

Size: 2in x 1in x 0.47in (50.8mm x 25.4mm x 12mm)

FEATURES

- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- Low Leakage Current
- No Minimum Load Requirement
- I/O Isolation of 4200VAC
- 3 Year Warranty

- RoHS & REACH Compliant
- Over Load, Over Voltage, and Short Circuit Protection
- ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1 and IEC/EN 60601-1 3rd Edition 2xMOPP Safety Standards

DESCRIPTION

The DCMRH15 series of medical DC/DC converters offers up to 15 watts of output power in a very compact 2" x 1" x 0.47" package. This series consists of fully regulated single and dual output models with a wide 2:1 input voltage range. Each model in this series features low leakage current, no minimum load requirement, I/O isolation of 4200VAC, as well as protection against over load, over voltage, and short circuit conditions. This series is RoHS and REACH compliant and it also has ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1 and IEC/EN 60601-1 3rd edition 2xMOPP safety standards.

MODEL SELECTION TABLE									
Single Output Models									
Model Number	Input Voltage Range	Output Voltage	Output Current	Input No Load	Current Max. Load	Ripple & Noise	Maximum Capacitive Load	Efficiency	Output Power
DCMRH15-12S05		5VDC	3000mA	20mA	1453mA	50mVp-p	5100μF	86%	15W
DCMRH15-12S051	10)/D0	5.1VDC	3000mA		1483mA	50mVp-p	5100µF	86%	
DCMRH15-12S12	12VDC (9~18VDC)	12VDC	1250mA		1404mA	100mVp-p	870µF	89%	
DCMRH15-12S15	(9~10000)	15VDC	1000mA		1420mA	100mVp-p	560µF	88%	
DCMRH15-12S24		24VDC	625mA		1420mA	150mVp-p	220µF	88%	
DCMRH15-24S05		5VDC	3000mA	15mA	710mA	50mVp-p	5100μF	88%	15W
DCMRH15-24S051	041/100	5.1VDC	3000mA		724mA	50mVp-p	5100μF	88%	
DCMRH15-24S12	24VDC (18~36VDC)	12VDC	1250mA		702mA	100mVp-p	870µF	89%	
DCMRH15-24S15	(10-300 DO)	15VDC	1000mA		702mA	100mVp-p	560µF	89%	
DCMRH15-24S24		24VDC	625mA		694mA	150mVp-p	220µF	90%	
DCMRH15-48S05	48VDC (36~75VDC)	5VDC	3000mA	10mA	355mA	50mVp-p	5100µF	88%	
DCMRH15-48S051		5.1VDC	3000mA		362mA	50mVp-p	5100µF	88%	
DCMRH15-48S12		12VDC	1250mA		355mA	100mVp-p	870µF	88%	15W
DCMRH15-48S15		15VDC	1000mA		347mA	100mVp-p	560µF	90%	
DCMRH15-48S24		24VDC	625mA		351mA	150mVp-p	220µF	89%	

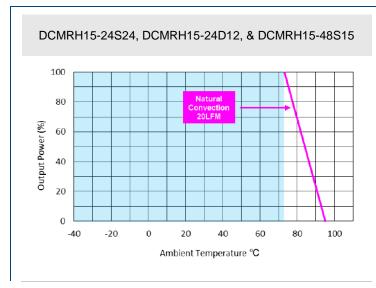
MODEL SELECTION TABLE										
Dual Output Models										
Model Number	Input Voltage Range	Output Voltage	Output Current	Input No Load	Current Max. Load	Ripple & Noise	Maximum Capacitive Load ⁽¹⁾	Efficiency	Output Power	
DCMRH15-12D12	12VDC	±12VDC	±625mA	00 4	1420mA	100mVp-p	440#µF	88%	45\4/	
DCMRH15-12D15	(9~18VDC)	±15VDC	±500mA 20mA	1404mA	100mVp-p	280#µF	89%	15W		
DCMRH15-24D12	24VDC	±12VDC	±625mA	15m A	694mA	100mVp-p	440#µF	90%	45\\	
DCMRH15-24D15	(18~36VDC)	±15VDC	±500mA	15mA	702mA	100mVp-p	280#µF	89%	15W	
DCMRH15-48D12	48VDC	±12VDC		10mA	351mA	100mVp-p	440#µF	89%	15W	
DCMRH15-48D15	(36~75VDC)	5VDC) ±15VDC		TOMA	355mA	100mVp-p	280#µF	88%	1000	

