

UTC UNISONIC TECHNOLOGIES CO., LTD

M54134

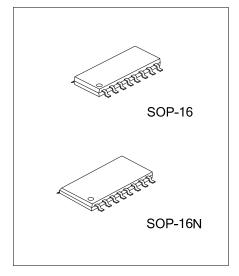
Preliminary

LINEAR INTEGRATED CIRCUIT

EARTH LEAKAGE CURRENT DETECTOR

DESCRIPTION

The UTC M54134 is a semiconductor integrated circuit developed for use in high-speed earth leakage breakers incorporating functions to protect against voltage surges and inverter noise.

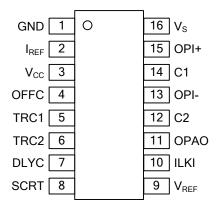

FEATURES

- * Improvement of ability against unwanted tripping by lightning-surge and lightning impulse.
- Two times counting system adopted.
- * Improvement of ability against unwanted tripping by inverter-noise.
- Built-in operational amplifier (of low current dissipation) for active low-pass filter.
- Improved high-frequency, high harmonic superposition performance
- * Internal time delay function
- * An external capacitor is used to set the delay time.
- * High input sensitivity: V_T=11.5mVrms Typ.
- * Low-current dissipation (at R_{IREF}=180kΩ) In stand-by condition: I_s=610µA Typ.
- * High stabilities design
- Adopt the circuits that is not affected by fluctuations of supply voltage/ambient temperature.

ORDERING INFORMATION

Ordering Number		Deskara	Decking		
Lead Free	Halogen Free	- Package	Packing		
M54134L-S16-T	M54134G-S16-T	SOP-16	Tube		
M54134L-S16-R	M54134G-S16-R	SOP-16	Tape Reel		
M54134L-S16N-T	M54134G-S16N-T	SOP-16N	Tube		
M54134L-S16N-R	M54134G-S16N-R	SOP-16N	Tape Reel		

M54134 <u>L-S16-T</u>	
	(1) T: Tube, R: Tape Reel
(2)Package Type	(2) S16: SOP-16, S16N: SOP-16N
(3)Halogen Free	(3) L: Lead Free, G: Halogen Free

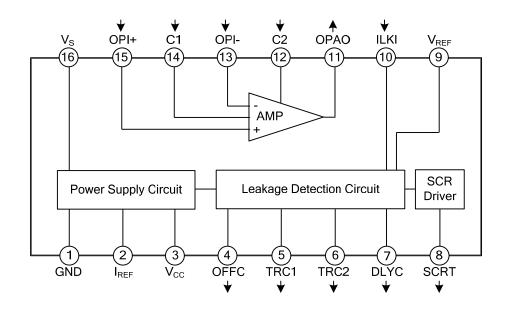


M54134

MARKING INFORMATION

PACKAGE	MARKING		
SOP-16 SOP-16N	UTC DD Date Code M54134 L: Lead Free G: Halogen Free Lot Code		

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Grounding
2	I _{REF}	Pin for connecting resistor that sets constant current for internal circuits; approx. 1.3 V.
3	V _{CC}	Output pin of the internal constant-voltage circuit. Connect decoupling capacitor.
		Leakage input signal does not continue.
4	OFFC	Leakage is detected and SCR turn on.
4	OFFC	In these cases, this IC will be restored to the initial condition after a predetermined time.
		Connect capacitor that determines restore time.
5	TRC1	Pin for connecting capacitor that integrates signal output from discriminator of
5	IRCI	leak-signal input level.
6	TRC2	Pin for connecting capacitor to eliminate noise.
7	DLYC	Pin for connecting capacitor that sets delay time in case of using delay function.
8	SCRT	Output pin for driving a SCR.
9	V _{REF}	Pin for providing input reference level of leakage detection. About 2.4V appears.
10	ILKI	Other input pin of leakage detection.
11	OPAO	Output pin of operational amplifier.
12	C2	Pin for connecting capacitor that prevents abnormal oscillations. Connect capacitor
12		across IC at pins 11 and 12.
13	OPI-	Negative input pins of operational amplifier
14	<u>C1</u>	Pin for connecting capacitor that prevents noise from causing malfunction. Connect
14	C1	capacitors across IC at pins 13 and 14 and across IC at pins 15 and 14.
15	OPI+	Positive input pins of operational amplifier
16	VS	Power supply

BLOCK DIAGRAM

Preliminary LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT
Maximum Supply Voltage		V _{S(MAX)}	15	V
Differential Input Voltage OPI+ to OPI-		V _{ID}	-0.8~+0.8	V
Supply Current		I _S	4	mA
Differential Input Current	OPI+ to OPI-	I _{IOP}	-5~+5	mA
Input Current	V _{REF} to GND	I _{IG}	10	mA
Power Dissipation		PD	200	mW
Operating Ambient Temperature		T _{OPR}	-20~+85	°C
Storage Temperature		T _{STG}	-55~+125	°C

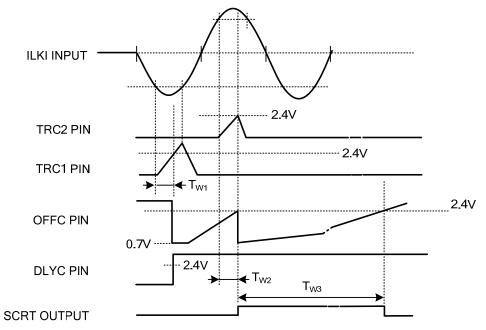
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	Vs	7 ~ 12	V

