16-bit Microcontroller

CMOS

F²MC-16LX MB90330A Series

MB90333A/F334A/MB90V330A

■ DESCRIPTION

The MB90330A series are 16-bit microcontrollers designed for applications, such as personal computer peripheral devices, that require USB communications. The USB feature supports not only 12-Mbps Function operation but also Mini-HOST operation. It is equipped with functions that are suitable for personal computer peripheral devices such as displays and audio devices, and control of mobile devices that support USB communications. While inheriting the AT architecture of the F²MC family, the instruction set supports the C language and extended addressing modes and contains enhanced signed multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, long word processing is now available by introducing a 32-bit accumulator.

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Clock
 - Built-in oscillation circuit and PLL clock frequency multiplication circuit
 - · Oscillation clock
 - The main clock is the oscillation clock divided into 2 (for oscillation 6 MHz : 3 MHz)
 - Clock for USB is 48 MHz
 - Machine clock frequency of 6 MHz, 12 MHz, or 24 MHz selectable
 - Minimum execution time of instruction : 41.6 ns (6 MHz oscillation clock, 4-time multiplied : machine clock 24 MHz and at operating $V_{CC} = 3.3 \text{ V}$.
- The maximum memory space : 16 Mbytes
- 24-bit addressing

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page URL: http://edevice.fujitsu.com/micom/en-support/

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

(Continued)

• Bank addressing

• Instruction system

- · Data types : Bit, Byte, Word and Long word
- Addressing mode (23 types)
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

Instruction system compatible with high-level language (C language) and multi-task

- Employing system stack pointer
- Instruction set symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

• 4-byte instruction queue

• Interrupt function

- Priority levels are programmable
- 32 interrupts function

Data transfer function

- Extended intelligent I/O service function (EI2OS): Maximum of 16 channels
- μDMAC : Maximum 16 channels

• Low Power Consumption Mode

- Sleep mode (with the CPU operating clock stopped)
- Time-base timer mode (with the oscillator clock and time-base timer operating)
- Stop mode (with the oscillator clock stopped)
- CPU intermittent operation mode (with the CPU operating at fixed intervals of set cycles)
- Watch mode (with 32 kHz oscillator clock and watch timer operating)

Package

- LQFP-120P (FPT-120P-M05: 0.40 mm pin pitch)
- LQFP-120P (FPT-120P-M21: 0.50 mm pin pitch)

• Process : CMOS technology

• Operation guaranteed temperature : - 40 °C to + 85 °C (0 °C to + 70 °C when USB is in use)

■ INTERNAL PERIPHERAL FUNCTION (RESOURCE)

• I/O port : Max 94 ports

Time-base timer : 1 channel
Watchdog timer : 1 channel
Watch timer : 1 channel

• 16-bit reload timer: 3 channels

Multi-functional timer

- 16-bit free run timer: 1 channel
- Output compare : 4 channels

An interrupt request can be output when the 16-bit free-run timer value matches the compare register value.

- Input capture : 4 channels
 - Upon detection of the effective edge of the signal input to the external input pin, the input capture unit sets the input capture data register to the 16-bit free-run timer value to output an interrupt request.
- 8/16-bit PPG timer (8-bit × 6 channels or 16-bit × 3 channels) the period and duty of the output pulse can be set by the program.
- 16-bit PWC timer: 1 channel

Timer function and pulse width measurement function

• UART: 4 channels

- Full-duplex double buffer (8-bit length)
- Asynchronous transfer or clock-synchronous serial (Extended I/O serial) transfer can be set.

• Extended I/O serial interface : 1 channel

• DTP/External interrupt circuit (8 channels)

- Activate the extended intelligent I/O service by external interrupt input
- · Interrupt output by external interrupt input

• Delay interrupt output module

· Output an interrupt request for task switching

• 8/10-bit A/D converter: 16 channels

• 8-bit resolution or 10-bit resolution can be set.

• USB: 1 channel

- USB function (correspond to USB Full Speed)
- Full Speed is supported/Endpoint are specifiable up to six.
- Dual port RAM (The FIFO mode is supported).
- Transfer type: Control, Interrupt, Bulk, or Isochronous transfer possible
- USB Mini-HOST function

• I2C* Interface: 3 channels

- Supports Intel SM bus standard and Phillips I2C bus standards
- Two-wire data transfer protocol specification
- Master and slave transmission/reception

*: I2C license:

Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PRODUCT LINEUP

Part number	MB90V330A	MB90F334A	MB90333A			
Туре	For evaluation	Built-in Flash memory	Built-in MASK ROM			
ROM capacity	No	384 Kbytes	256 Kbytes			
RAM capacity	28 Kbytes	24 Kbytes	16 Kbytes			
Emulator-specific power supply *	Yes		-			
CPU functions	Number of basic instructions Minimum instruction execution time: 41.6 ns/at oscillation of 6 MHz (When 4 times are used: Machine clock of 24 MHz) Addressing type: 23 types Program Patch Function: For 2 address pointers Maximum memory space: 16 Mbytes					
Ports	I/O Ports (CMOS) 94 ports					
UART	Equipped with full-duplex double buffer Clock synchronous or asynchronous operation selectable It can also be used for I/O serial Built-in special baud-rate generator Built-in 4 channels					
16-bit reload timer	16-bit reload timer operation Built-in 3 channels					
Multi-functional timer	16-bit free run timer × 1 chan Output compare × 4 channels Input capture × 4 channels 8/16-bit PPG timer (8-bit mod 16-bit PWC timer × 1 channe	s de $ imes$ 6 channels, 16-bit mo	$ ext{de} imes ext{3 channels})$			
8/10-bit A/D converter	16 channels (input multiplex) 8-bit resolution or 10-bit reso Conversion time : 7.16 μs at	lution can be set.	e clock at maximum)			
DTP/External interrupt	8 channels Interrupt factor : "L"→"H" edg	e/"H"→"L" edge/"L" level/"	H" level selectable			
I ² C	3 channels					
Extended I/O serial interface	1 channel					
USB	1 channel USB function (correspond to USB Full Speed) USB Mini-HOST function					
External bus interface	For multi-bus/non-multi-bus					
Withstand voltage of 5 V	16 ports (excluding UTEST and I/O for I ² C)					
Low Power Consumption Mode	Sleep mode/Time-base timer mode/Stop mode/CPU intermittent mode/ Watch mode					
Process	CMOS					
Operating voltage	$3.3~\mathrm{V}\pm0.3~\mathrm{V}$ (at maximum machine clock 24 MHz)					

^{*:} It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply Switching) about details.


■ PACKAGES AND PRODUCT MODELS

Package	MB90333A	MB90F334A	MB90V330A	
FPT-120P-M05 (LQFP-0.40 mm)	0	0	×	
FPT-120P-M21 (LQFP-0.50 mm)	0	0	×	
PGA-299C-A01 (PGA)	×	×	0	

○ : Yes × : No

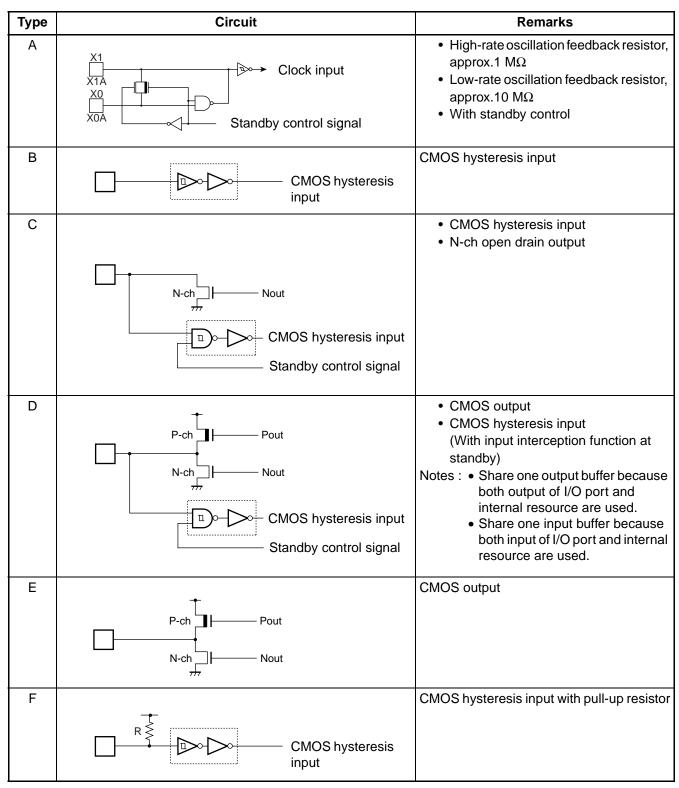
Note: For detailed information on each package, refer to "■ PACKAGE DIMENSIONS".

