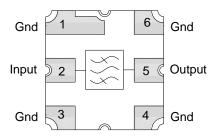


Applications

- · Wireless Infrastructure
- AMPS, CDMA and TDMA
- General Purpose RF Filter
- 4G, Multi-Standard
- UMTS Bands 1 and 10 Downlink
- Repeaters

SMP-12, 3.00 x 3.00 x 1.22 mm


Product Features

- 60 MHz Bandwidth
- · High Attenuation
- Single-ended Operation
- 50 Ohm Impedance
- Small Size: 3.00 x 3.00 x 1.22 mm
- Ceramic Surface Mount Package (SMP)
- · Hermetically Sealed
- RoHS Compliant, Pb-Free (

Functional Block Diagram

Top View

General Description

The 856738 is a Surface Acoustic Wave (SAW) based filter suitable for UMTS band 1 and 10 downlink.

856738 is specifically designed to meet the high performance expectations of insertion loss and rejection for UMTS downlink systems under all operating conditions.

This filter is housed in a compact, industry standard 3x3 mm footprint.

Low insertion loss, coupled with high attenuation makes this filter an ideal choice for Base Station Applications.

This filter is part of TriQuint's wide portfolio of RF filters.

Pin Configuration - Single Ended

Pin No.	Label
2	Input
5	Output
1.3,4,6	Ground

Ordering Information

Part No.	Description		
856738	2140 MHz SAW Filter		
856738-EVB	Evaluation board		

Standard T/R size = 5000 units/reel

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−40 to +85 °C
DC Voltage (instantaneous only on any port)	+5 V
Input Power (1)	+10 dBm

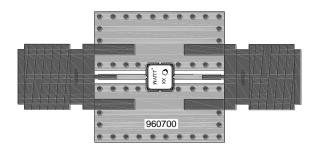
Notes:

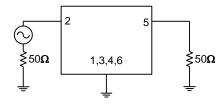
1. Operation of this device outside the parameter ranges given may cause permanent damage.

Electrical Specifications (1,2,3)

Test conditions unless otherwise noted: (2) Temp= -30 °C to +85 °C

Parameter (3)	Conditions	Min	Typ ⁽⁴⁾	Max	Units
Center Frequency		-	2140	-	MHz
Insertion Loss	2110 – 2170 MHz	-	2.3	3.5	dB
Amplitude Variation	2110 – 2170 MHz		0.9	1.5	dB p-p
	10 – 1980 MHz	25	27	-	
	1980 – 2025 MHz	30	33	-	
Absolute Attenuation	2025 – 2050 MHz	25	31	-	
(relative to zero dB)	2225 – 2260 MHz	30	36	-	dB
	2260 – 3000 MHz	25	30	-	
Input/Output Return Loss	2110 – 2170 MHz	8	12	-	dB-
Source Impedance (5)	single-ended	-	50	-	Ohms
Load Impedance (5)	single-ended	-	50	-	Ohms

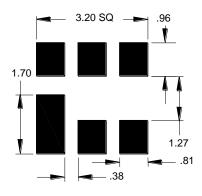

Notes:


- 1. All specifications are based on the test circuit shown below.
- 2. Production test is performed at room temp. to a guard-banded specification to ensure electrical compliance over temperature.
- 3. Electrical margin has been built into the design to account for variation due to temperature drift and manufacturing tolerances.
- 4. Typical values are based on average measurements at room temperature
- 5. This is the optimum impedance in order to achieve the performance shown.

Evaluation Board

Matching Schematics

Notes:

