Hexa-Path Magnetics

HP1, HPH1

HP2, HPH2

HP3, HPH3

HP4, HPH4

HP5, HPH5

- Six 1:1 isolated windings that can be connected in series or parallel
- Tightly coupled windings
- 500 Vrms isolation between each winding
- Power range: 5-50 Watts as inductor and flyback transformer; up to 150 Watts as forward transformer
- Frequency range up to 1 MHz

These off-the shelf parts can be used to create thousands of configurations, providing a convenient method for designers to create custom magnetics. By connecting the windings in series or parallel, the Hexa-Path components can be configured as inductors, coupled inductors and transformers for use in virtually any application: flyback, buck/boost, push-pull, forward, full and half bridge, Cuk, and SEPIC.

There are six different sizes available with five HP parts and five HPH parts in each size. The HP offers lower DCR and higher Irms ratings. The HPH offers higher inductance and greater energy storage capabilities.

Coilcraft

Hexa-Path Magnetics

Part number ${ }^{1}$	Inductance ${ }^{2}$ $(\mu \mathrm{H})$	$\begin{gathered} \text { DCR } \\ \max ^{3} \\ \text { (Ohms) } \end{gathered}$	Volt-time product ${ }^{4}$ (V- $\mu \mathrm{sec}$)	Peakenergy storage ${ }^{5}$ ($\mu \mathrm{J}$)	Isat ${ }^{6}$ (A)	Irms ${ }^{7}$ (A)
HP1-1400L	$89.6 \pm 25 \%$	0.130	23.4	Note 8	Note 8	0.74
HP1-0190L	$12.2 \pm 20 \%$	0.130	23.4	29.8	0.440	0.74
HP1-0102L	$6.5 \pm 15 \%$	0.130	23.4	55.1	0.820	0.74
HP1-0076L	$4.9 \pm 10 \%$	0.130	23.4	74.7	1.10	0.74
HP1-0059L	$3.8 \pm 5 \%$	0.130	23.4	93.8	1.40	0.74
HP2-1600L	$78.4 \pm 25 \%$	0.085	44.0	Note 8	Note 8	1.13
HP2-0216L	$10.6 \pm 20 \%$	0.085	44.0	79.2	0.770	1.13
HP2-0116L	$5.7 \pm 15 \%$	0.085	44.0	184	1.60	1.13
HP2-0083L	$4.1 \pm 10 \%$	0.085	44.0	228	2.10	1.13
HP2-0066L	$3.2 \pm 5 \%$	0.085	44.0	252	2.50	1.13
HP3-0950L	$77.0 \pm 25 \%$	0.055	30.4	Note 8	Note 8	1.73
HP3-0138L	$11.2 \pm 20 \%$	0.055	30.4	59.6	0.650	1.73
HP3-0084L	$6.8 \pm 15 \%$	0.055	30.4	111	1.14	1.73
HP3-0055L	$4.5 \pm 10 \%$	0.055	30.4	156	1.66	1.73
HP3-0047L	$3.8 \pm 5 \%$	0.055	30.4	173	1.90	1.73
HP4-1150L	$93.2 \pm 25 \%$	0.055	47.3	Note 8	Note 8	1.88
HP4-0140L	$11.3 \pm 20 \%$	0.055	47.3	142	1.00	1.88
HP4-0075L	$6.1 \pm 15 \%$	0.055	47.3	307	2.00	1.88
HP4-0060L	$4.9 \pm 10 \%$	0.055	47.3	386	2.50	1.88
HP4-0047L-	$3.8 \pm 5 \%$	0.055	47.3	490	3.20	1.88
HP5-1200L	$76.8 \pm 25 \%$	0.045	62.8	Note 8	Note 8	2.25