■ PIN ASSIGNMENT

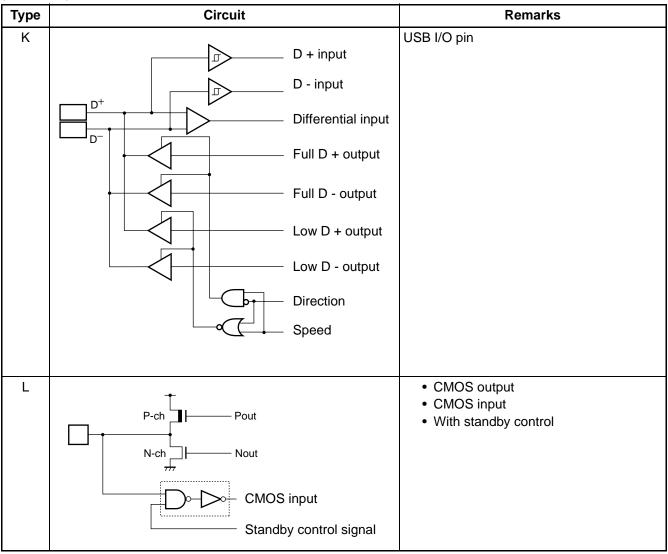
■ PIN DESCRIPTION

Pin no.	Pin name	I/O Circuit type*			
108, 107	X0, X1	А	Terminals to connect the oscillator. When connecting an external clock, leave the X1 pin side unconnected.		
13, 14	X0A, X1A	Α	32 kHz oscillation terminals.		
90	RST	F	External reset input pin.		
	P00 to P07		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD00 to RD07 = 1) by the pull-up resistor setting register (RDR0). (When the power output is set, it is invalid.)		
93 to 100	AD00 to AD07	Н	Function as an I/O pin for the low-order external address and data bus in multiplex mode.		
	D00 to D07		Function as an output pin for the low-order external data bus in non-multiplex mode.		
	P10 to P13		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD10 to RD13 = 1) by the pull-up resistor setting register (RDR1). (When the power output is set, it is invalid.)		
101 to 104	AD08 to AD11	Н	Function as an I/O pin for the high-order external address and data bus in multiplex mode.		
	D08 to D11		Function as an output pin for the high-order external data bus in non-multiplex mode.		
	P14 to P17		General purpose input/output port. The ports can be set to be added with a pull-up resistor (RD14 to RD17 = 1) by the pull-up resistor setting register (RDR1). (When the power output is set, it is invalid.)		
109 to 112	AD12 to D15	Н	Function as an I/O pin for the high-order external address and data bus in multiplex mode.		
	D12 to D15		Function as an output pin for the high-order external data bus in non-multiplex mode.		
	P20 to P23		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.		
113 to 116	A16 to A19	D	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins.		
	A16 to A19		When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins.		

Pin no.	Pin name	I/O Circuit type*	Function
	P24 to P27		This is a general purpose I/O port. When the bits of external address output control register (HACR) are set to "1" in external bus mode, these pins function as general purpose I/O ports.
117 to 120	A20 to A23	D	When the bits of external address output control register (HACR) are set to "0" in multiplex mode, these pins function as address high output pins.
	A20 to A23		When the bits of external address output control register (HACR) are set to "0" in non-multiplex mode, these pins function as address high output pins.
	PPG0 to PPG3		Function as ch.0 to ch.3 output pins for the 8-bit PPG timer.
	P30		General purpose input/output port.
1	A00	D	Function as the external address pin in non-multi-bus mode.
	TIN1		Function as an event input pin for 16-bit reload timer ch.1.
	P31		General purpose input/output port.
2	A01	D	Function as the external address pin in non-multi-bus mode.
	TOT1		Function as the output pin for 16-bit reload timer ch.1.
	P32		General purpose input/output port.
3	A02	D	Function as the external address pin in non-multi-bus mode.
	TIN2		Function as an event input pin for 16-bit reload timer ch.2.
	P33		General purpose input/output port.
4	A03	D	Function as the external address pin in non-multi-bus mode.
	TOT2		Function as the output pin for 16-bit reload timer ch.2.
5 to 0	P34 to P37	6	General purpose input/output port.
5 to 8	A04 to A07	D	Function as the external address pin in non-multi-bus mode.
	P40		General purpose input/output port.
9	A08	G	Function as the external address pin in non-multi-bus mode.
	TIN0		Function as an event input pin for 16-bit reload timer ch.0.
	P41		General purpose input/output port.
10	A09	G	Function as the external address pin in non-multi-bus mode.
	TOT0		Function as the output pin for 16-bit reload timer ch.0.
	P42		General purpose input/output port.
11	A10	G	Function as the external address pin in non-multi-bus mode.
	SIN0		Function as a data input pin for UART ch.0.
	P43		General purpose input/output port.
12	A11	G	Function as the external address pin in non-multi-bus mode.
	SOT0		Function as a data output pin for UART ch.0.
	P44		General purpose input/output port.
17	A12	G	Function as the external address pin in non-multi-bus mode.
	SCK0		Function as a clock I/O pin for UART ch.0.


Pin no.	Pin name	I/O Circuit type*	Function
	P45		General purpose input/output port.
18	A13	G	Function as the external address pin in non-multi-bus mode.
SIN1			Function as a data input pin for UART ch.1.
	P46		General purpose input/output port.
19	A14	G	Function as the external address pin in non-multi-bus mode.
	SOT1		Function as a data output pin for UART ch.1.
	P47		General purpose input/output port.
20	A15	G	Function as the external address pin in non-multi-bus mode.
	SCK1		Function as a clock I/O pin for UART ch.1.
04	P50		General purpose input/output port.
81	ALE	- L	Function as the address latch enable signal pin in external bus mode.
00	P51		General purpose input/output port.
82	RD	L	Function as the read strobe output pin in external bus mode.
	P52		General purpose input/output port.
83	83 WRL		Function as the data write strobe output pin on the lower side in external bus mode. This pin functions as a general-purpose I/O port when the WRE bit in the EPCR register is "0".
	P53		General purpose input/output port.
84	WRH	L	Function as the data write strobe output pin on the higher side in bus width 16-bit external bus mode. This pin functions as a general-purpose I/O port when the WRE bit in the EPCR register is "0".
	P54		General purpose input/output port.
85	HRQ	L	Function as the hold request input pin in external bus mode. This pin functions as a general-purpose I/O port when the HDE bit in the EPCR register is "0".
	P55		General purpose input/output port.
86	HAK	L	Function as the hold acknowledge output pin in external bus mode. This pin functions as a general-purpose I/O port when the HDE bit in the EPCR register is "0".
	P56		General purpose input/output port.
91 RDY		L	Function as the external ready input pin in external bus mode. This pin functions as a general-purpose I/O port when the RYE bit in the EPCR register is "0".
	P57		General purpose input/output port.
92	CLK	L	Function as the machine cycle clock output pin in external bus mode. This pin functions as a general-purpose I/O port when the CKE bit in the EPCR register is "0".
21 22	P60, P61	C	General purpose input/output port. (With stand voltage of 5 V)
21, 22	INT0, INT1		Function as external interrupt ch.0 and ch.1 input pins.