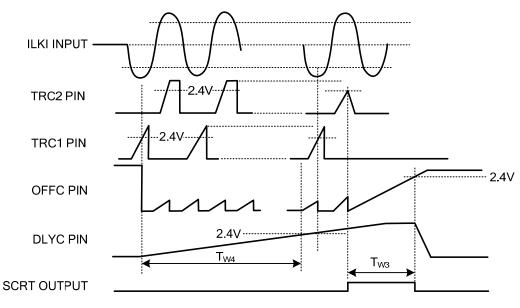
ELECTRICAL CHARACTERISTICS (T_A=25°C, V_S=9V, unless otherwise noted)

						i
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Circuit						
Maximum Supply Voltage	V _{S(MAX)}	I _S =4mA		13.9	15	V
V _{cc} -Pin Output Voltage	V _{CC}	I _{OH} =-1mA		5.2		V
Supply Current (In Standby)	I _{S0}		520	610	700	μA
Supply Current (While Detecting Leakage)	I _{S1}		560	650	740	μA
Supply Current (Immediately after Drive a SCR)	I _{S2}		480	570	660	μA
Ambient Temperature Dependence of I _{S0}		T _A =-25~+85°C		-0.2		%/°C
Operational Amplifier						-
Differential Input Clamp Voltage	VIC	I _{IDC} =±4mA		±0.8		V
OPOA-Pin "H" Output Current	I _{ОН}			2.8		mA
OPOA-Pin "L" Output Current	IOL			0.8		mA
Input Bias Current	I _{IC}			125		nA
Voltage Gain	Gv	f=1kHz		40		dB
Frequency Band Width	Bw	-3dB		6		kHz
Maximum Output Voltage	Vo			3.5		V_{PP}
Output Offset Voltage	V _{O(OFF)}			0		mV
Leak Detector Circuit						
V _{REF} -Pin Output Voltage	Vo	I _{OH} =-200µА		2.4		V
V _{REF} -GND Clamp Voltage	V _{RCL}	I _{RCL} =5mA		4.7		V
DC Input Voltage of Leakage Detection	V	With respect to V _{REF}		±14.		mVd
	V _{I(ON)}	With respect to VREF		0		с
ILKI-Pin Input Bias Current	I _{IH}	V _{IN} =V _{REF}		220		nA
3-ms Circuit						
TRC1 threshold voltage	V _{TH1}			2.4		V
Accuracy of TRC1-Pin "H" Output Current	E _{IOH1}	V ₀ =0V, I _{0H1} =-7.6µА	A -10 ·		+10	%
Accuracy of T _{W1} pulse width	E _{TW1}	C=0.01µf, T _{W1} =3ms	-15		+15	%
Ambient Temperature Dependence of T _{W1}		T _A =-20~+85°C		0		%/°C



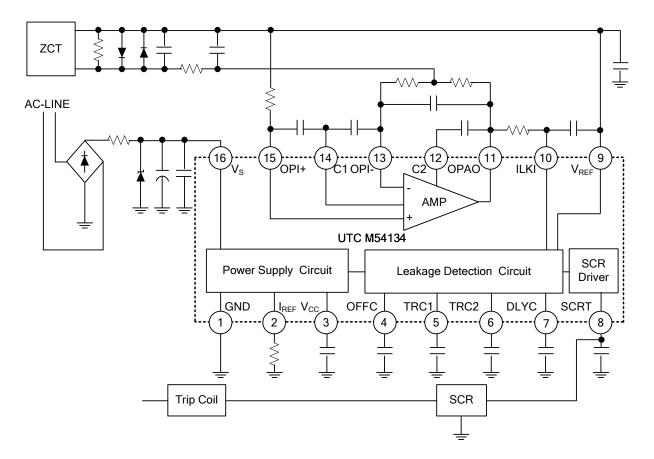
■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
1-ms Circuit							
TRC2 Threshold Voltage	V _{TH2}				2.4		V
Accuracy of TRC2-pin "H" Output Current	E _{IOH2}	V _O =0V, I _{OH2}	=-7.6μA	-10		+10	%
Accuracy of TW2 Pulse Width	E _{TW2}	C=0.0047µl	F, T _{W2} =1.5ms	-15		+15	%
Ambient Temperature Dependence of V_T		T _A =+25°C∼	+85°C		-8.0		%
		T _A =+25°C∼	-20°C		+2.0		%
Ambient Temperature Dependence of Tw2		T _A =-20~+85	5°C		0		%/°C
Total AC Input Voltage of Leakage Detection	VT	60Hz			11.5		mVrms
Reset Circuit						-	
OFFC Threshold Voltage	V _{TH}				2.4		V
Accuracy of OFFC-pin "H" Output Current	EIOH	V _O =0V, I _{OH} =-7.6µА		-10		+10	%
Accuracy of Reset Time Pulse Width	E _{TW3}	C=0.33µF, T _{W3} =75ms		-30		+30	%
Delay Circuit						-	
DLYC Threshold Voltage	V _{TH}				2.4		V
Accuracy of DLYC-pin "H" Output Current	EIOH	V ₀ =0V, I _{0H} =-7.6µА		-10		+10	%
Accuracy of Delay Timer Pulse Width	E _{TW4}	C=1.0µF, T _{W4} =300ms		-30		+30	%
SCR Driver Circuit						-	
SCRT-Pin "L" Output Voltage	V _{OL8}	I _{OL} =200μA			0.1	0.2	V
Supply Voltage for I _{OH} Hold	V _{S(OFF)}				3.0	4.0	V
	I _{OHC}		T _A =-20°C	-100	-160		μA
SCRT-Pin "H" Output Current	I _{OHN}	V _O =8V	T _A =+20°C	-50	-130		μA
	I _{OHH}		T _A =+85°C	-33	-100		μA



WITHOUT DELAY FUNCTION

Without Delay Function


USING DELAY FUNCTION

Using Delay Function

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