HP5-0155L	$9.9 \pm 20 \%$	0.045	62.8	281	1.50	2.25
HP5-0083L	$5.3 \pm 15 \%$	0.045	62.8	562	2.90	2.25
HP5-0067L	$4.3 \pm 10 \%$	0.045	62.8	626	3.40	2.25
HP5-0053L	$3.4 \pm 5 \%$	0.045	62.8	946	4.70	2.25
HP6-2400L	$86.4 \pm 25 \%$	0.020	87.9	Note 8	Note 8	3.50
HP6-0325L	$11.7 \pm 20 \%$	0.020	87.9	332	1.50	3.50
HP6-0158L	$5.69 \pm 15 \%$	0.020	87.9	981	3.70	3.50
HP6-0121L	$4.36 \pm 10 \%$	0.020	87.9	1485	5.20	3.50
HP6-0090L	$3.24 \pm 5 \%$	0.020	87.9	1833	6.70	3.50
HPH1-1400L	$202 \pm 25 \%$	0.340	35.1	Note 8	Note 8	0.62
HPH1-0190L	$27.4 \pm 20 \%$	0.340	35.1	31.1	0.300	0.62
HPH1-0102L	$14.7 \pm 15 \%$	0.340	35.1	60.2	0.570	0.62
HPH1-0076L	$10.9 \pm 10 \%$	0.340	35.1	99.2	0.850	0.62
HPH1-0059L	$8.5 \pm 5 \%$	0.340	35.1	107	1.00	0.62
HPH2-1600L	$160 \pm 25 \%$	0.155	30.8	Note 8	Note 8	0.83
HPH2-0216L_	$21.6 \pm 20 \%$	0.155	30.8	82.3	0.550	0.83
HPH2-0116L	$11.6 \pm 15 \%$	0.155	30.8	177	1.10	0.83
HPH2-0083L	$8.3 \pm 10 \%$	0.155	30.8	302	1.70	0.83
HPH2-0066L_	$6.6 \pm 5 \%$	0.155	30.8	333	2.00	0.83
HPH3-0950L	$160 \pm 25 \%$	0.125	43.9	Note 8	Note 8	1.13
HPH3-0138L	$23.6 \pm 20 \%$	0.125	43.9	52.5	0.420	1.13
HPH3-0084L	$14.2 \pm 15 \%$	0.125	43.9	98.0	0.740	1.13
НРН3-0055L	$9.3 \pm 10 \%$	0.125	43.9	169	1.20	1.13
HPH3-0047L_	$7.94 \pm 5 \%$	0.125	43.9	196	1.40	1.13
HPH4-1150L	$194 \pm 25 \%$	0.078	68.3	Note 8	Note 8	1.65
HPH4-0140L_	$23.7 \pm 20 \%$	0.078	68.3	138	0.680	1.65
HPH4-0075	$12.7 \pm 15 \%$	0.078	68.3	314	1.40	1.65
HPH4-0060L	$10.1 \pm 10 \%$	0.078	68.3	368	1.70	1.65
HPH4-0047L_	$7.94 \pm 5 \%$	0.078	68.3	529	2.30	1.65
HPH5-1200L	$173 \pm 25 \%$	0.070	94.2	Note 8	Note 8	1.95
HPH5-0155L	$22.3 \pm 20 \%$	0.070	94.2	248	0.940	1.95
HPH5-0083L	$12.0 \pm 15 \%$	0.070	94.2	546	1.90	1.95
HPH5-0067L	$9.65 \pm 10 \%$	0.070	94.2	700	2.40	1.95
HPH5-0053L_	$7.63 \pm 5 \%$	0.070	94.2	809	2.90	1.95
HPH6-2400L	$194 \pm 25 \%$	0.030	131.9	Note 8	Note 8	2.90
HPH6-0325L	$26.3 \pm 20 \%$	0.030	131.9	477	1.20	2.90
HPH6-0158L	$12.8 \pm 15 \%$	0.030	131.9	1176	2.70	2.90
HPH6-0121L	$9.8 \pm 10 \%$	0.030	131.9	1783	3.80	2.90
HPH6-0090L	$7.29 \pm 5 \%$	0.030	131.9	1944	4.60	2.90

1. Please specify termination and packaging codes: HPH1-1400 L $\frac{1}{\mathrm{D}}$
 Termination: $\mathbf{L}=$ RoHS compliant tin-silver over tin over nickel over phos bronze. Special order:
 T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).