Pin no.	Pin name	I/O Circuit type*			
	P62		General purpose input/output ports. (Withstand voltage of 5 V)		
23	INT2	С	Function as an external interrupt ch.2 input pin.		
	SIN		Extended I/O serial interface data input pin.		
	P63		General purpose input/output port. (Withstand voltage of 5 V)		
24	INT3	С	Function as an external interrupt ch.3 input pin.		
	SOT		Extended I/O serial interface data output pin.		
	P64		General purpose input/output port. (Withstand voltage of 5 V)		
25	INT4	С	Function as an external interrupt ch.4 input pin.		
	SCK		Extended I/O serial interface clock input/output pin.		
	P65		General purpose input/output port. (Withstand voltage of 5 V)		
26	INT5	С	Function as an external interrupt ch.5 input pin.		
	PWC		Function as the PWC input pin.		
	P66		General purpose input/output port. (Withstand voltage of 5 V)		
27	INT6	С	Function as an external interrupt ch.6 input pin.		
21	SCL0		Function as the ch.0 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
	P67	С	General purpose input/output port. (Withstand voltage of 5 V)		
28	INT7		Function as an external interrupt ch.7 input pin.		
20	SDA0		Function as the ch.0 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
20 to 46	P70 to P77	ı	General purpose input/output port.		
39 to 46	AN0 to AN7		Function as input pins for analog ch.0 to ch.7.		
10 to EE	P80 to P87	,	General purpose input/output port.		
48 to 55	AN8 to AN15	'	Function as input pins for analog ch.8 to ch.15.		
20	P90	_	General purpose input/output port.		
29	SIN2	D	Function as a data input pin for UART ch.2.		
20	P91	_	General purpose input/output port.		
30	SOT2	D	Function as a data output pin for UART ch.2.		
24	P92	D	General purpose input/output port.		
31	SCK2		Function as a clock I/O pin for UART ch.2.		
22	P93	_	General purpose input/output port.		
32	SIN3	D	Function as a data input pin for UART ch.3.		
22	P94	_	General purpose input/output port.		
33	SOT3	D	Function as a data output pin for UART ch.3.		
2.4	P95	_	General purpose input/output port.		
34	SCK3	D	Function as a clock I/O pin for UART ch.3.		
	P96		General purpose input/output port. (Withstand voltage of 5 V)		
35	ADTG	С	Function as the external trigger input pin when the A/D converter is being used.		
33	FRCK		Function as the external clock input pin when the free-run timer is being used.		


(Continue	Continued)				
Pin no.	Pin name	I/O Circuit type*			
56 to 59	PA0 to PA3	С	General purpose input/output port. (Withstand voltage of 5 V)		
30 10 39	IN0 to IN3	C	Function as the input capture ch.0 to ch.3 trigger inputs.		
60 to 63	PA4 to PA7	С	General purpose input/output port. (Withstand voltage of 5 V)		
00 10 03	OUT0 to OUT3	C	Function as the output compare ch.0 to ch.3 event output pins.		
	PB0		General purpose input/output port. (Withstand voltage of 5 V)		
64	SCL1	С	Function as the ch.1 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
	PB1		General purpose input/output port. (Withstand voltage of 5 V)		
65	SDA1	С	Function as the ch.1 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
	PB2		General purpose input/output port. (Withstand voltage of 5 V)		
66	SCL2	С	Function as the ch.2 clock I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
	PB3		General purpose input/output port. (Withstand voltage of 5 V)		
67	SDA2	С	Function as the ch.2 data I/O pin for the I ² C interface. Set port output to High-Z during I ² C interface operations.		
68	PB4	С	General purpose input/output port. (Withstand voltage of 5 V)		
60.70	PB5, PB6		General purpose input/output port.		
69, 70	PPG4, PPG5	D	Function as ch.4 and ch.5 output pins for the 8-bit PPG timer.		
71	UTEST	С	USB test pin. Connect this to a pull-down resistor during normal usage.		
73	DVM	K	USB function D– pin.		
74	DVP	K	USB function D+ pin.		
77	HVM	K	USB Mini-HOST D- pin.		
78	HVP	K	USB Mini-HOST D+ pin.		
80	HCON	E	External pull-up resistor connect pin.		
36	AVcc	_	A/D converter power supply pin.		
37	AVRH	J	A/D converter external reference power supply pin.		
38	AVss	_	A/D converter power supply pin.		
87 to 89	MD2 to MD0	В	Operation mode select input pin.		
15	Vcc	_	Power supply pin.		
75	Vcc	_	Power supply pin.		
79	Vcc		Power supply pin.		
105	Vcc	_	Power supply pin.		
16	Vss		Power supply pin (GND).		
47	Vss		Power supply pin (GND).		
72	Vss	_	Power supply pin (GND).		
76	Vss		Power supply pin (GND).		
106	Vss		Power supply pin (GND).		

^{* :} For circuit information, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
G	P-ch Pout Open drain control signal N-ch Nout CMOS hysteresis input Standby control signal	CMOS output CMOS hysteresis input (With input interception function at standby) With open drain control signal
Н	CTL P-ch Pout Nout CMOS input Standby control signal	CMOS output CMOS input (With input interception function at standby) With input pull-up register control
I	P-ch Pout Nout CMOS hysteresis input Standby control signal A/D converter analog input	CMOS output CMOS hysteresis input (With input interception function at standby) Analog input (The A/D converter analog input is enabled when the corresponding bit in the analog input enable register (ADER) is 1.) Notes: Because the output of the I/O port and the output of internal resources are used combinedly, one output buffer is shared. Because the input of the I/O port and the input of internal resources are used combinedly, one input buffer is shared.
J	AVRH input A/D converter analog input enable signal	A/D converter (AVRH) voltage input pin

■ HANDLING DEVICES

1. Preventing latch-up and turning on power supply

Latch-up may occur on CMOS IC under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins.
- A voltage higher than the rated voltage is applied between Vcc pin and Vss pin.
- If the AVcc power supply is turned on before the Vcc voltage.

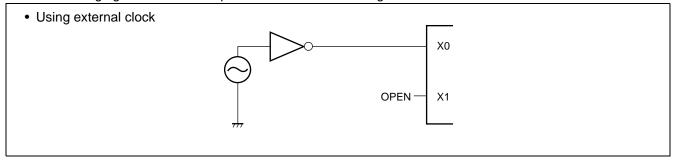
Ensure that you apply a voltage to the analog power supply at the same time as Vcc or after you turn on the digital power supply (when you perform power-off, turn off the analog power supply first or at the same time as Vcc and the digital power supply).

If latch-up occurs, the supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let any voltage exceed the maximum rating.

2. Treatment of unused pins

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leading to permanent damage.

Unused input pins should always be pulled up or down through resistance of at least 2 $k\Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.


3. Treatment of power supply pins on models with A/D converters

Even when the A/D converters are not in use, be sure to make the necessary connections AVcc = AVRH = Vcc, and AVss = Vss.

4. About the attention when the external clock is used

Even when using an external clock signal, an oscillation stabilization delay is applied after a power-on reset or when recovering from sub clock or stop mode. When suing an external clock, 25 MHz should be the upper frequency limit.

The following figure shows a sample use of external clock signals.

5. Treatment of power supply pins (Vcc/Vss)

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μ F between Vcc pin and Vss pin near this device.

6. About Crystal oscillator circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1 pins and X0A/X1A pins, the crystal oscillator (or the ceramic oscillator) and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0/X1 pins and X0A/X1A pins surrounded by ground plane because stable operation can be expected with such a layout.

