ABCU-5710RZ/ABCU-5700RZ 1000BASE-T 1.25 GBd Small Form Pluggable Low Voltage (3.3 V) Electrical Transceiver over Category 5 Cable # **Data Sheet** ## **Description** The ABCU-5710RZ and ABCU-5700RZ electrical transceivers from Avago Technologies offer full-duplex throughput of 1000 Mbps by transporting data over shielded and unshielded twisted pair category 5 cable with 5-level PAM (Pulse Amplitude Modulation) signals. The ABCU-5710RZ and ABCU-5700RZ differ only in handling of RX_LOS signal functions, as explained further on the following pages. The Avago Technologies 1000BASE-T module takes signals from both the twisted pair category 5 cable and the SerDes interface. Pin count overhead between the MAC and the PHY is minimized, and Gigabit Ethernet operation is achieved with maximum space savings. #### **Related Products** - AFBR-5710Z: Family of 850nm +3.3V SFP optical transceivers for Gigabit Ethernet - AFCT-5710Z: Family of 1310nm +3.3V SFP optical transceivers for Gigabit Ethernet ### **Module Diagrams** Figure 1 illustrates the major functional components of the ABCU-5700/5710RZ. The 20-pin connection diagram of module printed circuit board of the module is shown in Figure 2. Figure 3 depicts the pin assignment of the MDI (RJ45 jack). Figure 6 depicts the external configuration and dimensions of the module. #### **Features** - RoHS-6 Compliant (see Table 1) - Designed for Industry-Standard, MSA Compliant Small Form Factor Pluggable (SFP) Ports - Compatible with IEEE 802.3:2000 - Custom RJ-45 connector with integrated magnetics - Link lengths at 1.25 Gbd: up to 100 m per IEEE802.3 - Low power, high performance 1.25 Gbd SerDes integrated in module - Single +3.3 V power supply operation - Auto-negotiation per IEEE 802.3:2000 Clause 28 (Twisted Pair) and Clause 37 (1000BASE-X) - Compatible to both shielded and unshielded twisted pair category 5 cable - Two configurations: ABCU-5700RZ: RX_LOS enabled ABCU-5710RZ: RX LOS disabled - Rated for Commercial Temperature applications (0° - 70° C) - 10/100/1000 BASE-T operation in host systems with SGMII interface #### **Applications** - Switch to switch interface - Switched backplane applications - File server interface #### Installation The ABCU-5700/5710RZ can be installed in or removed from any MultiSource Agreement (MSA) compliant Small Form Pluggable port whether the host equipment is operating or not. The module is simply inserted, small end first, under finger-pressure. Controlled hot-plugging is ensured by design and by 3-stage pin sequencing at the electrical interface to the host board. The module housing makes initial contact with the host board EMI shield, mitigating potential damage due to Electro-Static Discharge (ESD). The module pins sequentially contact the (1) Ground, (2) Power, and (3) Signal pins of the host board surface mount connector. This printed circuit board card-edge connector is depicted in Figure 2. Figure 1. Transceiver Functional Diagram Note: TxFault , LOS and Rate_Select not used. Figure 2. 20-pin Connection Diagram of Module Printed Circuit Board ## Serial Identification (EEPROM) The ABCU-5700/5710RZ complies with an industry standard MultiSource Agreement that defines the serial identification protocol. This protocol uses the 2-wire serial CMOS EEPROM protocol of the ATMEL AT24C01A or equivalent. The contents of the ABCU-5700/5710RZ serial ID memory are defined in Table 10 as specified in the SFP MSA. ### Controller and Data I/O Data I/Os are designed to accept industry standard differential signals. In order to reduce the number of passive components required on the customer's board, Avago Technologies has included the functionality of the transmitter bias resistors and coupling capacitors within the module. The transceiver is compatible with an "ac-coupled" configuration and is internally terminated. Figure 1 depicts the functional diagram of the ABCU-5700/5710RZ. 100-ohm resistor shown at RX_LOS in Figure 1 refers to ABCU-5710RZ configuration, not ABCU-5700RZ configuration. Caution should be taken into account for the proper interconnection between the supporting Physical Layer integrated circuits and the ABCU-5700/5710RZ. Figure 4 illustrates the recommended interface circuit. Several control data signals and timing diagrams are implemented in the module and are depicted in Figure 6. Figure 3. MDI (RJ 45 Jack) Pin Assignment Figure 4. Typical Application Configuration for ABCU-5710RZ Note: Inductors must have less than 10hm series resistance per MSA Figure 5. MSA Recommended Power Supply Filter ## **Application Support** #### **Evaluation Kit** To help you in your preliminary transceiver evaluation, Avago Technologies offers a 1.25 GBd Gigabit Ethernet evaluation board. This board will allow testing of the electrical parameters of transceiver. Please contact your local Field Sales representative for availability and ordering details. ## **Reference Designs** Reference designs for the SFP transceiver and the HDMP-1636A physical layer IC are available to assist the equipment designer. Figure 4 depicts a typical application configuration, while Figure 5 depicts the MSA power supply filter circuit design. Please contact your local Field Sales engineer for more information regarding application tools. ## **Regulatory Compliance** See Table 1 for transceiver Regulatory Compliance performance. The overall equipment design will determine the certification level. The transceiver performance is offered as a figure of merit to assist the designer. ### Electrostatic Discharge (ESD) There are two conditions in which immunity to ESD damage is important. Table 1 documents our immunity to both of these conditions. The first condition is during handling of the transceiver prior to insertion into the transceiver port. To protect the transceiver, it is important to use normal ESD handling precautions. These precautions include using grounded wrist straps, work benches, and floor mats in ESD controlled areas. The ESD sensitivity of the ABCU-5700/5710RZ is compatible with typical industry production environments. The second condition is static discharges to the exterior of the host equipment chassis after installation. To the extent that the RJ45 connector interface is exposed to the outside of the host equipment chassis, it may be subject to system-level ESD requirements. The ESD performance of the ABCU-5700/5710RZ exceeds typical industry standards. ## **Immunity** Equipment hosting the ABCU-5700/5710RZ modules will be subjected to radio-frequency electromagnetic fields in some environments. The transceivers have excellent immunity to such fields due to their shielded design. **Table 1. Regulatory Compliance** | Feature | Test Method | Performance | |---|---|--| | Electrostatic Discharge