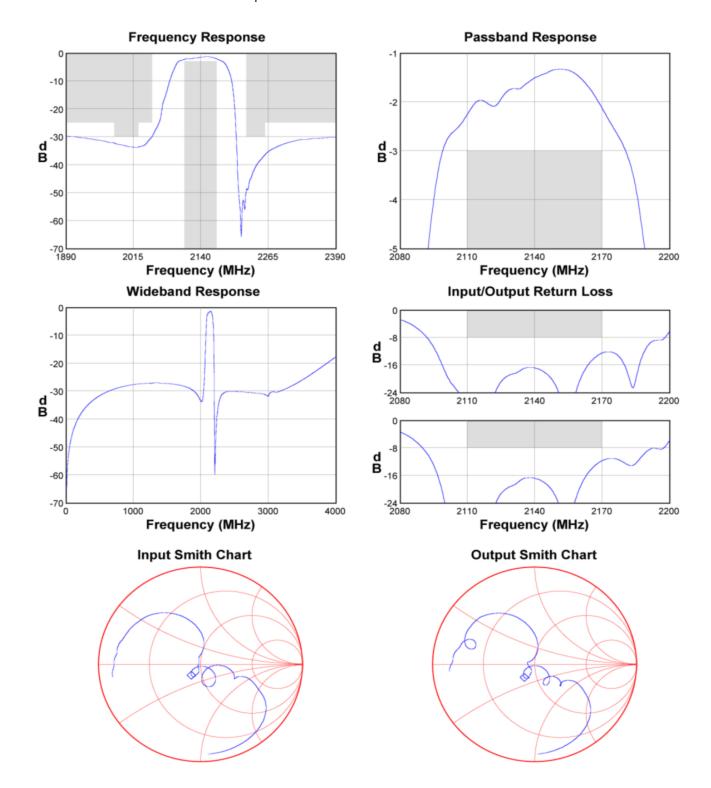

- 1. No impedance matching required.
- 2. PCB: Top, middle & bottom layers: 1 oz copper, Substrates:FR4 dielectric, 031" thick Finish plating: Nickel: 3-8μm thick, Gold: .03-.2μm thick Hole plating: Copper min .0008μm thick

Bill of Material - 856738-EVB

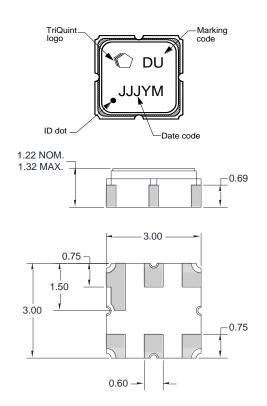
Reference Des.	Value	Description	Manuf.	Part Number
DUT	-	2140 MHz SAW filter	TriQuint	856738
SMA	-	SMA connector	Radiall USA Inc.	9602-1111-018
PCB	-	3-Layer	Multiple	960700

-3 of 6 -

PCB Mounting Pattern


Notes

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. This drawing specifies the mounting pattern used on the TriQuint evaluation board for this product. Some modification may be necessary to suit end user assembly materials and processes.


Performance Plots

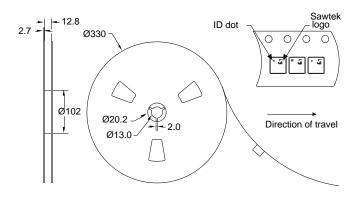
Test conditions unless otherwise noted: Temp= +25°C

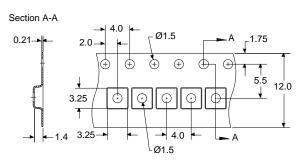
Package Information, Marking and Dimensions

Package Style: SMP-12A

Body: Al_2O_3 ceramic Lid: *Kovar*, *Ni* plated

Terminations: Au plating 0.5 - 1.0µm, over a 2-6µm Ni plating


The date code consists of JJJ =Julian day, Y = last digit of the year, and M = manufacturing site code


Notes:

- 1. All dimensions shown are typical in millimeters
- 2. All tolerances are ±0.15mm except overall length and width ±0.10mm
- 3. An asterisk (*) in front of the marking code indicates prototype.

Tape and Reel information

Standard T/R size = 5000 units/reel. All dimensions are in millimeters

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 0A

Value: Passes ≤ 100 V

Test: Electrostatic Discharge Sensitivity Testing,

Human Body Model (HBM) - component level

Standard: ESDA/JEDEC JS-001-2012

ESD Rating: Class A

Value: Passes ≤ 50 V Test: Machine Model (MM)

Standard: JEDEC Standard JESD22-A115

MSL Rating

Not applicable. Hermetic package.

Solderability

Compatible with both lead-free (260°C maximum reflow temperature) and tin/lead (245°C maximum reflow temperature) soldering processes.

Refer to <u>Soldering Profile</u> for recommended quidelines.

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: <u>www.triquint.com</u> Tel: +1.407.886.8860 Email: <u>info-sales@tgs.com</u> Fax: +1.407.886.7061

For technical questions and application information:

Email: flapplication.engineering@tqs.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.