Packaging: All but HP6 and HPH6:
D = 13" machine-ready reel. EIA-481 embossed plastic tape
$\mathbf{B}=$ Less than full reel. In tape, but not machine ready. To have a leader and trailer added (\$25 charge), use code letter D instead.

HP6 and HPH6: 24 per tray (no code)
2. Inductance is per winding, measured at 100 kHz , $0.1 \mathrm{Vrms}, 0$ Adc.
3. DCR is per winding, measured on Cambridge Technology micro-ohmmeter or equivalent.
4. Volt-time product is for a single winding or multiple windings connected in parallel. To calculate volttime product for windings connected in series, multiply the value specified in the table by the number of windings connected in series.
5. Peak energy storage is for any combination of windings, assuming saturation current applied. See note 6 for definition of saturation current.
6. DC current at which the inductance drops 30% typ from its value without current, based on current applied to all six windings connected in series. For applications where all windings are not connected in series, use the following equation to calculate I sat: I sat $=$ I sat table $\times 6 \div$ number of windings in series.
7. Current that causes a $40^{\circ} \mathrm{C}$ rise from $25^{\circ} \mathrm{C}$ ambient due to self heating, tested with continuous current flow through all windings connected in series. Application temperature rise will depend on the operating current, duty cycle, and winding connection.
8. Part is designed exclusively for use as a forward converter transformer and was not tested for energy storage and saturation current.
9. Electrical specifications at $25^{\circ} \mathrm{C}$.

Core material Ferrite
Terminations RoHS tin-silver over tin over nickel over phos bronze. Other terminations available at additional cost.
Ambient temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ with I rms current, $+85^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with derated current Storage temperature Component: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Packaging: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ Resistance to soldering heat Max three 40 second reflows at $+260^{\circ} \mathrm{C}$, parts cooled to room temperature between cycles
Moisture Sensitivity Level (MSL) 1 (unlimited floor life at $<30^{\circ} \mathrm{C} / 85 \%$ relative humidity)
Failures in Time (FIT) / Mean Time Between Failures (MTBF)
38 per billion hours / $26,315,789$ hours, calculated per Telcordia SR-332
PCB washing Only pure water or alcohol recommended

Hexa-Path Magnetics

HP1, HPH1

Weight: 1.4 g
Packaging 500 per $13^{\prime \prime}$ reel Plastic tape: 24 mm wide,
Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$

HP2, HPH2

Weight: $2.7-2.8 \mathrm{~g}$
Packaging 400 per 13" reel Plastic tape: 32 mm wide,
Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$

Hexa-Path Magnetics

HP3, HPH3

Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$
Weight: $4.2-4.6 \mathrm{~g}$
Packaging 200 per $13^{\prime \prime}$ reel Plastic tape: 44 mm wide,
0.4 mm thick, 28 mm pocket spacing, 9.6 mm pocket depth

HP4, HPH4

Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$
Weight: $6.8-7.5 \mathrm{~g}$
Packaging 200 per $13^{\prime \prime}$ reel Plastic tape: 44 mm wide, 0.4 mm thick, 24 mm pocket spacing, 11.5 mm pocket depth

Hexa-Path Magnetics

HP5, HPH5

Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$
Weight: 10.6 - 11.5 g
Packaging 175 per $13^{\prime \prime}$ reel Plastic tape: 44 mm wide, 0.4 mm thick, 28 mm pocket spacing, 12.0 mm pocket depth

HP6, HPH6

Weight: $22.4-24.3 \mathrm{~g}$
Packaging 24 per tray
Dimensions are in $\frac{\text { inches }}{\mathrm{mm}}$