(ESD) to the Electrical
Pins | MIL-STD-883C Method 3015.4
JEDEC/EIA JES022-A114-A | Class 2 (2000 Volts) | | Electrostatic Discharge
(ESD) to the RJ 45
Connector Receptacle | Variation of IEC 61000-4-2 | Typically withstand 15 KV (Air Discharge), 8 KV (Contact) without damage when the RJ 45 connector receptacle is contacted by a Human Body Model probe. | | Electromagnetic
Interference (EMI) | FCC Part 15 Class B
CENELEC EN55022 Class B
(CISPR 22A)VCCI Class 1 | System margins are dependent on customer board and chassis design. | | Radiated Immunity | Variation of IEC 61000-4-3 | Typically shows a negligible effect from a 10 V/m field swept from 80 to 1000 MHz applied to the transceiver without a chassis enclosure. | | Component
Recognition | Underwriters Laboratories and Canadian
Standards Association Joint Component
Recognition for Information Technology
Equipment Including Electrical Business
Equipment | UL File # E173874 | | Grounding
Configuration | DC short between signal and chassis grounds | Meets all regulatory requirements as listed above. Compliant with system boards using multi-point grounding scheme | | ROHS Compliance | Chemical composition analysis | Less than 0.1% lead, mercury, hexavalent chromium, polybrominated biphenyls, and polybrominated biphenyl ethers by weight of homogeneous material. Exemption for lead in high melting temperature solder applied to module connector. Less than 0.01% cadmium by weight of homogeneous material. | ## **Electromagnetic Interference (EMI)** Most equipment designs utilizing these high-speed transceivers from Avago Technologies will be required to meet the requirements of FCC in the United States, CENELEC EN55022 (CISPR 22A) in Europe and VCCI in Japan. The metal housing and shielded design minimize the EMI challenge facing the host equipment designer. These transceivers provide superior EMI performance. This greatly assists the designer in the management of the overall system EMI performance. ## **Flammability** The ABCU-5700/5710RZ electrical transceiver housing is made of metal and high strength, heat resistant, chemically resistant, and UL 94V-0 flame retardant plastic. #### Caution There are no user serviceable parts nor any maintenance required for the ABCU-5700/5710RZ. Tampering with or modifying the performance will result in voided product warranty. It may also result in improper operation of the ABCU-5700/5710RZ circuitry, and possible overstress of the RJ 45 connector. Device degradation or product failure may result. Connecting the module to a non-approved 1000BaseT module, operating above the recommended
absolute maximum conditions or operating the ABCU-5710RZ in a manner inconsistent with its design and function may result in hazardous radiation exposure and may be considered an act of modifying or manufacturing an electrical module product. #### **Ordering Information** Please contact your local field sales engineer or one of Avago Technologies franchised distributors for ordering information. For technical information, please visit Avago Technologies web page at www.avagotech.com or contact Avago Technologies Customer Response Center. For information related to the MSA visit www.schelto.com/SEP/index.html ## **Customer Manufacturing Processes** This module is pluggable and is not designed for aqueous wash, IR reflow or wave soldering processes. Table 2. 20-pin Connection Diagram Description | Pin | Name | Function/Description | MSA Notes | |-----|-------------------|---|-----------| | 1 | V _{EE} T | Transmitter Ground | | | 2 | TX Fault | Transmitter Fault Indication - High Indicates a Fault | Note 1 | | 3 | TX Disable | Transmitter Disable - Module disables on high or open | Note 2 | | 4 | MOD-DEF2 | Module Definition 2 - Two wire serial ID interface | Note 3 | | 5 | MOD-DEF1 | Module Definition 1 - Two wire serial ID interface | Note 3 | | 6 | MOD-DEF0 | Module Definition 0 - Grounded in module | Note 3 | | 7 | Rate Select | Not Connected | | | 8 | LOS | Loss of Signal - High Indicates Loss of Signal | Note 4 | | 9 | $V_{EE}R$ | Receiver Ground | | | 10 | V _{EE} R | Receiver Ground | | | 11 | V _{EE} R | Receiver Ground | | | 12 | RD- | Inverse Received Data Out | Note 5 | | 13 | RD+ | Received Data Out | Note 5 | | 14 | V _{EE} R | Receiver Ground | | | 15 | $V_{CC}R$ | Receiver Power - 3.3 V +/- 5% | Note 6 | | 16 | $V_{CC}T$ | Transmitter Power - 3.3 V +/- 5% | Note 6 | | 17 | V _{EE} T | Transmitter Ground | | | 18 | TD+ | Transmitter Data In | Note 7 | | 19 | TD- | Inverse Transmitter Data In | Note 7 | | 20 | V _{EE} T | Transmitter Ground | | #### Notes: - 1. TX Fault is not used and is always tied to ground through a 100 ohm resistor. - 2. TX Disable as described in the MSA is not applicable to the 1000BASE-T module, but is used for convenience as an input to reset the internal ASIC. This pin is pulled up within the module with a 4.7 K Ω resistor. Low (0 – 0.8 V): Transceiver on Between (0.8 V and 2.0 V): Undefined High (2.0 – 3.465 V): Transceiver in reset state Open: Transceiver in reset state - 3. