

RL-3264-6C Series Current Sensor Resistor (Lead / Halogen Free)

Features / Applications :

- Power rating is up to 1W
- Low TCR current sensor
- Low thermal EMF (< 3 µV/°C)
- Resistors are ideal for all types of current sensing
- Metal foil construction; Excellent long-term stability
- Moisture sensitivity level: MSL 1
- RoHS compliant

Electrical Specifications:

Characteristics ¹	Feature
Power Rating ²	1 W
Resistance Value(mΩ)	3 to 100
Temperature Coefficient of Resistance(ppm/°C)	± 100
Operation Temperature Range	-55°C to +170°C
Maximum Working Voltage (V)	(P*R) ^{1/2}

Note:

- 1. For detailed information see table on page 3
- 2. For sensors operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.

Ambient Temperature (°C)

Figure 1.: Power Temperature Derating Curve

DOCUMENT : SM6C-NH

PAGE : 1 REVISION : A2

Outline Drawing:

Resistance Range(mΩ)	L	W	а	t
3 to 5 、 7	6.35±0.25	2 20 4 0 20	0.90 ± 0.25	1.05± 0.15
6 \ 8 to 100		3.20 ± 0.20		0.80± 0.15

(Unit:mm)

Type Designation:

 $R\ L-3\ 2\ 6\ 4-6C-\ \square\square\square\square\ -\ \squareNH$

(1) (2)

(3)

(4)

(5)

Note:

- (1) Series No.
- (2) Size
- (3) Power Rating :6C = 1W
- (4) Resistance value : $0R5m = 0.5m\Omega$; $R002 = 2m\Omega$; $R010 = 10m\Omega$
- (5) Tolerance: $\pm 1\%(F)$, $\pm 2\%(G)$, $\pm 5\%(J)$

DOCUMENT: SM6C-NH

PAGE : 2 REVISION : A2

Available standard resistance values:

Resistance Values	Tolerance		
	±1.0%	±2.0%	±5.0%
R003	✓	✓	✓
R004	✓	✓	✓
R005	✓	✓	✓
R006	✓	✓	✓
6R5m	✓	✓	✓
R007	✓	✓	✓
R008	✓	✓	✓
R009	✓	✓	✓
R010	✓	✓	
R012	✓	✓	✓
R013	✓	✓	✓
R014	✓	✓	✓
R015	✓	✓	✓
R016	✓	✓	✓
R018	✓	✓	✓
R020	✓	✓	✓
R022	✓	✓	✓
R023	✓	✓	✓
R024	✓	✓	✓
R025	✓	✓	✓
R027	✓	✓	✓
R030	✓	✓	✓
R033	✓	✓	✓
R035	✓	✓	✓
R040	✓	✓	✓
R047	✓	✓	✓

Resistance Values	Tolerance		
	±1.0%	±2.0%	±5.0%
R050	✓	✓	✓
R056	✓	✓	✓
R060	✓	✓	✓
R068	✓	✓	✓
R070	✓	✓	✓
R080	✓	✓	✓
R090	✓	✓	✓
R100	✓	✓	✓

✓ = available

Further values and tolerances on request.

DOCUMENT : SM6C-NH

PAGE : 3 REVISION : A2

Reliability Performance:

Test Item	Condition of Test	Requirements
Short Time Overload	2.5 x Rated power for 5 seconds Refer to JIS C 5201-1 4.13	ΔR: ± 0.5%
Thermal Cycling	-55 to 125℃ 100 cycles, 15 min at each extreme condition Refer to JIS C 5201-1 4.19	ΔR: ± 0.5%
Low Temperature Storage	Kept at -55°C, 1000 hours Refer to JIS C 5201-1 4.23.4	ΔR: ± 0.5%
Resistance to Soldering Heat	Dipped into solder at $260 \pm 5^{\circ}$ for 10 ± 1 seconds Refer to JIS C 5201-1 4.18	ΔR: ± 0.5%
Load Life	Rated voltage for 1.5hours followed by a pause 0.5hour at $70 \pm 3^{\circ}$ C Cycle repeated 1000 hours Refer to JIS C 5201-1 4.25	ΔR: ±1.0%
Damp Heat with Load	40 ± 2°C with relative humidity 90% to 95%. D.C. rated voltage for 1.5 hours ON and 30 minutes OFF. Cycle repeated 1,000 hours Refer to JIS C 5201-1 4.24	ΔR: ±1.0%
High Temperature Exposure	Kept at 170°C for 1000 hours Refer to JIS C 5201-1 4.23.2	ΔR: ± 1.0%
Solderability	Temperature of Solder : $245 \pm 5^{\circ}$ C Immersion Duration : 3 ± 0.5 second Refer to JIS C 5201-1 4.17	Uniform coating of solder cover minimum of 95% surface being immersed
Mechanical Shock	100 G's for 6milliseconds. 5 pulses Refer to JIS C 5201-1 4.21	ΔR : ± 0.5%
Substrate Bending	Glass-Epoxy board thickness: 1.6mm Bending width: 2mm Between the fulcrums: 90mm Refer to JIS C 5201-1 4.33	∆R:±0.5%

Note: Measurement at 24±4 hours after test conclusion for all reliability tests-parts.

DOCUMENT : SM6C-NH

PAGE : 4 REVISION : A2

Recommend Solder Pad Dimensions:

Dimensions (mm)	w	L	D
3 to 100 mΩ	4.00	8.00	2.00

Packaging:

Tape packaging dimensions:

DOCUMENT : SM6C-NH

PAGE : 5 REVISION : A2

Reel dimensions:

Peel Strength of Top Cover Tape:

The peel speed shall be about 300mm/min.

The peel force of top cover tape shall between 0.1 to 0.7N

Number of Taping:

2,000 pieces / reel

Label Marking:

The following items shall be marked on the reel.

- (1) Type designation
- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name
- (5) The country of origin

DOCUMENT: SM6C-NH

PAGE: 6
REVISION: A2

Recommend Soldering Conditions:

Meet JEDEC-020D

(1) Reflow Soldering Method:

Reflow Soldering	Tp:255 to 260℃ Max.30 seconds (Tp)
	217°C 60 to 150 seconds
Pre-Heat	150 to 200℃ 60 to 120 seconds
Time 25℃ to peak temperature	8 minutes max

(2) Soldering Iron Method: 350± 5°C max.3 seconds

DOCUMENT : SM6C-NH

PAGE : 7 REVISION : A2

Care Note:

Care note for storage

- (1) Current sensor shall be stored in a environment where temperature and humidity must be controlled (temperature 5 to 40°C, humidity 30 to 80% RH). However, the humidity should be maintained as low as possible.
- (2) Current sensor shall not be stored under direct sunlight.
- (3) Current sensor shall be stored in condition without moisture, dust, any material defect solderability, or hazardous gas (i.e. Chlorination hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- (4) The sensor can be stored for at least one year under the condition mentioned above.

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.

DOCUMENT : SM6C-NH

PAGE: 8 REVISION: A2