =50	pF	6.0	7.5	

TEST CIRCUIT AND WAVEFORMS

TEST	S
t _{PLH} /t _{PHL}	Open
t _{PHZ} /t _{PZH}	GND
t _{PLZ} /t _{PZL}	V_{CC}

Test circuit for measuring propagation delay

Waveforms showing the Input(A) to Output(Y) propagation delays.

Note: C_L includes probe and jig capacitance.

All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, Zo = 50 Ω , tr \leq 3ns, tf \leq 3ns.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.