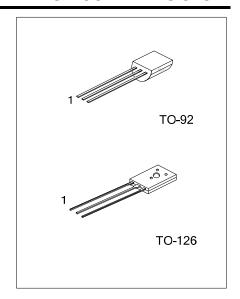
13003DE

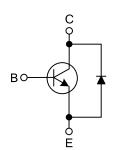
Preliminary

NPN SILICON TRANSISTOR

SILICON TRIPLE DIFFUSION NPN BIPOLAR TRANSISTORS

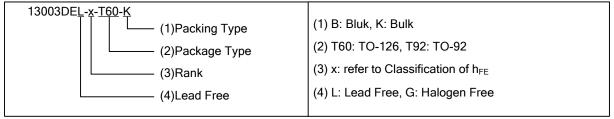

DESCRIPTION

The UTC 13003DE is a silicon NPN power switching transistor; it uses UTC's advanced technology to provide customers high collector-base breakdown voltage, low reverse leakage current and high reliability, etc.


The UTC 13003DE is suitable for electronic ballasts and the general power switch circuit, etc.

FEATURES

- * High collector-base breakdown voltage
- * High reliability
- * Low reverse leakage current



EQUIVALENT CIRCUIT

ORDERING INFORMATION

Ordering Number		Daakana	Pin Assignment			Doolsins	
Lead Free	Halogen Free	Package	1	2	3	Packing	
13003DEL-x-T60-K	13003DEG-x-T60-K	TO-126	В	C	Е	Bulk	
13003DEL-x-T92-B	13003DEG-x-T92-B	TO-92	Е	C	В	Tape Box	
13003DEL-x-T92-K	13003DEG-x-T92-K	TO-92	Е	C	В	Bulk	

www.unisonic.com.tw 1 of 4

■ MARKING INFORMATION

PACKAGE	MARKING		
TO-126	UTC DDDD Data Code 13003DED L: Lead Free P: Halogen Free		
TO-92	UTC 13003DE L: Lead Free P: Halogen Free Data Code		

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise noted)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	V_{CBO}	600	V
Collector-Emitter Voltage	V_{CEO}	400	V
Emitter-Base Voltage	V_{EBO}	9	V
Continuous Collector Current	Ic	1.3	Α
Power Dissipation	P_D	0.8	W
Junction Temperature	T_J	150	°C
Storage Temperature Range	T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	156	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A =25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV_CBO	I _C =0.1mA	600			V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =1mA	400			V
Emitter-Base Breakdown Voltage	BV_{EBO}	I _E =0.1mA	9			V
Collector Cut-Off Current	I _{CBO}	V_{CB} =600V, I_{E} =0			0.1	mA
Collector-Emitter Cut-Off Current	I _{CEO}	V _{CE} =400V, I _B =0			0.1	mA
Emitter-Base Cut-Off Current	I _{EBO}	$V_{EB}=9V$, $I_{C}=0$			0.1	mA
DC Current Gain (Note 1)	h_{FE}	I _C =0.2A, V _{CE} =5.0V	15		30	
	h / h	h _{FE1} : V _{CE} =5V, I _C =5mA	0.75	0.9		
Low current and high current h _{FE2} h _{FE1} ratio	h _{FE1} / h _{FE2}	h _{FE2} : V _{CE} =5V, I _C =0.2A				
Collector-Emitter Saturation Voltage (Note)	$V_{CE(SAT)}$	I _C =0.5A, I _B =0.1A		0.22	0.8	V
Base-Emitter Saturation Voltage (Note)	$V_{BE(SAT)}$	I _C =0.5A, I _B =0.1A		1	1.5	V
Storage Time	t _S		2		4	μs
Rise Time	t_R	UI9600, I _C =0.1A			1	μs
Fall Time	t_{F}				1	μs
Transition Frequency	f_T	I _C =0.2A, V _{CE} =10V, f=1MHz	5			MHz
Diode Forward Voltage	V_{F}	I _F =1A			1.5	V

Note: Pulse test, pulse width tp≤300µs, Duty cycle≤2%

■ CLASSIFICATION OF h_{FE}

RANK	Α	В	С
RANGE	15 ~ 20	20 ~ 25	25 ~ 30

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

