6A05G THRU 6A10G ## 6.0AMPS. GLASS PASSIVATED RECTIFIERS ### **FEATURE** - . High current capability - . Low forward voltage drop - . Low power loss, high efficiency - . High surge capability - . High temperature soldering guaranteed: 260°C /10sec/ 0.375" lead length at 5 lbs tension ## **MECHANICAL DATA** . Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C . Case: Molded with UL-94 Class V-0 recognized Flame Retardant Epoxy . Polarity: color band denotes cathode . Mounting position: any Dimensions in inches and (millimeters) ## MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20% | SYMBOL | 6A05G | 6A1G | 6A2G | 6A4G | 6A6G | 6A8G | 6A10G | units | |--------------------|---|---|--|--|---|---|--|--| | $V_{ m RRM}$ | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | $V_{ m RMS}$ | 35 | 70 | 140 | 280 | 420 | 560 | 700 | V | | $V_{ m DC}$ | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | I _{F(AV)} | 6.0 | | | | | | | A | | | 200.0 | | | | | | | A | | V_{F} | 1.0 | | | | | | | V | | I_{R} | 5.0
200.0 | | | | | | | μΑ | | C _J | 100 | | | | | | | pF | | $R_{(JA)}$ | 40 | | | | | | | °C/W | | T _{STG} | -55 to +150 | | | | | | | °C | | $T_{ m J}$ | -55 to +175 | | | | | | | °C | | | VRRM VRMS VDC IF(AV) IFSM VF IR CJ R(JA) TSTG | V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} V _F I _R C _J R _(JA) T _{STG} | V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{F(AV)} I _{FSM} V _F I _R C _J R _(JA) T _{STG} | V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _{F(AV)} I _{FSM} V _F I _R C _J R _(JA) T _{STG} -5 | V _{RRM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 I _{F(AV)} 6.0 I _{FSM} 200.0 V _F 1.0 I _R 5.0 200.0 C _J 100 R _(JA) 40 T _{STG} -55 to +15 | V _{RRM} 50 100 200 400 600 V _{RMS} 35 70 140 280 420 V _{DC} 50 100 200 400 600 I _{F(AV)} 6.0 V _F 1.0 I _R 5.0 200.0 C _J 100 R _(JA) 40 T _{STG} -55 to +150 | V_{RRM} 50 100 200 400 600 800 V_{RMS} 35 70 140 280 420 560 V_{DC} 50 100 200 400 600 800 $I_{F(AV)}$ 6.0 V_F 1.0 5.0 200.0 6.0 | V_{RRM} 50 100 200 400 600 800 1000 V_{RMS} 35 70 140 280 420 560 700 V_{DC} 50 100 200 400 600 800 1000 $I_{F(AV)}$ 6.0 5.0 | #### Note: - 1. Measured at 1.0 MHz and applied reverse voltage of 4.0Vdc - 2. Thermal Resistance from Junction to Ambient at 0.375" (9.5mm) lead length, vertical P.C. Board Mounted.