Hexa-Path Magnetics
Formulas used to calculate electrical characteristics
Connecting windings in series
Inductance $=$ Inductance table $\times(\text { number of windings })^{2}$
DCR $=$ DCR $_{\text {table }} \times$ number of windings
I sat $=($ I sattable $\times 6) \div$ number of windings connected in series
| rms $=1$ rmstable
Connecting windings in parallel
Inductance = Inductance ${ }_{\text {table }}$
DCR $=1 \div$ [number of windings $\times\left(1 \div\right.$ DCR $\left._{\text {table }}\right)$]
I sat $=\left(\right.$ I sat $\left.t_{\text {table }} \times 6\right) \div$ number of windings connected in series
I rms $=I r m s_{\text {table }} \times$ number of windings

Inductors - using multiple windings

Part number	Inductance $(\mu \mathrm{H})$	DCR max $($ Ohms $)$	Volt-time product $(\mathrm{V}-\mu \mathrm{sec})$	Peakenergy storage $(\mu \mathrm{J})$	Isat (A)	Irms (A)
HP3-0138L_	$11.2 \pm 20 \%$	0.055	30.4	1.656	0.650	1.73

Connecting windings in series

For higher inductance, the windings can be connected in series. As inductance increases, energy storage and I rms remain the same, but DCR increases and I sat decreases.
Example: Calculate new electricals for HP3-0138L with four windings $\left(\mathrm{W}_{\mathrm{n}}\right)$ connected in series:

$$
\begin{aligned}
& \text { Inductance }=\text { Inductance } \text { table } \times \mathrm{W}_{\mathrm{n}}{ }^{2} \\
& =11.2 \times 4^{2}=179.2 \mu \mathrm{H} \\
& D C R=D C R \text { table } \times W_{n} \\
& =0.055 \times 4=0.22 \mathrm{Ohms} \\
& \text { Isat }=(\text { Isattable }) \times 6 \div \mathrm{W}_{\mathrm{n}} \\
& =(0.65 \times 6) \div 4=0.975 \mathrm{~A} \\
& \text { Irms }=\mid \text { rmstable }=1.73 \mathrm{~A}
\end{aligned}
$$

Connecting windings in parallel

To increase current ratings, the windings $\left(W_{n}\right)$ can be connected in parallel. DCR decreases, current ratings increase, and inductance remains the same.
Example: Calculate new electricals for HP5-0083L, with three (W_{n}) windings connected in parallel (equivalent to one winding in series):
Inductance $=$ Inductance table

$$
=11.2 \mu \mathrm{H}
$$

DCR $=1 \div\left[\mathrm{W}_{\mathrm{n}} \times\left(1 \div\right.\right.$ DCR $\left.\left._{\text {table }}\right)\right]$

$$
=1 \div[3 \times(1 \div 0.045)]=0.015 \mathrm{Ohms}
$$

Isat $=($ I sattable $\times 6) \div \mathrm{W}_{n}$

$$
=(0.65 \times 6) \div 1=3.9 \mathrm{~A}
$$

I rms $=1$ rmstable $\times \mathrm{W}_{\mathrm{n}}$

$$
=1.73 \times 3=5.19 \mathrm{~A}
$$

$\mathrm{L}=11.2 \mu \mathrm{H}$
$D C R=0.015 \Omega$
I sat $=3.9 \mathrm{~A}$
I rms = 5.19 A
Specifications subject to change without notice. Please check our website for latest information.