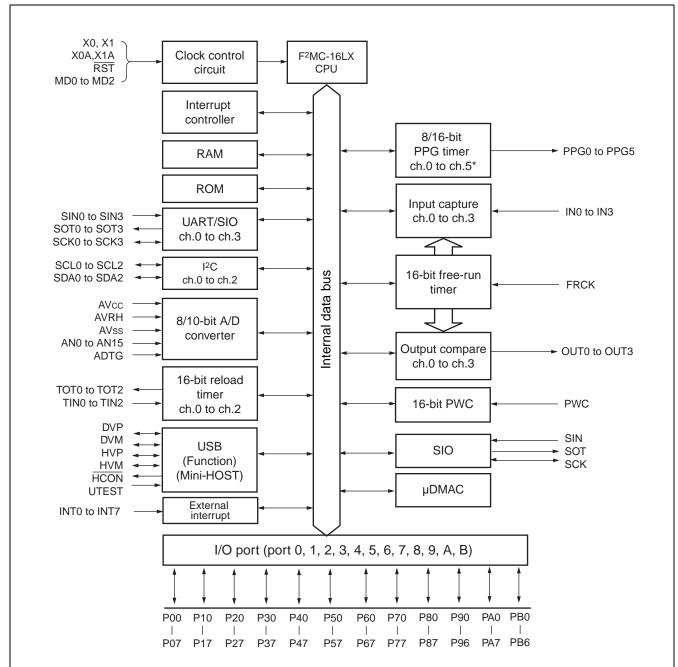
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

7. Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu Microelectronics will not guarantee results of operations if such failure occurs.

8. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the V_{CC} supply voltage operating range. For stabilization reference, the supply voltage should be stabilized so that V_{CC} ripple variations (peak-to-peak value) at commercial frequencies (50 Hz/60 Hz) fall below 10% of the standard V_{CC} supply voltage and the transient regulation does not exceed 0.1 V/ms at temporary changes such as power supply switching.

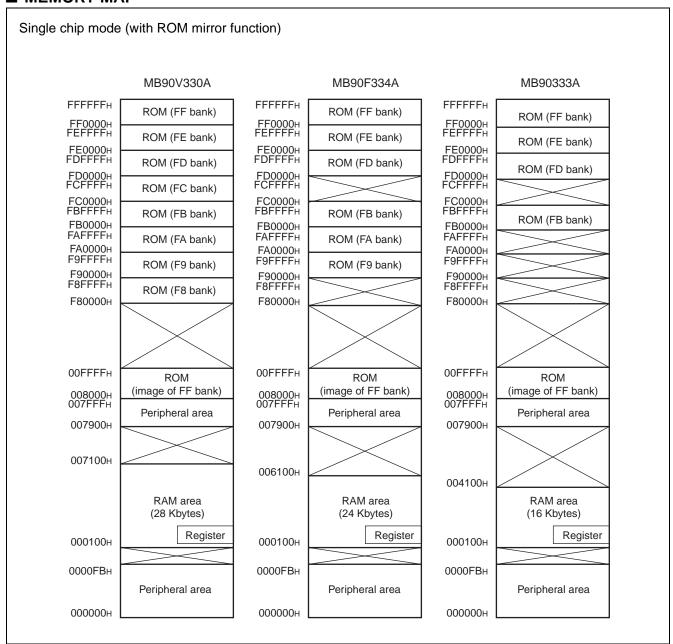

9. When the dual-supply is used as a single-supply device

If you are using only a single-system of the MB90330A series that come in the dual-system product, use it with X0A = Vss : X1A = OPEN.

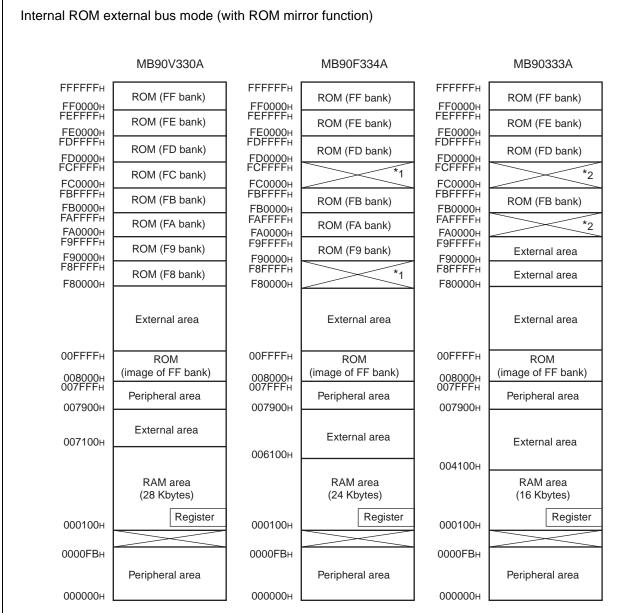
10. Writing to flash memory

For serial writing to flash memory, always make sure that the operating voltage Vcc is between 3.13 V and 3.6 V. For normal writing to flash memory, always make sure that the operating voltage Vcc is between 3.0 V and 3.6 V.

■ BLOCK DIAGRAM

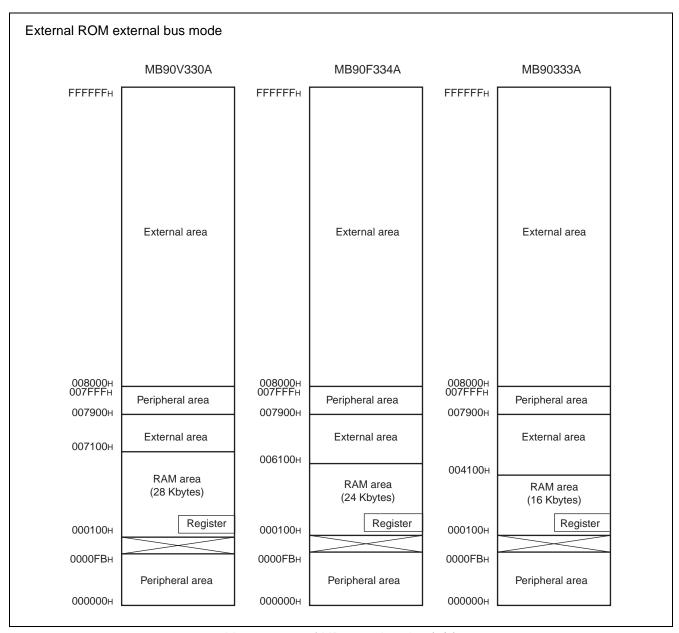

^{*:} Channel for use in 8-bit mode. 3 channels (ch.1, ch.3, ch.5) are used in 16-bit mode.

Note: I/O ports share pins with peripheral function (resources).


For details, refer to "■ PIN ASSIGNMENT" and "■ PIN DESCRIPTION".

Note also that pins used for peripheral function (resources) cannot serve as I/O ports.

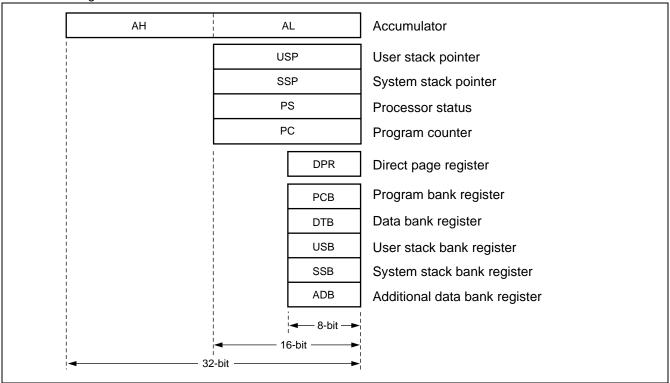
■ MEMORY MAP


Memory map of MB90330A series (1/3)

^{*1:} In the area of F80000н to F8FFFFн and FC0000н to FCFFFFн at MB90F334A, a value of "1" is read at read operating.

Memory map of MB90330A series (2/3)

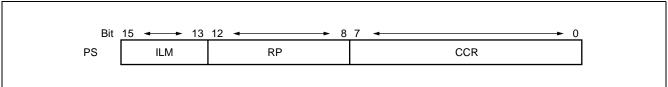
^{*2:} In the area of FA0000н to FAFFFFн and FC0000н to FCFFFFн at MB90333A, a value of "1" is read at read operating.


Memory map of MB90330A series (3/3)

Notes: • When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF8000H to FFFFFH") of bank FF is visible from the higher addresses ("008000H to 00FFFFH") of bank 00.

- The ROM mirror function is effective for using the C compiler small model.
- The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Since the ROM area in bank FF exceeds 48 Kbytes, however, the mirror image of all the data in the ROM area cannot be reproduced in bank 00.
- When the C compiler small model is used, the data table mirror image can be shown at "008000H to 00FFFFH" by storing the data table at "FF8000H to FFFFFFH". Therefore, data tables in the ROM area can be referred without declaring the far addressing with the pointer.