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7-10 K Ω resistor on the host board to a supply less than $V_{CC}T + 0.3 \text{ V}$ or $V_{CC}R + 0.3 \text{ V}$. - Mod Def 0 is tied to ground through a 100 ohm resistor to indicate that the module is present. - Mod-Def 1 is clock line of two wire serial interface for optional serial ID - Mod-Def 2 is data line of two wire serial interface for optional serial ID - 4. LOS (Loss of Signal) operation on the 1000BaseT SFP is different than for optical SFP applications. For ABCU-5700RZ, RX_LOS signal is a 1000BASE-T linkup/link-down indicator and not a peak (AC) or voltage (DC) detector. For ABCU-5710RZ, RX_LOS is not used and is always tied to ground via 100-ohm resistor. - 5. RD-/+: These are the differential receiver outputs. They are ac coupled 100Ω differential lines which should be terminated with 100Ω differential at the user SerDes. The ac coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 370 and 2000 mV differential (185 1000 mV single ended) when properly terminated. These levels are compatible with CML and LVPECL voltage swings. - 6. V_{CC}R and V_{CC}T are the receiver and transmitter power supplies. They are defined as 3.3 V ± 5% at the SFP connector pin. The maximum supply current is 317 mA and the associated in-rush current will typically be no more than 30 mA above steady state after 500 nanoseconds. - 7. TD-/+: These are the differential transmitter inputs. They are ac coupled differential lines with $100\,\Omega$ differential termination inside the module. The ac coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of $500-2400\,$ mV ($250-1200\,$ mV single ended), though it is recommended that values between $500\,$ and $1200\,$ mV differential ($250-600\,$ mV single ended) be used for best EMI performance. These levels are compatible with CML and LVPECL voltage swings. ## **Absolute Maximum Ratings** | Parameter | Symbol | Minimum | Typical | Maximum | Unit | Notes | |---------------------------------|---------------------|---------|---------|-----------------|------|-----------| | Storage Temperature | T _S | -40 | | +75 | °C | Note 1 | | Case Temperature | T _C | -40 | | +75 | °C | Note 1 ,2 | | Relative Humidity | RH | 5 | | 95 | % | Note 1 | | Module Supply Voltage | V _{CC} T,R | -0.5 | | 3.6 | V | Note 1, 2 | | Data/Control Input Voltage | VI | -0.5 | | V _{CC} | V | Note 1 | | Sense Output Current - LOS | I _D | | | NA | mA | Note 1 | | Sense Output Current - MOD-DEF2 | | | | 5.0 | | | ## **Recommended Operating Conditions** | Parameter | Symbol | Minimum | Typical | Maximum | Unit | Notes | |-----------------------|---------------------|---------|---------|---------|------|--------| | Case Temperature | T _C | 0 | | 70 | °C | Note 3 | | Module Supply Voltage | V _{CC} T,R | 3.135 | 3.3 | 3.465 | V | Note 3 | | Data Rate | | | 1.25 | | Gb/s | Note 3 | ## **Transceiver Electrical Characteristics** $(T_C = 0 \, ^{\circ}C \text{ to } +70 \, ^{\circ}C, V_{CC}T, R = 3.3 \, V \pm 5\%)$ | Parameter | Symbol | Minimum | Typical | Maximum | Unit | Notes | |---|-------------------|---------|---------|---------------------------|------|--------| | AC Electrical Characteristics | | | | | | | | Power Supply Noise Rejection
(peak-peak) | PSNR | | 100 | | mV | Note 4 | | DC Electrical Characteristics | | | | | | | | Module supply current | Icc | | | 350 | mA | | | Power Dissipation | P _{DISS} | | | 1100 | mW | | | Sense Outputs: | V_{OH} | 2.0 | 3.05 | V _{CC} T, R+ 0.3 | V | Note 5 | | MOD-DEF2 | V _{OL} | | | | | | | Control Inputs:
Transmitter Disable(TX DISABLE), | V _{IH} | 2.0 | | V _{CC} | V | Note 6 | | MOD-DEF1, 2 | V _{IL} | 0 | | 0.8 | V | | #### Notes: - 1. Absolute Maximum Ratings are those values beyond which damage to the device may occur if these limits are exceeded for other than a short period of time. See Reliability Data Sheet for specific reliability performance. - 2. Between Absolute Maximum Ratings and the Recommended Operating Conditions functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time. - 3. Recommended Operating Conditions are those values outside of which functional performance is not intended, device reliability is not implied, and damage to the device may occur over an extended period of time. See Reliability Data Sheet for specific reliability performance later when it is ready. - 4. MSA-specified filter is required on the host board to achieve PSNR performance over the frequency range 10 Hz to 2 MHz. - 5. LVTTL, external 4.7-10 K Ω pull-Up resistor required. - 6. LVTTL, external 4.7-10 K Ω pull-Up resistor required for MOD-DEF 1 and MOD-DEF 2. ## **Transmitter and Receiver Electrical Characteristics** $(T_C = 0 \, ^{\circ}C \text{ to } +70 \, ^{\circ}C, V_{CC}T, R = 3.3 \, V \pm 5\%)$ | Parameter | Symbol | Minimum | Typical | Maximum | Unit | Notes | |--|--------|---------|---------|---------|------|--------| | Data Input: Transmitter Differential Input Voltage (TD +/-) | VI | 500 | | 2400 | mV | Note 1 | | Data Output: Receiver Differential Output Voltage (RD +/-) | Vo | 370 | 735 | 2000 | mV | Note 2 | | Receive Data Rise & Fall Times
(Receiver) | Trf | | 100 | 250 | ps | Note 3 | ## **Transceiver Timing Characteristics** (T_C = 0 °C to 70 °C, V_{CC}T,R = 3.3 V \pm 5%) | Parameter | Symbol | Minimum | Typical | Maximum | Unit | Notes | |--------------------------|----------------|---------|---------|---------|------|--------| | Tx Disable Assert Time | t_off | | | NA | | Note 4 | | Tx Disable Negate Time | t_on | | | NA | | Note 4 | | Module Reset Assert Time | t_off_rst | | | 10 | μs | Note 5 | | Module Reset Negate Time | t_on_rst | | | 300 | ms | Note 6 | | Time to initialize | t_init | | | 300 | ms | | | Tx Fault Assert Time | t_fault | | | NA | | Note 7 | | Tx Disable to Reset | t_reset | | | NA | | Note 7 | | LOS Assert Time | t_loss_on | | | NA | | Note 7 | | LOS De-assert Time | t_loss_off | | | NA | | Note 7 | | Rate Select Change Time | t_ratesel | | | NA | | Note 7 | | Serial ID Clock Rate | F_serial_clock | | | 100 | kHz | | #### Notes - 1. Internally ac coupled and terminated (100 Ohm differential). These levels are compatible with CML and LVPECL voltage swings. - $2. \quad \text{Internally ac coupled with an external 100 ohm differential load termination.} \\$ - 3. 20%-80% rise and fall times measured with a 500 MHz signal utilizing a 1010 pattern. - 4. Tx Disable function as described in the SFP MSA is not used in the 1000BASE-T module. - 5. Time from rising edge of Tx Disable until link comes down. - $6. \ \ \, \text{Time from falling edge of Tx Disable until auto-negotiation starts.}$ - 7. Not used in the 1000BASE-T module t-init: MODULE HOT-PLUGGED OR VOLTAGE APPLIED AFTER INSERTION, WHEN TX_DISABLE IS NEGATED t-init: VOLTAGE APPLIED WHEN TX_DISABLE IS ASSERTED t off rst & t on rst: TX DISABLE (RESET) ASSERTED THEN DE-ASSERTED Figure 6. Transceiver Timing Diagrams (Module Installed Except