Connecting windings in series
Inductance $=$ Inductance table $\times(\text { number of windings })^{2}$
DCR $=$ DCR $_{\text {table }} \times$ number of windings
I sat $=($ I sattable $\times 6) \div$ number of windings connected in series
| rms $=1$ rmstable
Connecting windings in parallel
Inductance = Inductance ${ }_{\text {table }}$
DCR $=1 \div$ [number of windings $\times\left(1 \div\right.$ DCR $\left._{\text {table }}\right)$]
I sat $=($ I sat table $\times 6) \div$ number of windings connected in series
I rms $=I r m s_{\text {table }} \times$ number of windings

Create a 13 Watt $2: 1: 1$ flyback transformer with a bias winding

Choose HPH3-0138L
Vin $=36-57$ Vdc; Vout $=12 \mathrm{~V}, 1.1 \mathrm{~A}$

Part number	Inductance $(\boldsymbol{\mu} \mathrm{H})$	DCR max $(\mathbf{O h m s})$	Volt-time product $(\mathrm{V}-\boldsymbol{\mu s e c})$	Peakenergy storage $(\boldsymbol{\mu J})$	Isat (\mathbf{A})	Irms (\mathbf{A})
HPH3-0138L	$23.6 \pm 20 \%$	0.125	43.9	1.457	0.420	1.13

Connecting primary windings in series
When primary windings ($\mathrm{W}_{\text {pri }}$) are connected in series, inductance increases, energy storage and I rms remain the same, but DCR increases and Isat decreases.

Example: For HPH3-0138L, connect two primary windings in series:

$$
\begin{aligned}
\text { Inductance } & =\text { Inductance } \\
& =23.6 \times 2^{2}=94.4 \mu \mathrm{H}
\end{aligned}
$$

DCR $=$ DCR ${ }_{\text {table }} \times \mathrm{W}_{\text {pri }}$

$$
=0.125 \times 2=0.25 \mathrm{Ohms}
$$

$$
\text { Isat }=(\text { I sattable } \times 6) \div W_{\text {pri }}
$$

$$
=(0.42 \times 6) \div 2=1.26 \mathrm{~A}
$$

$1 \mathrm{rms}=\mid \mathrm{rms}$ table $=1.13 \mathrm{~A}$
Connecting secondary windings in parallel
When secondary windings ($\mathrm{W}_{\text {sec }}$) are connected in parallel, DCR de-

[^0]
creases and Irms increases.
Example: For HPH3-0083L, connect two secondary windings in parallel:
\[

$$
\begin{aligned}
\text { DCR } & =1 \div\left[\mathrm{W}_{\mathrm{sec}} \times(1 \div \mathrm{DCR}\right. \\
& =1 \div[(2 \times(1 \div 0.125)]=0.0625 \text { Ohms } \\
& =1 \mathrm{rms}
\end{aligned}
$$=\mathrm{Irmstable} \times \mathrm{W}_{\mathrm{sec}}=1.13 \times 2=2.26 \mathrm{~A} .
\]

Create a 130 Watt, $1: 1$, two switch forward converter transformer

Choose HPH6-2400L
Vin $=36-57 \mathrm{Vdc} ;$ Vout $=12 \mathrm{~V}, 10.8 \mathrm{~A}$

Part number	Inductance $(\boldsymbol{\mu H})$	DCR max $($ Ohms $)$	Volt-time product $(\mathrm{V}-\mu \mathrm{sec})$	Peakenergy storage $(\boldsymbol{\mu J})$	Isat (\mathbf{A})	Irms (\mathbf{A})
$\mathrm{HPH} 6-2400 \mathrm{~L}$	$194 \pm 25 \%$	0.030	131.9	$\mathrm{~N} / \mathrm{A}$	N/A	2.90

Connecting primary windings in parallel
When primary windings ($\mathrm{W}_{\text {pri }}$) are connected in parallel, DCR decreases, Irms increases, and inductance and volt-time product remain the same.
Example: For HPH6-2400L, connect three primary windings in parallel:

$$
\begin{aligned}
\text { Inductance } & =\text { Inductance table } \\
& =194 \mu \mathrm{H} \\
& \begin{aligned}
\mathrm{DCR} & =1 \div\left[\mathrm{W}_{\text {pri }} \times\left(1 \div \mathrm{DCR}_{\text {table }}\right)\right] \\
& =1 \div[(3 \times(1 \div 0.030])=0.010 \mathrm{Ohms} \\
\mathrm{VT} & =\mathrm{V} T_{\text {table }} \\
& =131.9 \mathrm{~V}-\mu \mathrm{sec} \\
\text { Irms } & =I r m s \\
& =2.90 \times 3=8.70 \mathrm{~A}
\end{aligned}
\end{aligned}
$$