■ F²MC-16L CPU PROGRAMMING MODEL


• Dedicated register

• General purpose register

Processor status

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000000н	PDR0	Port 0 Data Register	R/W	Port 0	XXXXXXXX
000001н	PDR1	Port 1 Data Register	R/W	Port 1	XXXXXXXX
000002н	PDR2	Port 2 Data Register	R/W	Port 2	XXXXXXXX
000003н	PDR3	Port 3 Data Register	R/W	Port 3	XXXXXXXX
000004н	PDR4	Port 4 Data Register	R/W	Port 4	XXXXXXXX
000005н	PDR5	Port 5 Data Register	R/W	Port 5	XXXXXXXX
000006н	PDR6	Port 6 Data Register	R/W	Port 6	XXXXXXXX
000007н	PDR7	Port 7 Data Register	R/W	Port 7	XXXXXXXX
000008н	PDR8	Port 8 Data Register	R/W	Port 8	XXXXXXXX
000009н	PDR9	Port 9 Data Register	R/W	Port 9	- XXXXXXXB
00000Ан	PDRA	Port A Data Register	R/W	Port A	XXXXXXXX
00000Вн		Prohibi	ted	1	<u> </u>
00000Сн	PDRB	Port B Data Register	R/W	Port B	- XXXXXXXB
00000Дн	DDRB	Port B Direction Register	R/W	Port B	- 0 0 0 0 0 0 0в
00000Ен		Duckiki	4 a al	1	•
00000Fн		Prohibi	tea		
000010н	DDR0	Port 0 Direction Register	R/W	Port 0	0 0 0 0 0 0 0 0 _B
000011н	DDR1	Port 1 Direction Register	R/W	Port 1	0 0 0 0 0 0 0 0 _B
000012н	DDR2	Port 2 Direction Register	R/W	Port 2	0 0 0 0 0 0 0 0 _B
000013н	DDR3	Port 3 Direction Register	R/W	Port 3	0 0 0 0 0 0 0 0в
000014н	DDR4	Port 4 Direction Register	R/W	Port 4	0 0 0 0 0 0 0 0в
000015н	DDR5	Port 5 Direction Register	R/W	Port 5	0 0 0 0 0 0 0 0в
000016н	DDR6	Port 6 Direction Register	R/W	Port 6	0 0 0 0 0 0 0 0 _B
000017н	DDR7	Port 7 Direction Register	R/W	Port 7	0 0 0 0 0 0 0 0в
000018н	DDR8	Port 8 Direction Register	R/W	Port 8	0 0 0 0 0 0 0 0в
000019н	DDR9	Port 9 Direction Register	R/W	Port 9	- 0 0 0 0 0 0 0в
00001Ан	DDRA	Port A Direction Register	R/W	Port A	0 0 0 0 0 0 0 0в
00001Вн	ODR4	Port 4 Output Pin Register	R/W	Port 4 (open drain control)	0 0 0 0 0 0 0 0 0в
00001Сн	RDR0	Port 0 Pull-up Resistance Register	R/W	Port 0 (PULL-UP)	0 0 0 0 0 0 0 0в
00001Dн	RDR1	Port 1 Pull-up Resistance Register	R/W	Port 1 (PULL-UP)	0 0 0 0 0 0 0 0в
00001Ен	ADER0	Analog Input Enable Register 0	R/W	Port 7, 8, A/D	11111111
00001Fн	ADER1	Analog Input Enable Register 1	R/W	Port 7, 8, A/D	11111111
000020н	SMR0	Serial Mode Register 0	R/W		0 0 1 0 0 0 0 0в
000021н	SCR0	Serial Control Register 0	R/W	1	0 0 0 0 0 1 0 0в
000000	SIDR0	Serial Input Data Register 0	R	UART0	VVVVVVV
000022н	SODR0	Serial Output Data Register 0	W	1	XXXXXXX
000023н	SSR0	Serial Status Register 0	R/W	1	0 0 0 0 1 0 0 0в
000024н	UTRLR0	UART Prescaler Reload Register 0	R/W	Communication	0 0 0 0 0 0 0 0 0в
000025н	UTCR0	UART Prescaler Control Register 0	R/W	Prescaler (UART0)	0 0 0 0 - 0 0 0в

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000026н	SMR1	Serial Mode Register 1	R/W		0 0 1 0 0 0 0 0в
000027н	SCR1	Serial Control Register 1	R/W		0 0 0 0 0 1 0 0в
000000	SIDR1	Serial Input Data Register 1	R	UART1	VVVVVV-
000028н	SODR1	Serial Output Data Register 1	W		XXXXXXX
000029н	SSR1	Serial Status Register 1	R/W		00001000в
00002Ан	UTRLR1	UART Prescaler Reload Register 1	R/W	Communication	0 0 0 0 0 0 0 0в
00002Вн	UTCR1	UART Prescaler Control Register 1	R/W	Prescaler (UART1)	0000-000в
00002Сн	SMR2	Serial Mode Register 2	R/W		0 0 1 0 0 0 0 0в
00002Dн	SCR2	Serial Control Register 2	R/W	_	00000100в
000005	SIDR2	Serial Input Data Register 2	R	UART2	2000000
00002Ен	SODR2	Serial Output Data Register 2	W	_	XXXXXXX
00002Fн	SSR2	Serial Status Register 2	R/W	1	00001000в
000030н	UTRLR2	UART Prescaler Reload Register 2	R/W	Communication	00000000
000031н	UTCR2	UART Prescaler Control Register 2	R/W	Prescaler (UART2)	0000-000в
000032н	SMR3	Serial Mode Register 3	R/W		00100000в
000033н	SCR3	Serial Control Register 3	R/W	UART3	00000100в
	SIDR3	Serial Input Data Register 3	R		
000034н	SODR3	Serial Output Data Register 3	W		XXXXXXX
000035н	SSR3	Serial Status Register 3	R/W		00001000в
000036н	UTRLR3	UART Prescaler Reload Register 3	R/W	Communication	00000000
000037н	UTCR3	UART Prescaler Control Register 3	R/W	Prescaler (UART3)	0000-000в
000038н					
to		Prohibite	ed		
00003Вн				T	T
00003Сн	ENIR	DTP/Interrupt Enable Register	R/W		0 0 0 0 0 0 0 0в
00003Dн	EIRR	DTP/Interrupt Source Register	R/W	DTP/External	0 0 0 0 0 0 0 0в
00003Ен	ELVR	Request Level Setting Register Lower	R/W	Interrupt	0 0 0 0 0 0 0 0в
00003Fн		Request Level Setting Register Upper	R/W		0 0 0 0 0 0 0 0в
000040н	ADCS0	A/D Control Status Register Lower	R/W		0 0 Ов
000041н	ADCS1	A/D Control Status Register Upper	R/W	8/10-bit	0 0 0 0 0 0 0 0в
000042н	ADCR0	A/D Data Register Lower	R/W	A/D Converter	XXXXXXXXB
000043н	ADCR1	A/D Data Register Upper	R/W		0 0 1 0 1 XXX _B
000044н		Prohibite	ed		
000045н	ADMR	A/D Conversion Channel Selection Register	R/W	8/10-bit A/D Converter	0 0 0 0 0 0 0 0 0в
000046н	PPGC0	PPG0 Operation Mode Control Register	R/W	PPG ch.0	0Х0 0 0ХХ1в
000047н	PPGC1	PPG1 Operation Mode Control Register	R/W	PPG ch.1	0Х0 0 0 0 0 1в
000048н	PPGC2	PPG2 Operation Mode Control Register	R/W	PPG ch.2	0Х0 0 0ХХ1в