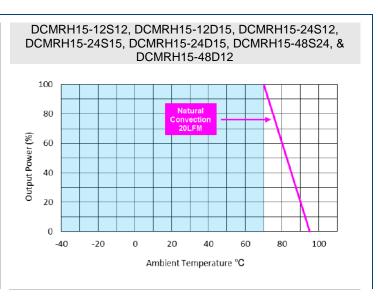
SPECIFICATIONS

All specifications are based on 25°C, Resistive Load, Nominal Input Voltage, and Rated Output Current unless otherwise noted.

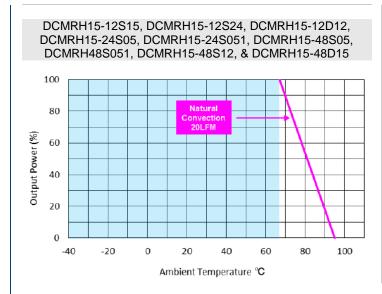
We reserve the right to change specifications based on technological advances.

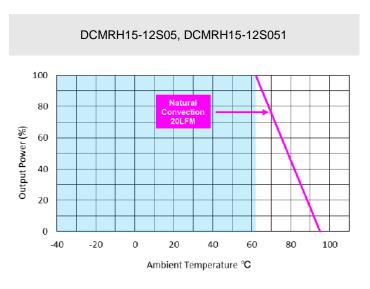
CDECIFIC ATION	VVC 16361VE II	ne right to change specifications based on technological advan-		Т	N.A	I lude				
SPECIFICATIONS		TEST CONDITIONS	Min	Тур	Max	Unit				
INPUT SPECIFICATIONS	40)/DC None in 1	law at Madala	9	40	40	1				
Innut Vallana Danna	12VDC Nominal Input Models			12	18	\/D0				
Input Voltage Range	24VDC Nominal	18 36	24	36	VDC					
	48VDC Nominal Input Models			48	75					
Input Surge Voltage		12VDC Nominal Input Models	-0.7		25					
	100mS max.	24VDC Nominal Input Models	-0.7		50	VDC				
		48VDC Nominal Input Models	-0.7		100					
	12VDC Nominal				9					
Start-Up Threshold Voltage	24VDC Nominal Input Models				18	VDC				
	48VDC Nominal			36						
	12VDC Nominal			75						
Under Voltage Shutdown	24VDC Nominal			15		VDC				
	48VDC Nominal	Input Models		33						
Input Filter	All Models			Internal	Pi Type					
OUTPUT SPECIFICATIONS										
Output Voltage				See 7	Γable					
Voltage Setting Accuracy					±1.0	%Vnom.				
Line Regulation	Vin =Min. to Max	. @Full Load			±0.5	%				
	I- 00/ I- 4000/	Single Output			±0.5	0/				
Load Regulation	lo=0% to 100%	Dual Output			±1.0	%				
Voltage Balance	Dual Output, Bala				±2.0	%				
Output Power				See 7	Γable	70				
Output Current			See Table							
Minimum Load			No Minimum Load Requiremen							
Maximum Capacitive Load				See 7						
Ripple & Noise	0-20MHz bandwi	dth, Measured with a MLCC: 4.7µF		See 7						
т при от толо	12VDC Nominal Input Models			100						
Reflected Ripple Current	24VDC Nominal Input Models			50		mA				
Tronoctod Prippio Garroni	48VDC Nominal			30		- ''''				
Transient Recovery Time(2)	25% Load Step 0				300	µsec				
Transient Response Deviation ⁽²⁾				±3	±5	β300 %				
Temperature Coefficient	2070 Load Otop C	25% Load Step Change				%/°C				
Start Up Time (Power On)	Nominal Vin and	Constant Resistive Load			±0.02	ms				
PROTECTION	140mmai viii and	Constant resistive Load			- 30	1113				
Short Circuit Protection	Hiccup Mode 0.7	Hz tvn		Automatic	Recovery					
Over Load Protection	Hiccup	i iz typ.		150	l	%				
0 10 1 2000 1 10 100 10 11		Output Models		6.2		,,,				
		VDC & 5.1VDC Output Models 2VDC Output Models				-				
	15VDC Output Models 24VDC Output Models			15 18						
Over Voltage Protection				27		VDC				
	±12VDC Output Models			±15						
	±15VDC Output Models			±13		-				
ENVIRONMENTAL SPECIFICAT			±10							
LINVIROINIVIENTAL SPECIFICAT	IONS	DCMRH15-24S24, DCMRH15-24D12, & DCMRH15-48S15	-40		73					
	Natural Convection ⁽³⁾ , Nominal Vin,	DCMRH15-24524, DCMRH15-24D12, & DCMRH15-46S15	-40		13					
		DCMRH15-12S12, DCMRH15-12D15, DCMRH15-24S12, DCMRH15-24S15, DCMRH15-24D15, DCMRH15-48S24, &	40		70					
			-40		70					
Operating Ambient Temperature		DCMRH15-48D12 DCMRH15-12S15, DCMRH15-12S24, DCMRH15-12D12,			+	٥C				
	Load 100%	DCMRH15-12515, DCMRH15-12524, DCMRH15-12D12, DCMRH15-24S05, DCMRH15-24S051, DCMRH15-48S05,	-40		67					
	Inom	DCMRH15-24S05, DCMRH15-24S051, DCMRH15-48S05, DCMRH15-48S051, DCMRH15-48S12, & DCMRH15-48D15			67					
		DCMRH15-12S05 & DCMRH15-12S051	-40		62	1				
Storage Temperature	DOM:N.110 12000 & DOM:N.110 120001		-50		+125	°C				
Thermal Impedance	Natural Convection				T120	°C/W				
Case Temperature	Tradulal Convection				95	°C				
Humidity	Non Condensing				95	%RH				
Altitude	Non Condensing									
	1.5mm from case for 10Sec				4000	[™]				
Lead Temperature	Calculated, MIL-HDBK-217F, 25°C, Ground Benign									
MTBF	Calculated, MIL-I	TDDN-Z17F, Z5°C, GIOUHU DeHIGH	1,428,181			Hours				