Primary:
$\mathrm{L}=194 \mu \mathrm{H}$
DCR $=0.01 \Omega$

Secondary:

$D C R=0.01 \Omega$
Irms = 8.7 A

Connecting secondary windings in parallel
When secondary windings ($\mathrm{W}_{\text {sec }}$) are connected in parallel, DCR decreases and Irms increases.
Example: For HPH6-2400L, connect three secondary windings in parallel:

```
DCR \(=1 \div\left[\mathrm{W}_{\text {sec }} \times\left(1 \div \mathrm{DCR}_{\text {table }}\right)\right]\)
    \(=1 \div[(3 \times(1 \div 0.030)]=0.010 \mathrm{Ohms}\)
Irms \(=\mid r m s_{\text {table }} \times W_{\text {sec }}\)
    \(=2.90 \times 3=8.70 \mathrm{~A}\)
```


Connecting windings in series

Inductance $=$ Inductance table \times (number of windings) ${ }^{2}$
DCR $=$ DCR $_{\text {table }} \times$ number of windings
I sat $=($ I sattable $\times 6) \div$ number of windings connected in series
| rms = I rmstable
Connecting windings in parallel
Inductance = Inductance ${ }_{\text {table }}$
DCR $=1 \div$ [number of windings $\times\left(1 \div\right.$ DCR $\left._{\text {table }}\right)$]
I sat $=\left(\right.$ I sat $\left.t_{\text {table }} \times 6\right) \div$ number of windings connected in series
I rms $=I r m s_{\text {table }} \times$ number of windings

Create a 100 Watt, $1: 2$, half bridge forward converter transformer with center tapped secondary

Choose HP6-2400L
Vin $=36-57 \mathrm{Vdc}$; Vout $=24 \mathrm{~V}, 4.2 \mathrm{~A}$

Part number	Inductance $(\boldsymbol{\mu H})$	DCR max $($ Ohms $)$	Volt-time product $(\mathrm{V}-\mu \mathrm{sec})$	Peakenergy storage $(\boldsymbol{\mu J})$	Isat (\mathbf{A})	Irms (\mathbf{A})
$\mathrm{HPH} 6-2400 \mathrm{~L}$	$194 \pm 25 \%$	0.030	131.9	$\mathrm{~N} / \mathrm{A}$	N/A	2.90

Connecting primary windings in parallel

When primary windings ($\mathrm{W}_{\text {pri }}$) are connected in parallel, DCR decreases, current ratings increase, and inductance and volt-time product remain the same.
Example: For HPH-2400L, connect two primary windings in parallel:

$$
\begin{aligned}
\text { Inductance } & =\text { Inductance } \\
& =194 \mu \mathrm{H} \\
& \\
\mathrm{DCR} & =1 \div\left[\mathrm{W}_{\text {pri }} \times(1 \div \mathrm{DCR}\right. \\
& =1 \div[(2 \times(1 \div 0.030)]=0.015 \text { Ohms } \\
& \mathrm{VT} \quad \\
= & \left.\mathrm{V} \mathrm{~T}_{\text {table }}\right) \\
& =131.9 \mathrm{~V}-\mu \mathrm{sec} \\
\text { Irms } & =\text { Irms } \\
& =2.90 \times 2=5.8 \mathrm{~A}
\end{aligned}
$$