Where Noted) Table 3. EEPROM Serial ID Memory Contents at address A0 | 0 03 40 41 A 68 Note 3 97 Note 5 1 04 41 42 B 69 Note 3 97 Note 5 2 00 42 43 C 70 Note 3 98 Note 5 3 00 43 55 U 71 Note 3 100 Note 5 4 00 44 2D - 72 Note 3 100 Note 5 6 08 46 37 7 74 Note 3 102 Note 5 6 08 46 37 7 74 Note 3 102 Note 5 6 08 46 37 7 74 Note 3 104 Note 5 7 00 47 Note 1 75 Note 3 103 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 | Addr | Hex | ASCII | |--|------|-----|-------|------|--------|-------|------|--------|-------|------|--------|-------| | 2 | 0 | 03 | | 40 | 41 | Α | 68 | Note 3 | | 96 | Note 5 | | | 3 | 1 | 04 | | 41 | 42 | В | 69 | Note 3 | | 97 | Note 5 | | | 4 00 44 2D - 72 Note 3 100 Note 5 5 00 45 35 5 73 Note 3 101 Note 5 6 08 46 37 7 74 Note 3 102 Note 5 7 00 47 Note 1 75 Note 3 103 Note 5 8 00 48 30 0 76 Note 3 104 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 106 Note 5 12 0D 52 20 80 Note 3 107 Note 5 12 0D 53 20 81 Note 3 100 Note 5 13 00 | 2 | 00 | | 42 | 43 | С | 70 | Note 3 | | 98 | Note 5 | | | 5 00 45 35 5 73 Note 3 101 Note 5 6 08 46 37 7 74 Note 3 102 Note 5 7 00 47 Note 1 75 Note 3 103 Note 5 8 00 48 30 0 76 Note 3 104 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 00 53 20 81 Note 3 107 Note 5 13 00 53 20 81 Note 3 107 Note 5 14 00 54 20 82 Note 3 108 Note 5 15 00 55 | 3 | 00 | | 43 | 55 | U | 71 | Note 3 | | 99 | Note 5 | | | 6 08 46 37 7 74 Note 3 102 Note 5 7 00 47 Note 1 75 Note 3 103 Note 5 8 00 48 30 0 76 Note 3 104 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 109 Note 5 13 00 53 20 81 Note 3 109 Note 5 15 00 54 20 82 Note 3 100 Note 5 15 00 55 20 | 4 | 00 | | 44 | 2D | - | 72 | Note 3 | | 100 | Note 5 | | | 7 00 47 Note 1 75 Note 3 103 Note 5 8 00 48 30 0 76 Note 3 104 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 109 Note 5 13 00 53 20 81 Note 3 110 Note 5 14 00 54 20 82 Note 3 111 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 55 20 84 <td>5</td> <td>00</td> <td></td> <td>45</td> <td>35</td> <td>5</td> <td>73</td> <td>Note 3</td> <td></td> <td>101</td> <td>Note 5</td> <td></td> | 5 | 00 | | 45 | 35 | 5 | 73 | Note 3 | | 101 | Note 5 | | | 8 00 48 30 0 76 Note 3 104 Note 5 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 109 Note 5 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 15 00 55 20 83 Note 3 111 Note 5 15 00 55 20 85 | 6 | 08 | | 46 | 37 | 7 | 74 | Note 3 | | 102 | Note 5 | | | 9 00 49 52 R 77 Note 3 105 Note 5 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 12 0D 53 20 81 Note 3 109 Note 5 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 | 7 | 00 | | 47 | Note 1 | | 75 | Note 3 | | 103 | Note 5 | | | 10 00 50 5A Z 78 Note 3 106 Note 5 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 109 Note 5 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 16 00 57 20 85 Note 4 112 Note 5 18 64 58 20 86 Note 4 114 Note 5 18 64 58 20 87 Note 4 115 Note 5 18 64 58 20 87 Note 4 | 8 | 00 | | 48 | 30 | 0 | 76 | Note 3 | | 104 | Note 5 | | | 11 01 51 20 79 Note 3 107 Note 5 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 110 Note 5 14 00 54 20 82 Note 3 111 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 112 Note 5 18 64 58 20 86 Note 4 114 Note 5 18 64 58 20 87 Note 4 115 Note 5 18 64 58 20 87 Note 4 115 Note 5 19 00 59 20 87 Note 4 115 <t< td=""><td>9</td><td>00</td><td></td><td>49</td><td>52</td><td>R</td><td>77</td><td>Note 3</td><td></td><td>105</td><td>Note 5</td><td></td></t<> | 9 | 00 | | 49 | 52 | R | 77 | Note 3 | | 105 | Note 5 | | | 12 0D 52 20 80 Note 3 108 Note 5 13 00 53 20 81 Note 3 109 Note 5 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note | 10 | 00 | | 50 | 5A | Z | 78 | Note 3 | | 106 | Note 5 | | | 13 00 53 20 81 Note 3 109 Note 5 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 18 64 58 20 86 Note 4 114 Note 5 18 64 58 20 86 Note 4 114 Note 5 18 64 58 20 86 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 90 Note | 11 | 01 | | 51 | 20 | | 79 | Note 3 | | 107 | Note 5 | | | 14 00 54 20 82 Note 3 110 Note 5 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 90 Note 4 117 Note 5 21 56 V 61 00 90 Note 4 117 Note 5 21 56 V 61 00 90 Note 4 118 Note 5 22 41 A 62 | 12 | 0D | | 52 | 20 | | 80 | Note 3 | | 108 | Note 5 | | | 15 00 55 20 83 Note 3 111 Note 5 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 21 56 V 61 00 90 Note 4 118 Note 5 21 47 G 63 Note 2 91 Note 4 118 Note 5 24 4F O <td>13</td> <td>00</td> <td></td> <td>53</td> <td>20</td> <td></td> <td>81</td> <td>Note 3</td> <td></td> <td>109</td> <td>Note 5</td> <td></td> | 13 | 00 | | 53 | 20 | | 81 | Note 3 | | 109 | Note 5 | | | 16 00 56 20 84 Note 4 112 Note 5 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 21 56 V 61 00 90 Note 4 118 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 25 20 <td>14</td> <td>00</td> <td></td> <td>54</td> <td>20</td> <td></td> <td>82</td> <td>Note 3</td> <td></td> <td>110</td> <td>Note 5</td> <td></td> | 14 | 00 | | 54 | 20 | | 82 | Note 3 | | 110 | Note 5 | | | 17 00 57 20 85 Note 4 113 Note 5 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 66 00 94 00 122 Note 5 28 20 | 15 | 00 | | 55 | 20 | | 83 | Note 