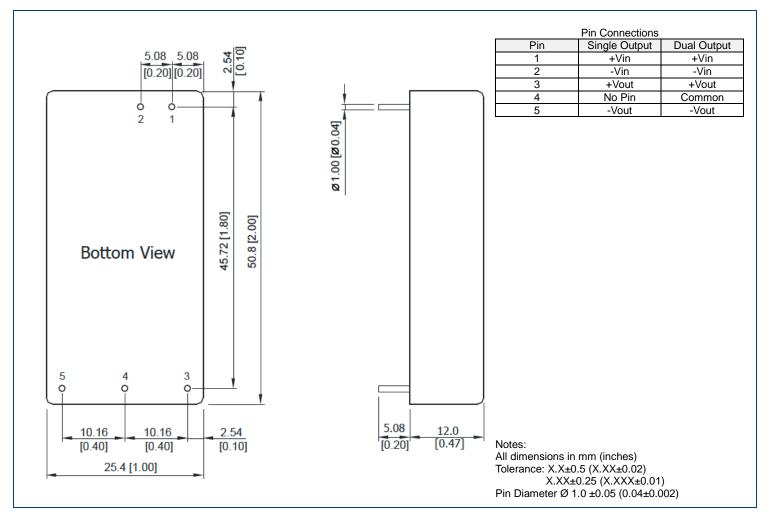



SPECIFICATIONS								
All specification		ominal Input Voltage, and Rated Output Curre		otherwise	noted.			
		specifications based on technological advanc						
SPECIFICATION		ONDITIONS	Min	Тур	Max	Unit		
GENERAL SPECIFICATIONS	3							
Efficiency				See 7	Γable			
Switching Frequency				285		KHz		
I/O Isolation Voltage	60 Seconds, Reinforced insulation, rate	d for 300Vrms working voltage	4200			VACrms		
I/O Isolation Resistance	500VDC		10			GΩ		
I/O Isolation Capacitance	100KHz, 1V				80	pF		
Leakage Current	240VAC, 60Hz				5	μA		
PHYSICAL SPECIFICATIONS	3							
Weight		1.06oz (30g)						
Dimensions (L x W x H)		2in x 1in x 0.47in						
Differsions (E x W x 11)		(50.8mm x 25.4mm x 12mm)						
Case Material		Non-Conductive Black Plastic						
Case Material		(Flammability to UL 94V-0 rated)						
Pin Material		Tinned Copper						
Cooling		Natural Convection						
SAFETY CHARACTERISTICS	S							
Safety Standards	ANSI/AAMI							
Salety Standards								
Safety Approvals (Pending)	ANSI/AAMI ES60							
	IEC/EN 60601-1 3 rd Edition (CB Report)							
EMI	Conduction & Radiation	EN55011, FCC Part 15		P	erformand	ce: Class A		
EMS	EN6060-1-1-2 4 th							
	ESD EN61000-4-2 Air ±15kV, Contact ±8kV			Performance: A				
	Radiated Immunity	EN61000-4-3 10V/m	Performance: A					
	Fast Transient ⁽⁴⁾ EN61000-4-4 ±2kV Surge ⁽⁴⁾ EN61000-4-5 ±1kV			Performance: A				
	Surge ⁽⁴⁾	Performance: A						
	Conducted Immunity					Performance: A		
	PFMF	EN61000-4-8 30A/m	Performance: A					

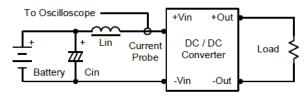
NOTES


- 1. Maximum Capacitive Load: # for each output
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3. Natural convection is about 20LFM but is not equal to still air (0 LFM).
- 4. To meet EN61000-4-4 & EN61000-4-5 and external capacitor across the input pins is required. Suggested capacitor: 330μF/100V
- 5. It is recommended to protect the converter by a slow blow fuse in the input supply line.
- 6. Other input and output voltages may be available, please contact factory.
- Due to advances in technology, specifications subject to change without notice.

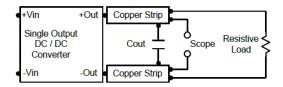

POWER DERATING CURVES -