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000049н	PPGC3	PPG3 Operation Mode Control Register	R/W	PPG ch.3	0Х0 0 0 0 0 1в
00004Ан	PPGC4	PPG4 Operation Mode Control Register	R/W	PPG ch.4	0Х0 0 0ХХ1в
00004Вн	PPGC5	PPG5 Operation Mode Control Register	R/W	PPG ch.5	0Х0 0 0 0 0 1в
00004Сн	PPG01	PPG0 and PPG1 Output Control Register	R/W	PPG ch.0/ch.1	0 0 0 0 0 0XXB
00004Dн		Prohibited			
00004Ен	PPG23	PPG2 and PPG3 Output Control Register	R/W	PPG ch.2/ch.3	0 0 0 0 0 0 XXB
00004Fн		Prohibited			1
000050н	PPG45	PPG4 and PPG5 Output Control Register	R/W	PPG ch.4/ch.5	0 0 0 0 0 0 XXB
000051н		Prohibited			1
000052н	ICS01	Input Capture Control Status Register 01	R/W	Input Capture ch.0/ch.1	0 0 0 0 0 0 0 0 0в
000053н	ICS23	Input Capture Control Status Register 23	R/W	Input Capture ch.2/ch.3	0 0 0 0 0 0 0 0 0в
000054н	OCS0	Output Compare Control Register ch.0 Lower	R/W	Output Compare	0 0 0 0 0 Ов
000055н	OCS1	Output Compare Control Register ch.1 Upper	R/W	ch.0/ch.1	00000
000056н	OCS2	Output Compare Control Register ch.2 Lower	R/W	Output Compare	0 0 0 0 0 Ов
000057н	OCS3	Output Compare Control Register ch.3 Upper	R/W	ch.2/ch.3	ОООООВ
000058н	SMCS	Serial Mode Control Status Register	R/W	Estanded Coriel	XXXX0 0 0 0 _B
000059н	Sivics	Serial Mode Control Status (register	IX/VV	Extended Serial I/O	00000010в
00005Ан	SDR	Serial Data Register	R/W	.,, 0	XXXXXXXXB
00005Вн	SDCR	Communication Prescaler Control Register	R/W	Communication Prescaler	0ХХХО О О Ов
00005Сн	PWCSR	PWC Control Status Register	R/W		0 0 0 0 0 0 0 0в
00005Dн	1 WOOK	1 We control status (register	17/ / /	16-bit	0 0 0 0 0 0 0 X _B
00005Ен	PWCR	PWC Data Buffer Register	R/W	PWC Timer	0 0 0 0 0 0 0 0в
00005Fн	1 WOR	Wo Data Duller Register	17/ / /		0 0 0 0 0 0 0 0в
000060н	DIVR	PWC Dividing Ratio Control Register	R/W		0 Ов
000061н		Prohibited			
000062н	TMCSR0	Timer Control Status Register 0	R/W		0 0 0 0 0 0 0 0 0в
000063н			1 1 7 7 7	40 E!!	XXXX 0 0 0 0 _B
000064н	TMR0	16-bit Timer Register 0 Lower	R	16-bit Reload Timer ch.0	XXXXXXXX
	TMRLR0	16-bit Reload Register 0 Lower	W		XXXXXXXX
000065н	TMR0	16-bit Timer Register 0 Upper	R		XXXXXXXXB
3000011	TMRLR0	16-bit Reload Register 0 Upper	W		XXXXXXXXB

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000066н	TMCSR1	Timer Central Status Degister 4	R/W		0 0 0 0 0 0 0 0в
000067н	TIVICSRI	Timer Control Status Register 1	R/VV		XXXX 0 0 0 0 _B
000068н	TMR1	16-bit Timer Register 1 Lower	R	16-bit Reload	XXXXXXXXB
ООООООН	TMRLR1	16-bit Reload Register 1 Lower	W	Timer ch.1	XXXXXXXXB
000000	TMR1	16-bit Timer Register 1 Upper	R		XXXXXXXXB
000069н	TMRLR1	16-bit Reload Register 1 Upper	W		XXXXXXXXB
00006Ан	TMCCDO	Times Control Status Degister 2	DAM		0 0 0 0 0 0 0 0в
00006Вн	TMCSR2	Timer Control Status Register 2	R/W		XXXX 0 0 0 0 _B
000060	TMR2	16-bit Timer Register 2 Lower	R	16-bit Reload	XXXXXXXXB
00006Сн	TMRLR2	16-bit Reload Register 2 Lower	W	Timer ch.2	XXXXXXXXB
00006D	TMR2	16-bit Timer Register 2 Upper	R		XXXXXXXXB
00006Dн	TMRLR2	16-bit Reload Register 2 Upper	W		XXXXXXXXB
00006Ен		Prohibit	ed		
00006Fн	ROMM	ROM Mirror Function Selection Register	W	ROM Mirror Function Selection Module	1 1в
000070н	IBSR0	I ² C Bus Status Register 0	R		0 0 0 0 0 0 0 0в
000071н	IBCR0	I ² C Bus Control Register 0	R/W		0 0 0 0 0 0 0 0в
000072н	ICCR0	I ² C Bus Clock Control Register 0	R/W	I ² C Bus Interface ch.0	XX 0 XXXXXB
000073н	IADR0	I ² C Bus Address Register 0	R/W	G11.0	XXXXXXXXB
000074н	IDAR0	I ² C Bus Data Register 0	R/W		XXXXXXXXB
000075н		Prohibit	ed		
000076н	IBSR1	I ² C Bus Status Register 1	R		0 0 0 0 0 0 0 0 _B
000077н	IBCR1	I ² C Bus Control Register 1	R/W	1,,,,,	0 0 0 0 0 0 0 0в
000078н	ICCR1	I ² C Bus Clock Control Register 1	R/W	I ² C Bus Interface ch.1	XX 0 XXXXXB
000079н	IADR1	I ² C Bus Address Register 1	R/W	CII. I	XXXXXXXXB
00007Ан	IDAR1	I ² C Bus Data Register 1	R/W		XXXXXXXXB
00007Вн		Prohibite	ed	1	
00007Сн	IBSR2	I ² C Bus Status Register 2	R		0 0 0 0 0 0 0 0в
00007Dн	IBCR2	I ² C Bus Control Register 2	R/W	1	0 0 0 0 0 0 0 0в
00007Ен	ICCR2	I ² C Bus Clock Control Register 2	R/W	l ² C Bus Interface ch.2	XX 0 XXXXXB
00007Fн	IADR2	I ² C Bus Address Register 2	R/W		XXXXXXXXB
000080н	IDAR2	I ² C Bus Data Register 2	R/W	1	XXXXXXXXB
000081н to 000085н		Prohibit	ed	,	

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000086н	TCDT	Timer Data Register Lower	R/W		0 0 0 0 0 0 0 0в
000087н	ICDI	Timer Data Register Upper	R/W		0 0 0 0 0 0 0 0в
000088н	TCCS	Timer Control Status Register Lower	R/W	16-bit Free-Run	0 0 0 0 0 0 0 0в
000089н	1003	Timer Control Status Register Upper	R/W	Timer	0 0 0 0 0 0в
00008Ан	CPCLR	Compare Clear Register Lower	R/W		XXXXXXXX
00008Вн	CPCLR	Compare Clear Register Upper	R/W	-	XXXXXXXXB
00008Сн to 00009Ан		Prohibited	I		
00009Вн	DCSR	DMA Descriptor Channel Specification Register	DMAG	0 0 0 0 0 0 0 0 0в	
00009Сн	DSRL	DMA Status Register Lower	R/W	μDMAC	0 0 0 0 0 0 0 0в
00009Dн	DSRH	DMA Status Register Upper	R/W		0 0 0 0 0 0 0 0в
00009Ен	PACSR	Program Address Detection Control Status Register	R/W	Address Match Detection	0 0 0 0 0 0 0 0в
00009Fн	DIRR	Delay Interruption Factor Generation/ Release Register	R/W	Delay Interrupt	Ов
0000А0н	LPMCR	Low Power Consumption Mode Control Register	R/W	Low Power Consumption Control Circuit	0 0 0 1 1 0 0 Ов
0000А1н	CKSCR	Clock Selection Register	R/W	Clock	1 1 1 1 1 1 0 Ов
0000А2н		Prohibited	ı		
0000АЗн		Prombled			
0000А4н	DSSR	DMA Stop Status Register	R/W	μDMAC	0 0 0 0 0 0 0 0в
0000А5н	ARSR	Automatic Ready Function Selection Register	W		0 0 1 1 0 Ов
0000А6н	HACR	External Address Output Control Register	W	External Pin	******B
0000А7н	EPCR	Bus Control Signal Selection Register	W		1000*10-в
0000А8н	WDTC	Watchdog Timer Control Register	R/W	Watchdog Timer	Х - ХХХ 1 1 1в
0000А9н	TBTC	Time-base Timer Control Register	R/W	Time-base Timer	1 0 0 1 0 Ов
0000ААн	WTC	Watch Timer Control Register	R/W	Watch Timer	10001000в
0000АВн		Prohibited			
0000АСн	DERL	DMA Enable Register Lower	R/W	μDMAC	0 0 0 0 0 0 0 0в
0000АДн	DERH	DMA Enable Register Upper	R/W	μυνιλο	0 0 0 0 0 0 0 0в
0000АЕн	FMCS	Flash Memory Control Status Register	R/W	Flash Memory I/F	0 0 0 Х 0 0 0 0в
0000АГн		Prohibited			