3 | | 111 | Note 5 | | | 18 64 58 20 86 Note 4 114 Note 5 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 28 20 67 00 95 Note 2 123 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127< | 16 | 00 | | 56 | 20 | | 84 | Note 4 | | 112 | Note 5 | | | 19 00 59 20 87 Note 4 115 Note 5 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 28 20 57 00 95 Note 2 123 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127 | 17 | 00 | | 57 | 20 | | 85 | Note 4 | | 113 | Note 5 | | | 20 41 A 60 00 88 Note 4 116 Note 5 21 56 V 61 00 89 Note 4 117 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 67 00 95 Note 2 123 Note 5 28 20 125 Note 5 125 Note 5 30 20 127 Note 5 126 Note 5 31 20 127 Note 5 127 Note 5 32 20 127 127 Note 5 127 127 | 18 | 64 | | 58 | 20 | | 86 | Note 4 | | 114 | Note 5 | | | 21 56 V 61 00 89 Note 4 117 Note 5 22 41 A 62 00 90 Note 4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 125 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127 Note 5 32 20 127 Note 5 127 Note 5 33 20 127 127 Note 5 128 129 129 129 129 129 | 19 | 00 | | 59 | 20 | | 87 | Note 4 | | 115 | Note 5 | | | 22 41 A 62 00 90 Note
4 118 Note 5 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 125 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127 Note 5 32 20 127 Note 5 127 Note 5 34 20 35 20 127 Note 5 127 Note 5 36 01 37 00 10 10 10 10 10 10 10 10 10< | 20 | 41 | Α | 60 | 00 | | 88 | Note 4 | | 116 | Note 5 | | | 23 47 G 63 Note 2 91 Note 4 119 Note 5 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 125 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127 Note 5 32 20 127 Note 5 127 Note 5 34 20 127 Note 5 127 Note 5 35 20 127 | 21 | 56 | V | 61 | 00 | | 89 | Note 4 | | 117 | Note 5 | | | 24 4F O 64 00 92 00 120 Note 5 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 125 Note 5 30 20 125 Note 5 126 Note 5 31 20 127 Note 5 127 Note 5 32 20 127 Note 5 127 Note 5 33 20 127 Note 5 127 Note 5 34 20 127 Note 5 127 Note 5 36 01 137 00 14 | 22 | 41 | Α | 62 | 00 | | 90 | Note 4 | | 118 | Note 5 | | | 25 20 65 10 93 00 121 Note 5 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 29 20 125 Note 5 30 20 126 Note 5 31 20 127 Note 5 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 23 | 47 | G | 63 | Note 2 | | 91 | Note 4 | | 119 | Note 5 | | | 26 20 66 00 94 00 122 Note 5 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 29 20 125 Note 5 30 20 126 Note 5 31 20 127 Note 5 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 24 | 4F | 0 | 64 | 00 | | 92 | 00 | | 120 | Note 5 | | | 27 20 67 00 95 Note 2 123 Note 5 28 20 124 Note 5 29 20 125 Note 5 30 20 126 Note 5 31 20 127 Note 5 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 25 | 20 | | 65 | 10 | | 93 | 00 | | 121 | Note 5 | | | 28 20 124 Note 5 29 20 125 Note 5 30 20 126 Note 5 31 20 127 Note 5 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 26 | 20 | | 66 | 00 | | 94 | 00 | | 122 | Note 5 | | | 29 20 125 Note 5 30 20 126 Note 5 31 20 127 Note 5 32 20 34 20 35 20 36 01 37 00 38 17 | 27 | 20 | | 67 | 00 | | 95 | Note 2 | | 123 | Note 5 | | | 30 20 126 Note 5 31 20 127 Note 5 32 20 34 20 35 20 36 01 37 00 38 17 | 28 | 20 | | | | | | | | 124 | Note 5 | | | 31 20 127 Note 5 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 29 | 20 | | | | | | | | 125 | Note 5 | | | 32 20 33 20 34 20 35 20 36 01 37 00 38 17 | 30 | 20 | | | | | | | | 126 | Note 5 | | | 33 20 34 20 35 20 36 01 37 00 38 17 | 31 | 20 | | | | | | | | 127 | Note 5 | | | 34 20 35 20 36 01 37 00 38 17 | 32 | 20 | | | | | | | | | | | | 35 20 36 01 37 00 38 17 | 33 | 20 | | | | | | | | | | | | 36 01 37 00 38 17 | 34 | 20 | | | | | | | | | | | | 37 00 38 17 | 35 | 20 | | | | | | | | | | | | 38 17 | 36 | 01 | | | | | | | | | | | | | 37 | 00 | | | | | | | | | | | | 39 6A | 38 | 17 | | | | | | | | | | | | | 39 | 6A | | | | | | | | | | | #### Notes: - 1. For ABCU-5700RZ, Address 47 is ASCII 0 (30h). For ABCU-5710RZ, Address 47 is ASCII 1 (31h). - 2. Addresses 63 and 95 are check sums. Address 63 is the check sum for bytes 0-62 and address 95 is the check sum for bytes 64-94. - 3. Address 68-83 specify a unique identifier. - 4. Address 84-91 specify the date code. - 5. These fields are reserved for optional use by Avago Technologies. Low (LL) and/or Self Clearing (SC). The registers are accessible through the 2-wire serial CMOS EEPROM protocol of the ATMEL AT24C01A or equivalent. The address of the PHY is 10101110x, where x is the R/W bit. Each register's address is 000yyyyy, where yyyyy is the binary equivalent of the register number. Write and read operations must send or receive 16 bits of data, so the "multi-page" access protocol must be used. ## **Internal ASIC Registers** The ASIC (or "PHY", for Physical Layer IC) in the transceiver module contains 32 registers. Each register contains 16 bits. The registers are summarized in table 11 and detailed in table 12 through 28. Each bit is either Read Only (RO) or Read/Write (R/W). Some bits are also described as Latch High (LH) or Latch Table 4. Summary of Internal IC Registers | Register | Description | |----------|--| | 0 | Control | | 1 | Status | | 2-3 | N/A for SFP Module | | 4 | Auto-Negotiation Advertisement | | 5 | Auto-Negotiation Link Partner Ability | | 6 | Auto-Negotiation Expansion | | 7 | Auto-Negotiation Next Page Transmit | | 8 | Auto-Negotiation Link Partner Received Next Page | | 9 | MASTER-SLAVE Control Register | | 10 | MASTER-SLAVE Status Register | | 11-15 | N/A for SFP Module | | 16 | Extended Control 1 | | 17 | Extended Status 1 | | 18-19 | N/A for SFP Module | | 20 | Extended Control 2 | | 21 | Receive Error Counter | | 22 | Cable Diagnostic 1 | | 23-25 | N/A for SFP Module | | 26 | Extended Control 3 | | 27 | Extended Status 2 | | 28 | Cable Diagnostic 2 | | 29-31 | N/A for SFP Module | | | | Table 5. Register 0 (Control) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |-----------|------------------------------|---|-------------------|-------------------|--| | 0.15R/W | Reset | 1 = PHY reset