Connecting secondary windings in series

When secondary windings ($\mathrm{W}_{\text {sec }}$) are connected in series, I rms remains the same, but DCR increases.
Example: For HP6-2400L, connect four secondary windings in series, creating a center tap at pins 9 and 5 . For each half of the secondary:

$$
\begin{aligned}
\text { DCR } & =\text { DCR } \\
& =0.030 \times 2=0.060 \text { Ohms } \\
\text { Irms } & =I \text { rmstable } \\
& =2.9 \mathrm{~A}
\end{aligned}
$$

Primary:
$\mathrm{L}=194 \mu \mathrm{H}$
DCR $=0.015 \Omega$
Irms = 5.8 A
$\mathrm{VT}=131.9 \mathrm{~V}-\mu \mathrm{sec}$

Each half secondary; Sec A (3-9), Sec B5-7): DCR $=0.06 \Omega$
I rms $=2.9 \mathrm{~A}$

Connecting windings in series

Inductance $=$ Inductance table \times (number of windings) ${ }^{2}$
DCR $=$ DCR $_{\text {table }} \times$ number of windings
I sat $=($ I sattable $\times 6) \div$ number of windings connected in series
| rms = I rmstable
Connecting windings in parallel
Inductance = Inductance ${ }_{\text {table }}$
DCR $=1 \div$ [number of windings $\times\left(1 \div\right.$ DCR $\left._{\text {table }}\right)$]
I sat $=\left(\right.$ I sat $\left.t_{\text {table }} \times 6\right) \div$ number of windings connected in series
I rms $=I r m s_{\text {table }} \times$ number of windings

Create a 1:1 gate drive transformer

Choose HP1-1400L

Part number	Inductance $(\mu \mathrm{H})$	DCR max $($ Ohms $)$	Volt-time product $(V-\mu s e c)$	Peakenergy storage $(\mu \mathrm{J})$	Isat (A)	Irms (A)
HP1-1400L	$89.6 \pm 25 \%$	0.130	23.4	$\mathrm{~N} / \mathrm{A}$	N / A	0.74

Connecting primary windings in series

When primary windings ($\mathrm{W}_{\mathrm{pri}}$) are connected in series, inductance and volt-time product increase, energy storage and Irms remain the same, but DCR increases.
Example: For HPH1-1400L, connect three primary windings in series:

$$
\begin{aligned}
\text { Inductance } & =\text { Inductance } \\
& =89.6 \times 3^{2}=806.4 \mu \mathrm{H}
\end{aligned}
$$

DCR $=$ DCRtable $\times \mathrm{W}_{\text {pri }}$

$$
=0.130 \times 3=0.39 \text { Ohms }
$$

$\mathrm{VT}=\mathrm{VT}_{\text {table }} \times \mathrm{W}_{\text {pri }}$

$$
=70.2 \mathrm{~V}-\mu \mathrm{sec}
$$

Irms $=$ Irmstable

$$
=0.74
$$

Primary:
$\mathrm{L}=806.4 \mu \mathrm{H}$
$D C R=0.39 \Omega$
I rms $=0.74 \mathrm{~A}$
$\mathrm{VT}=70.2 \mathrm{~V}-\mu \mathrm{sec}$

Secondary:

DCR $=0.39 \Omega$
Irms $=0.74 \mathrm{~A}$

Connecting secondary windings in series
When secondary windings ($\mathrm{W}_{\text {sec }}$) are connected in series, I rms remains the same, but DCR increases.
Example: For HP1-1400L, connect three secondary windings in series:

$$
\begin{aligned}
\mathrm{DCR} & =\mathrm{DCR}_{\text {table }} \times \mathrm{W}_{\mathrm{sec}} \\
& =0.130 \times 3=0.39 \mathrm{Ohms} \\
\text { Irms } & =I \mathrm{rmstable} \\
& =0.74
\end{aligned}
$$

[^0]: Primary:
 $\mathrm{L}=94.4 \mu \mathrm{H}$
 DCR $=0.25 \Omega$
 I sat $=1.26 \mathrm{~A}$
 I rms = 1.13 A