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000В0н	ICR00	Interrupt Control Register 00	R/W		00000111в
0000В1н	ICR01	Interrupt Control Register 01	R/W		00000111в
0000В2н	ICR02	Interrupt Control Register 02	R/W		00000111В
0000ВЗн	ICR03	Interrupt Control Register 03	R/W		00000111в
0000В4н	ICR04	Interrupt Control Register 04	R/W		00000111в
0000В5н	ICR05	Interrupt Control Register 05	R/W		00000111в
0000В6н	ICR06	Interrupt Control Register 06	R/W		00000111в
0000В7н	ICR07	Interrupt Control Register 07	R/W	Interrupt	00000111в
0000В8н	ICR08	Interrupt Control Register 08	R/W	Controller	00000111в
0000В9н	ICR09	Interrupt Control Register 09	R/W		00000111в
0000ВАн	ICR10	Interrupt Control Register 10	R/W		00000111в
0000ВВн	ICR11	Interrupt Control Register 11	R/W		00000111в
0000ВСн	ICR12	Interrupt Control Register 12	R/W		00000111в
0000ВДн	ICR13	Interrupt Control Register 13	R/W		00000111в
0000ВЕн	ICR14	Interrupt Control Register 14	R/W		00000111в
0000ВFн	ICR15	Interrupt Control Register 15	R/W		00000111В
0000С0н	HCNT0	Host Control Register 0	R/W		0 0 0 0 0 0 0 0в
0000С1н	HCNT1	Host Control Register 1	R/W		0 0 0 0 0 0 0 1в
0000С2н	HIRQ	Host Interruption Register	R/W		0 0 0 0 0 0 0 0в
0000СЗн	HERR	Host Error Status Register	R/W		0000011в
0000С4н	HSTATE	Host State Status Register	R/W		ХХ 0 1 0 0 1 0в
0000С5н	HFCOMP	SOF Interrupt FRAME Compare Register	R/W		0 0 0 0 0 0 0 0 0в
0000С6н			R/W		0 0 0 0 0 0 0 0в
0000С7н	HRTIMER	Retry Timer Setting Register	R/W	USB Mini-HOST	0 0 0 0 0 0 0 0в
0000С8н			R/W		XXXXXX 0 0 _B
0000С9н	HADR	Host Address Register	R/W		X 0 0 0 0 0 0 0 _B
0000САн	HEOF	COT Setting Register	R/W		0 0 0 0 0 0 0 0 _B
0000СВн	ПЕОР	EOF Setting Register	R/W		XX 0 0 0 0 0 0 _B
0000ССн	LIEDAME	EDAME Catting Degister	R/W		0 0 0 0 0 0 0 0в
0000СDн	HFRAME	FRAME Setting Register	R/W		XXXXX 0 0 0 _B
0000СЕн	HTOKEN	Host Token End Point Register	R/W		0 0 0 0 0 0 0 0в
0000СFн		Prohibited	ł		
0000D0н	LIDCC	LIDC Control Register	R/W		
0000D1н	UDCC	UDC Control Register	R/W	USB Function	0 0 0 0 0 0 0 0в

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000D2н	EP0C	EDO Control Register	R/W		0 1 0 0 0 0 0 0в
0000Д3н	EPUC	EP0 Control Register	R/W		XXXX 0 0 0 0 _B
0000Д4н	EP1C	ED1 Control Register	R/W		0 0 0 0 0 0 0 0в
0000Д5н	EPIC	EP1 Control Register	R/W		0 1 1 0 0 0 0 1в
0000D6н	EP2C	EP2 Control Register	R/W		0 1 0 0 0 0 0 0в
0000D7н	EF2C	EF2 Control Register	R/W	- - -	0 1 1 0 0 0 0 0в
0000D8н	EP3C	EP3 Control Register	R/W		0 1 0 0 0 0 0 0в
0000D9н	EFSC	EF3 Control Register	R/W		0 1 1 0 0 0 0 0в
0000Дн	EP4C	EP4 Control Register	R/W		0 1 0 0 0 0 0 0в
0000ДВн	EF4C	EF4 Control Register	R/W		0 1 1 0 0 0 0 0в
0000DСн	EP5C	EDE Control Bogistor	R/W		0 1 0 0 0 0 0 0в
0000DDн	EFSC	EP5 Control Register	R/W		0 1 1 0 0 0 0 0в
0000ДЕн	TMSP	Time Stamp Register	R		0 0 0 0 0 0 0 0в
0000DFн	TIVISE	Time Stamp Register	R		XXXXX0 0 0 _B
0000Е0н	UDCS	UDC Status Register	R/W		ХХО О О О О ОВ
0000Е1н	UDCIE	UDC Interrupt Enable Register	R/W, R		0 0 0 0 0 0 0 0в
0000Е2н	EP0IS	EP0l Status Register	R/W	- USB Function	XXXXXXXXB
0000ЕЗн	EPUIS	Eroi Status Register	R/W		1 0 XXX 1 XX _B
0000Е4н	EP0OS	EP0O Status Register	R/W, R		0 XXXXXXXB
0000Е5н	EP003	EFOO Status Register	R/W		1 0 0 XX 0 0 0 _B
0000Е6н	EP1S	EP1 Status Register	R		XXXXXXXXB
0000Е7н	EF13	Er i Status Negistei	R/W, R		1 0 0 0 0 0 0 X _B
0000Е8н	EP2S	ED2 Status Bogistor	R		XXXXXXXXB
0000Е9н	EF23	EP2 Status Register	R/W, R		1 0 0 0 0 0 0 0в
0000ЕАн	EP3S	EP3 Status Register	R		XXXXXXXX
0000ЕВн	LF33	LF 3 Status Negister	R/W, R		1 0 0 0 0 0 0 0в
0000ЕСн	EP4S	EP4 Status Register	R		XXXXXXXX
0000ЕДн	EF43	EF4 Status Negister	R/W, R	1	1 0 0 0 0 0 0 0в
0000ЕЕн	EP5S	EP5 Status Register	R		XXXXXXXX
0000ЕГн	EPSS	EF3 Status Register	R/W, R		1 0 0 0 0 0 0 0в
0000F0н	EP0DT	EP0 Data Register	R/W		XXXXXXXXB
0000F1н	EFUDI	LFO Data Register	R/W	1	XXXXXXXXB
0000F2н	EP1DT	ED1 Data Bogistor	R/W		XXXXXXXXB
0000F3н	EPIDI	EP1 Data Register	R/W		XXXXXXXXB
0000F4н	EDOUT	ED2 Data Posistor	R/W		XXXXXXXXB
0000F5н	EP2DT	EP2 Data Register	R/W		XXXXXXXXB
0000F6н	EP3DT	EP3 Data Register	R/W		XXXXXXXXB
0000 F7 н	EF3D1	LF 3 Data Register	R/W		XXXXXXXXB