0 = Normal Operation | 0 | self-clearing | Performs software reset | | 0.14R/W | Loopback | 1 = Enable
0 = Disable | 0 | 0 | Serial data in on RD+/- is deserial-
ized, then reserialized and sent
out on TD+/- | | 0.13R/W | Speed Selection
(LSB) | 0 = 1000 Mb/s | 0 | Update | Paired with bit 0.6. Other settings indicate different speeds, but the module will not function at speeds other than 1000 Mb/s. This bit is only meaningful if bit 0.12 is 0. | | 0.12R/W | Auto-Negotiation
Enable | 1 = Enable
0 = Disable | 1 | Update | Changes to this bit take effect after software reset. | | 0.11R/W | Power Down | 1 = Power Down
0 = Normal Operation | 0 | 0 | | | 0.10R/W | Isolate | 1 = Isolate
0 = Normal Operation | 0 | 0 | | | 0.9R/W/SC | Restart Auto-
Negotiation | 1 = Restart Auto-Nego-
tiation Process
0 = normal operation | 0 | Self-clearing | | | 0.8R/W | Duplex Mode | 1 = Full Duplex
0 = Half Duplex | 1 | Update | This bit is only meaningful if 0.12 is 0. | | 0.7R/W | Collision Test | 1 = enable COL signal
test
0 = disable COL signal
test | 0 | 0 | | | 0.6R/W | Speed Selection
(MSB) | 1 = 1000 Mb/s | 1 | Update | Paired with bit 0.13. Other settings indicate different speeds, but the module will not function at speeds other than 1000 Mb/s. This bit is only meaningful if bit 0.12 is 0. | | 0.5:0R/W | N/A to SFP Module | | 000000 | 000000 | | Table 6. Register 1 (Status) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |--------------|------------------------------|---|-------------------|-------------------|----------| | 1.15:9
RO | N/A to SFP Module | | 0000000 | 0000000 | | | 1.8
RO | Extended Status | 1 = Extended status information in register
15 | 1 | 1 | Always 1 | | 1.7
RO | N/A to SFP Module | | 0 | 0 | | | 1.6
RO | MF Preamble
Suppression | 1 = PHY will accept management frames with preamble suppressed. | 1 | 1 | Always 1 | | 1.5
RO | Auto-Negotiation
Complete | 1 = Auto-Negotiation Process Completed
0 = Auto-Negotiation Process Not Com-
pleted | 0 | 0 | | | 1.4
RO/LH | Remote Fault | 1 = remote fault condition detected
0 - no remote fault condition detected | 0 | 0 | | | 1.3
RO | Auto-Negotiation
Ability | 1 = module is able to perform Auto-Nego-
tiation
0 = module is unable to perform Auto-
Negotiation | 1 | 1 | | | 1.2
RO/LL | Link Status | 1 = link is up
0 = link is down | 0 | 0 | | | 1.1
RO/LH | Jabber Detect | 1 = jabber condition detected
2 = no jabber condition detected | 0 | 0 | | | 1.0
RO | Extended Capability | 1 = extended register capabilities | 1 | 1 | Always 1 | **Table 7. Register 4 (Auto-Negotiation Advertisement)** | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|------------------------------|---|-------------------|-------------------|---| | 4.15:14
R/W | N/A to SFP Module | | 10 | 10 | When writing to register 4, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | | 4.13
R/W | Remote Fault | 1 = Remote fault bit is set
2 = No remote fault | 0 | Retain | This bit takes effect after auto-
negotiation is restarted, either
via bit 0.9 or because the link
goes down. | | 4.12
R/W | N/A to SFP Module | | 0 | Retain | | | 4.11:10
R/W | PAUSE Encoding | 11 = Both Asymmetric PAUSE and Symmetric PAUSE toward local device 10 = Asymmetric PAUSE toward link partner 01 = Symmetric PAUSE 00 = No PAUSE | 00 | Retain | This bit takes effect after auto-
negotiation is restarted, either
via bit 0.9 or because the link
goes down. | | 4.9:5
R/W | N/A to SFP Module | | 00000 | 00000 | | | 4.4:0
RO | IEEE 802.3 Selector
Field | | 00001 | 00001 | Set per IEEE standard. | Table 8. Register 5 (Auto-Negotiation Link Partner Ability) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |---------------|---------------------------
---|-------------------|-------------------|---------------------------| | 5.15
RO | Next Page | 1 = Link partner advertises next page
ability
0 = Link partner does not advertise next
page ability | 0 | 0 | | | 5.14
RO | Acknowledge | 1 = Link partner acknowledges receiving link code word from module
0 = Link partner does not acknowledge
receiving link code word from module | 0 | 0 | | | 5.13
RO | Remote Fault | 1 = Link partner has a remote fault
0 = Link partner does not have a
remote fault | 0 | 0 | | | 5.12
RO | N/A to SFP Module | | 0 | 0 | | | 5.11:10
RO | PAUSE Encoding | 11 = Asymmetric PAUSE and Symmetric
PAUSE toward local device
10 = Asymmetric PAUSE toward link
partner
01 = Symmetric PAUSE
00 = No PAUSE | 00 | 00 | | | 5.9:5
RO | N/A to SFP Module | | 00000 | 00000 | | | 5.4:0
RO | IEEE 802.3 Selector Field | | 00000 | 00000 | Set per
IEEE standard. | Table 9. Register 6 (Auto-Negotiation Expansion) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |--------------|--|--|-------------------|-------------------|---| | 6.15:5
RO | N/A to SFP Module | | 0000000000 | 0000000000 | | | 6.4
RO | Parallel Detection
Fault | 1 = A fault has been detected via
the Parallel Detection function
0 = A fault has not been detected
via the Parallel Detection function | 0 | 0 | This register is not valid until auto-
negotiation is com-
plete, as indicated
by bit 1.5. | | 6.3
RO | Link Partner Next
Page Able | 1 = Link partner is next page able
0 = Link partner is not next page
able | 0 | 0 | See note in bit 6.4. | | 6.2
RO | Next Page Able | 1 = Local device is next page able
0 = Local device is not next page
able | 1 | 1 | See note in bit 6.4. | | 6.1
RO/LH | Page Received | 1 = A new page has been received
0 = A new page has not been
received | 0 | 0 | See note in bit 6.4. | | 6.0
RO | Link Partner Auto-
Negotiation Able | 1 = Link partner is auto-negotia-
tion able
0 = Link partner is not auto-nego-
tiation able | 0 | 0 | See note in bit 6.4. | Table 10. Register 7 (Auto-Negotiation Next Page Transmit Register) | | | | Hardware | Software | | |---------------|-----------------------------------|---|------------|------------|---------| | Bit | Name | Description | Reset | Reset | Details | | 7.15