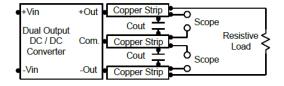


MECHANICAL DRAWINGS -



TEST SETUP-


Input Reflected-Ripple Current Test Setup

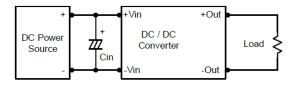

Input reflected-ripple current is measured with an inductor Lin $(4.7\mu\text{H})$ and Cin $(220\mu\text{F}, \text{ESR} < 1.0\Omega \text{ at } 100\text{KHz})$ to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500Khz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 4.7µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50mm and 75mm from the DC/DC Converter.

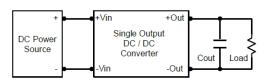
TECHNICAL NOTES

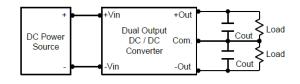
Over Load Protection


To provide hiccup model protection in a fault (output over load) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Over Voltage Protection

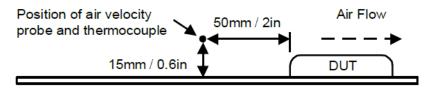
The output over voltage clamp consists of control circuitry, which is independent of the primary regulation loop that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output over voltage. The OVP level can be found in data sheet.


Input Source Impedance


The power module should be connected to a low ac-impedance source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor on the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR <1.0 at 100kHz) capacitor of $10\mu F$ for 12V input devices, a $4.7\mu F$ for 24V input devices, and a $2.2\mu F$ for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

THE DCMRH15 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. Connect capacitors at the point of load for best performance. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.

COMPANY INFORMATION -

Wall Industries, Inc. has created custom and modified units for over 50 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on-time and on budget. Our ISO9001-2008 certification is just one example of our commitment to producing a high quality, well-documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact Wall Industries for further information:

Phone: ☎(603)778-2300 Toll Free: ☎(888)597-9255 Fax: ☎(603)778-9797

E-mail: sales@wallindustries.com
Web: www.wallindustries.com
Address: 37 Industrial Drive
Exeter, NH 03833