

LS358 MONOLITHIC DUAL PNP TRANSISTOR

Linear Systems Log Conformance Monolithic Dual PNP

The LS358 is a monolithic pair of PNP transistors mounted in a single TO-71 package. The monolithic dual chip design reduces parasitics and is ideal for use in logging applications. See LS318 for NPN.

The hermetically sealed TO-71 is well suited for hi-rel and harsh environment applications.

(See Packaging Information).

LS358 Features:

- Tight matching
- Low Output Capacitance

FEATURES						
LOG CONFORMANCE	∆re = 1.5Ω					
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25°C (unless otherwise noted)						
Maximum Temperatures						
Storage Temperature	-65°C to +200°C					
Operating Junction Temperature	-55°C to +150°C					
Maximum Power Dissipation						
Continuous Power Dissipation (One side)	250mW					
Continuous Power Dissipation (Both sides) 500mW					
Linear Derating factor (One side)	2.3mW/°C					
Linear Derating factor (Both sides) 4.3mW/°C						
Maximum Currents						
Collector Current	10mA					

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

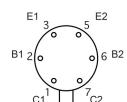
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$ V_{BE1} - V_{BE2} $	Base Emitter Voltage Differential		0.4	1	mV	$I_C = 10 \mu A$, $V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		1	10	μV/°C	$I_C = 10 \mu A$, $V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
$ I_{B1} - I_{B2} $	Base Current Differential			10	nA	$I_C = 10 \mu A, V_{CE} = 5 V$
Δ (I _{B1} – I _{B2}) /°C	Base Current Differential			0.5	nA/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
h _{FE1} /h _{FE2}	DC Current Gain Differential		5		%	$I_C = 10 \mu A, V_{CE} = 5 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

LLLC I MICAL	ANACIENISTICS & 25 C (unicas offici wise					
SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Δre	Log Conformance			1.5	Ω	$I_C = 10-100-1000 \mu A$, $V_{CE} = 5V$
BV_{CBO}	Collector to Base Voltage	20	-)	>	I _C = 10μΑ, I _E = 0
BV _{CEO}	Collector to Emitter Voltage	20			٧	$I_{C} = 10 \mu A$, $I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			٧	$I_E = 10 \mu A, I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	45			٧	$I_{C} = 10 \mu A, I_{E} = 0$
		100		600		$I_C = 10 \mu A, V_{CE} = 5 V$
h _{FE}	DC Current Gain	100		600		$I_C = 100 \mu A, V_{CE} = 5 V$
		100				$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
V _{CE} (SAT)	Collector Saturation Voltage			0.5	V	$I_{C} = 1 \text{mA}, I_{B} = 0.1 \text{mA}$
I _{EBO}	Emitter Cutoff Current			0.2	nA	$I_{C} = 0, V_{EB} = 3V$
I _{CBO}	Collector Cutoff Current			0.2	nA	$I_E = 0$, $V_{CB} = 15V$
C _{OBO}	Output Capacitance			2	pF	$I_E = 0, V_{CB} = 5V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			0.5	nA	$V_{CC} = \pm 45V$
f _T	Current Gain Bandwidth Product	200			MHz	$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
NF	Narrow Band Noise Figure			3	dB	$I_C = 100 \mu A$, $V_{CE} = 5V$, $BW = 200 Hz$, $R_G = 10 K\Omega$,
						f = 1KHz

Notes

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.


Available Packages:

LS358 in TO-71 LS358 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

TO-71 (Bottom View)