R/W | Next Page | 1 = Additional next pages
to follow
0 = Last page | 0 | 0 | | | 7.14
RO | N/A to SFP Module | | 0 | 0 | | | 7.13
R/W | Message Page | 1 = Message page
0 = Unformatted page | 1 | 1 | | | 7.12
R/W | Acknowledge 2 | 1 = Will comply with
message
0 = Will not comply with
message | 0 | 0 | | | 7.11
RO | Toggle | 1 = previous value of the
toggle bit was0
0 = previous value of the
toggle bit was 1 | 0 | 0 | | | 7.10:0
R/W | Message/Unformatted
Code Field | | 0000000001 | 0000000001 | | Table 11. Register 8 (Auto-Negotiation Link Partner Received Next Page) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |--------------|-----------------------------------|---|-------------------|-------------------|---------| | 8.15
RO | Next Page | 1 = Additional next pages
to follow
0 = Last page | 0 | 0 | octuns | | 8.14
RO | Acknowledge | | 0 | 0 | | | 8.13
RO | Message Page | 1 = Message page
0 = Unformatted page | 0 | 0 | | | 8.12
RO | Acknowledge 2 | 1 = Will comply with message
0 = Will not comply with
message | 0 | 0 | | | 8.11
RO | Toggle | 1 = previous value of the toggle bit was 0 0 = previous value of the toggle bit was 1 | 0 | 0 | | | 8.10:0
RO | Message/Unformatted
Code Field | | 0000000000 | 0000000000 | | Table 12. Register 9 (MASTER-SLAVE Control) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|---|---|-------------------|-------------------|--| | 9.15:13
R/W | Transmitter Test
Mode | 000 = Normal Operation
001 = Transmit Waveform Test
010 = Transmit Jitter Test in
MASTER Mode
011 = Transmit Jitter Test in
SLAVE Mode | 000 | 000 | The module enters test
modes when MDI crosso-
ver is first disabled via bits
16.6:5. | | 9.12
R/W | MASTER-SLAVE
Manual Config
Enable | 1 = Enable MASTER-SLAVE Manual configuration value in register 9.11 2 = Disable MASTER-SLAVE Manual configuration value in register 9.11 | 0 | Retain | This bit takes effect after auto-negotiation is restarted via bit 0.9. | | 9.11
R/W | MASTER-SLAVE
Config Value | 1 = Configure PHY as MASTER
during MASTER-SLAVE nego-
tiation
0 = Configure PHY as SLAVE
during MASTER-SLAVE nego-
tiation | 1 | Retain | This bit takes effect after auto-negotiation is restarted via bit 0.9. This bit is ignored unless bit 9.12 is 1. | | 9.10
R/W | Port Type | 1 = Prefer PHY as MASTER
(multiport)
0 = Prefer PHY as SLAVE (single
port) | 1 | Retain | This bit takes effect after auto-negotiation is restarted via bit 0.9. This bit is ignored unless bit 9.12 is 0. | | 9.9
R/W | 1000BASE-T Full
Duplex | 1 = Advertise PHY is 1000BA-
SET-T full duplex capable
0 = Advertise PHY is not
1000BASE-T full duplex capa-
ble | 1 | Retain | This bit takes effect after auto-negotiation is restarted via bit 0.9. | | 9.8
R/W | 1000BASE-T Half
Duplex | 1 = Advertise PHY is 1000BA-
SET-T half duplex capable
0 = Advertise PHY is not
1000BASE-T half duplex
capable | 0 | Retain | This bit takes effect after auto-negotiation is restarted via bit 0.9. | | 9.7:0RO | N/A to SFP Module | | 00000000 | 00000000 | | Table 13. Register 10 (MASTER-SLAVE Status) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |-------------------|---------------------------------------|--|-------------------|-------------------|---| | 10.15
RO/LH/SC | MASTER-SLAVE Configuration Fault | 1 = MASTER-SLAVE
configuration fault
detected
0 = No MASTER-SLAVE
configuration fault
detected | 0 | 0 | This bit is cleared each time that this register is read. This bit clears on Auto-Negotiation enable or Auto-Negotiation complete. This bit is set if the number of failed MASTER-SLAVE resolutions reaches 7. This bit is set if both PHY's are forced to MASTER's or SLAVE's at the same time using bits 9.12 and 9.11. | | 10.14
RO | MASTER-SLAVE Configuration Resolution | 1 = Local PHY configuration resolved to MASTER 2 = Local PHY configuration resolved to SLAVE | 0 | 0 | | | 10.13
RO | Local Receiver Status | 1 = Local Receiver OK
0 = Local Receiver not
OK | 0 | 0 | | | 10.12
RO | Remote Receiver
Status | 1 = Remote Receiver
OK
0 = Remote Receiver
not OK | 0 | 0 | | | 10.11
RO | Link Partner Full
Duplex | 1 = Link Partner is
capable of 1000BASE-T
full duplex
0 = Link Parnter is not
capable of 1000BASE-T
full duplex | 0 | 0 | This bit is valid only when the Page Received bit (6.1) is set to 1. | | 10.10
RO | Link Partner Half
Duplex | 1 = Link Partner is
capable of 1000BASE-T
half duplex
0 = Link Parnter is not
capable of 1000BASE-T
half duplex | 0 | 0 | This bit is valid only when the Page Received bit (6.1) is set to 1. | | 10.9:8 | N/A to SFP Module | | 00 | 00 | | | 10.7:0
RO/SC | Idle Er
ROr Count | Counts er
ROrs when receiving
idle patterns. | 00000000 | 00000000 | These bits do not ROII-over when they are all one's. | Table 14. Register 16 (Extended Control 1) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|--------------------|---|-------------------|--------------------------------------|--| | 16.15:7
R/W | N/A to SFP Module | | 000000000 | Retain (15:10, 7)
or Update (9:8) | When writing to register 16, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | | 16.6:5
R/W | MDI Crossover Mode | 00 = Manual MDI configuration 01 = Manual MDIX configuration 10 = N/A to SFP module 11 = Enable automatic crossover | 11 | Update | Changes to this bit take effect after software reset. | | 16.4:0
R/W | N/A to SFP Module | | 11000 | Retain (2:0) or
Update (4:3) | When writing to register 16, be sure to preserve the values of these bits. Changes to these values can interrupt the normal
operation of the SFP module. | Table 15. Register 17 (Extended Status 1) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|-------------------------------|---|-------------------|-------------------|--| | 17.15:14
RO | Speed | 10 = 1000 Mbps | 0 | Retain | This bit is only valid after bit 17.11 is set. | | 17.13
RO | Duplex | 1 = Full duplex
0 = Half duplex | 0 | Retain | This bit is only valid after bit 17.11 is set. | | 17.12
RO/LH | Page Received | 1 = Page received
0 = Page not received | 0 | 0 | | | 17.11
RO | Speed and
Duplex Resolved | 1 = Resolved
0 = Speed not resolved | 0 | 0 | This bit is set when auto-nego-
tiation is either completed or
disabled. | | 17.10
RO | Link | 1 = Link up
0 = Link down | 0 | 0 | | | 17.9:7
RO | Cable Length | 000 = < 50 m
001 = 50 - 80 m
010 = 80 - 110 m
011 = 110 - 140 m
100 = > 140 m | 000 | 000 | | | 17.6
RO | MDI Crossover
Status | 1 = Crossover
0 = No crossover | 0 | 0 | Crossover means that pairs A+/- (pins 1 & 2 on the RJ45 jack) and B+/- (pins 3 & 6) are interchanged and C+/- (pins 4 &5) and D+/- (pins 7 & 8) are interchanged. This bit is only valid after bit 17.11 is set. | | 17.5:4
RO | N/A to SFP Module | | 00 | 00 | | | 17.3
RO | MAC Transmit
Pause Enabled | 1 = Transmit pause
enabled
2 = Transmit pause
disabled | 0 | 0 | This bit reflects the capability of the MAC to which the module is connected on the serial side. This bit is only valid after bit 17.11 is set. | | 17.2
RO | MAC Receive
Pause Enabled | 1 = Receive pause
enabled
2 = Receive pause
disabled | 0 | 0 | This bit reflects the capability of the MAC to which the module is connected on the serial side. This bit is only valid after bit 17.11 is set. | | 17.1
RO | Polarity | 1 = Polarity reversed
2 = Polarity not reversed | 0 | 0 | This bit is set if any of the four twisted pairs have the + and - wires reversed. | | 17.0
RO | Jabber | 1 = Jabber detected
0 = No jabber detected | 0 | | | Table 16. Register 20 (Extended ContROI 2) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|--|---|-------------------|-------------------|--| | 20.15
RO | Link down on no idles | 1 = Link lock lost
0 = Link lock intact | 0 | 0 | If idle patterns are not seen
within 1 ms, link lock is lost and
link is brought down. | | 20.14:4
R/W | N/A to SFP Module | | 00011000110 | 0001100110 | When writing to register 20, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | | 20.3
R/W | Clause 37 Auto-Nego-
tiation Enable | 0 = Disable BASE-X
auto-negotiation
1 = Enable BASE-X
auto-negotiation | 1 | Update | Changes to this bit take effect after software reset. | | 20.2:0R/W | N/A to SFP Module | | 000 | 000 | When writing to register 20, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | # Table 17. Register 21 (Receive ErROr Counter) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |------------------|--------------------|--|-------------------|-------------------|--| | 21.15:0
RO/SC | Receive er
ROrs | Counts er
ROrs received on the
1000BASE-T side | 0 | 0 | These bits do not
ROII-over when they are all
one's. | # Table 18. Register 22 (Cable Diagnositc 1) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |---------------|-------------------|--|-------------------|-------------------|---| | 22.15:2
RO | N/A to SFP Module | | | | | | 22.1:0
R/W | MDI Pair Select | 00 = Pins 1 & 2 (Channel A)
01 = Pins 3 & 6 (Channel B)
10 = Pins 4 & 5 (Channel C)
11 = Pins 7 & 8 (Channel D) | | | For VCT results, choose the twisted pair on which register 28 will dsiplay. | Table 19. Register 26 (Extended Control 3) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |---------------|-----------------------------|--|-------------------|-------------------|--| | 26.15:8
RO | N/A to SFP Module | | 00000000 | Retain | | | 26.7:3
R/W | N/A to SFP Module | | 00001 | Update | When writing to register 26, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | | 26.2:0
R/W | RD+/- Output Ampli-
tude | 000 = 0.50 V
001 = 0.55 V
010 = 0.60 V
011 = 0.65 V
100 = 0.70 V
101 = 0.75 V
110 = 0.80 V
111 = 0.85 V | 010 | Retain | All voltages measured peak-to-
peak into a 100-ohm load. | Table 20. Register 27 (Extended Status 2) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |-------------------|--|--|-------------------|--|---| | 27.15:13
RO/SC | N/A to SFP Module | | 100 | Update
(27.15),
Retain
(27.14:13) | When writing to register 27, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | | 27.12
R/W | 1000BASE-X Auto-
negotiation Bypass
Enable | 1 = Enabled
0 = Disabled | 1 | Update | If enabled, BASE-X link will come up after 200 ms even if BASE-X auto-negotiation fails. When writing to register 27, be sure to preserve the values of this bit. Changes to this value can interrupt the normal operation of the SFP module. | | 27.11
RO | 1000BASE-X Auto-
negotiation Bypass
Status | 1 = BASE-X auto-negotia-
tion failed and BASE-X link
came up becase bypass
mode timer expired
0 = BASE-X link came up
because regular BASE-X
auto-negotiation was
completed | 0 | Retain | See bit 27.12. | | 27.10:0
R/W | N/A to SFP Module | | 0000001000 | Update | When writing to register 27, be sure to preserve the values of these bits. Changes to these values can interrupt the normal operation of the SFP module. | Table 21. Register 28 (Cable Diagnostic 2) | Bit | Name | Description | Hardware
Reset | Software
Reset | Details | |----------------|---------------------------------|--|-------------------|-------------------|---| | 28.15
R/W | Enable Cable
Diagnostic Test | 1 = Enable test
0 = disable test | 0 | 0 | The test can only be performed when the link is down. If the link partner is trying to auto-negotiate or if the link partner is sending out idle link pulses, the test will proceed. | | 28.14:13
RO | Status | 11 = Test fail 10 = Open detected in twisted pair 01 = Short detected in twisted pair 00 = No short or open detected in twisted pair | 00 | 00 | The twisted pair under test is specified in register 22. | | 28.12:8
RO | Reflected
Magnitude | 11111 = 1 V
10000 = 0 V
00000= -1 V | 00000 | 00000 | The twisted pair under test is specified in register 22. | | 28.7:0
RO | Distance | Distance to the short or open | 00000000 | 00000000 | The distance is given in meters by 13/16 * (decimal equivalent of 28.7:0) + 32. The twisted pair under test is specified in register 22. If no short or open is detected, these bits are 0's. | Figure 7a. Module Drawing Figure 7b. Assembly Drawing Figure 7c. Angled Application Figure 7d. SFP Host Board Mechanical Layout