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000F8н	ED4DT	ED4 Data Bagistar	R/W		XXXXXXXXB
0000F9н	EP4DT	EP4 Data Register	R/W	USB Function	XXXXXXXXB
0000FАн	EDEDT	EDE Data Danistan	R/W	USB Function	XXXXXXXX
0000FВн	EP5DT	EP5 Data Register	R/W		XXXXXXXX
0000FСн				•	
to 0000FFн		Prohibited	t		
000100н					
to		RAM Area	a		
#н		Is s s		1	
001FF0н		Program Address Detection Register ch.0 Lower	R/W		XXXXXXX
001FF1н	PADR0	Program Address Detection Register ch.0 Middle	R/W		XXXXXXXXB
001FF2н		Program Address Detection Register ch.0 Upper	R/W	Address Match	XXXXXXXX
001FF3н		Program Address Detection Register ch.1 Lower	R/W	Detection	XXXXXXXXB
001FF4н	PADR1	Program Address Detection Register ch.1 Middle	R/W		XXXXXXXX
001FF5н		Program Address Detection Register ch.1 Upper	R/W		XXXXXXXXB
#н to 0078FFн		Unused Are	ea		
007900н	PRLL0	PPG Reload Register Lower ch.0	R/W	550 1.0	XXXXXXXXB
007901н	PRLH0	PPG Reload Register Upper ch.0	R/W	- PPG ch.0	XXXXXXXXB
007902н	PRLL1	PPG Reload Register Lower ch.1	R/W	550 1 4	XXXXXXXXB
007903н	PRLH1	PPG Reload Register Upper ch.1	R/W	- PPG ch.1	XXXXXXXXB
007904н	PRLL2	PPG Reload Register Lower ch.2	R/W	550 1 0	XXXXXXXXB
007905н	PRLH2	PPG Reload Register Upper ch.2	R/W	- PPG ch.2	XXXXXXXXB
007906н	PRLL3	PPG Reload Register Lower ch.3	R/W	550 : -	XXXXXXXX
007907н	PRLH3	PPG Reload Register Upper ch.3	R/W	- PPG ch.3	XXXXXXXX
007908н	PRLL4	PPG Reload Register Lower ch.4	R/W	DE 2	XXXXXXXXB
007909н	PRLH4	PPG Reload Register Upper ch.4	R/W	- PPG ch.4	XXXXXXXX
00790Ан	PRLL5	PPG Reload Register Lower ch.5	R/W	550 : -	XXXXXXXXB
00790Вн	PRLH5	PPG Reload Register Upper ch.5	R/W	- PPG ch.5	XXXXXXXX
00790Сн to 00790Fн		Prohibited	d		(Continued)

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
007910н	IPCP0	Input Capture Data Register Lower ch.0	R		XXXXXXXX
007911н	IFCFU	Input Capture Data Register Upper ch.0	R	Input Capture	XXXXXXXXB
007912н	IPCP1	Input Capture Data Register Lower ch.1	R	ch.0/ch.1	XXXXXXXXB
007913н	IFCF1	Input Capture Data Register Upper ch.1	R		XXXXXXXXB
007914н	IPCP2	Input Capture Data Register Lower ch.2	R		XXXXXXXXB
007915н	IFGF2	Input Capture Data Register Upper ch.2	R	Input Capture	XXXXXXXXB
007916н	IPCP3	Input Capture Data Register Lower ch.3	R	ch.2/ch.3	XXXXXXXXB
007917н	IFCF3	Input Capture Data Register Upper ch.3	R		XXXXXXXXB
007918н	OCCP0	Output Compare Register Lower ch.0	R/W		XXXXXXXXB
007919н	OCCFU	Output Compare Register Upper ch.0	R/W	Output Compare	XXXXXXXXB
00791Ан	OCCP1	Output Compare Register Lower ch.1	R/W	ch.0/ch.1	XXXXXXXXB
00791Вн	OCCPT	Output Compare Register Upper ch.1	R/W		XXXXXXXXB
00791Сн	OCCP2	Output Compare Register Lower ch.2	R/W		XXXXXXXXB
00791Dн	OCCF2	Output Compare Register Upper ch.2	R/W	Output Compare	XXXXXXXXB
00791Ен	OCCP3	Output Compare Register Lower ch.3	R/W	ch.2/ch.3	XXXXXXXXB
00791Fн	OCCF3	Output Compare Register Upper ch.3	R/W		XXXXXXXXB
007920н	DBAPL	DMA Buffer Address Pointer Lower 8-bit	R/W		XXXXXXXXB
007921н	DBAPM	DMA Buffer Address Pointer Middle 8-bit	R/W		XXXXXXXXB
007922н	DBAPH	DMA Buffer Address Pointer Upper 8-bit	R/W		XXXXXXXXB
007923н	DMACS	DMA Control Register	R/W		XXXXXXXXB
007924н	DIOAL	DMA I/O Register Address Pointer Lower 8-bit	R/W	μDMAC	XXXXXXXX
007925н	DIOAH	DMA I/O Register Address Pointer Upper 8-bit	R/W		XXXXXXXX
007926н	DDCTL	DMA Data Counter Lower 8-bit	R/W		XXXXXXXXB
007927н	DDCTH	DMA Data Counter Upper 8-bit	R/W		XXXXXXXXB
007928н to 007FFFн		Prohibited		,	

• Explanation on read/write R/W: Readable / Writable

R: Read only W: Write only

• Explanation on initial values

0 : Initial value is "0".1 : Initial value is "1".

X : Initial value is undefined.

: Initial value is undefined (None) .* : Initial value of this bit is "1" or "0".

Note: No I/O instruction can be used for registers located between 007900H and 007FFFH.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

Interrupt source	El ² OS	μ DMAC	Int	terrup	t vector	Interru re	pt control gister	Priority
	support		Num	ber*1	Address	ICR	Address	
Reset	×	×	#08	08н	FFFFDCH	_	_	High
INT 9 instruction	×	×	#09	09н	FFFFD8 _H	_	_	A
Exceptional treatment	×	×	#10	ОАн	FFFFD4 _H	_	_	1 T
USB Function1	×	0, 1	#11	0Вн	FFFFD0 _H	ICDOO	000000	
USB Function2	×	2 to 6*2	#12	0Сн	FFFFCCH	ICR00	0000В0н	
USB Function3	×	×	#13	0Дн	FFFFC8 _H	ICD04	0000001	
USB Function4	×	×	#14	0Ен	FFFFC4 _H	ICR01	0000В1н	
USB Mini-HOST1	×	×	#15	0Гн	FFFFC0 _H	ICDOO	000000	
USB Mini-HOST2	×	×	#16	10н	FFFFBC⊦	ICR02	0000В2н	
I ² C ch.0	×	×	#17	11н	FFFFB8 _H	ICDOS	000000	
DTP/External interrupt ch.0/ch.1	0	×	#18	12н	FFFFB4 _H	ICR03	0000ВЗн	
I ² C ch.1	×	×	#19	13н	FFFFB0 _H	IOD04	0000004	
DTP/External interrupt ch.2/ch.3	0	×	#20	14н	FFFFACH	ICR04	0000В4н	
I ² C ch.2	×	×	#21	15н	FFFFA8 _H	IODOE	000005	
DTP/External interrupt ch.4/ch.5	0	×	#22	16н	FFFFA4 _H	ICR05	0000В5н	
PWC/Reload timer ch.0	Δ	14	#23	17н	FFFFA0 _H	ICDOC	0000В6н	
DTP/External interrupt ch.6/ch.7	Δ	×	#24	18н	FFFF9C _H	ICR06	ООООВОН	
Input capture ch.0/ch.1	Δ	7	#25	19н	FFFF98 _H	ICDOZ	0000B7	
Reload timer ch.1	Δ	×	#26	1Ан	FFFF94 _H	ICR07	0000В7н	
Input capture ch.2/ch.3	Δ	8	#27	1Вн	FFFF90 _H	ICDAG	000000	
Reload timer ch.2	\triangle	×	#28	1Сн	FFFF8C _H	ICR08	0000В8н	
Output compare ch.0/ch.1	0	×	#29	1Dн	FFFF88 _H	ICR09	0000В9н	
PPG ch.0/ch.1	×	×	#30	1Ен	FFFF84 _H	ICKU9	ООООБЭН	
Output compare ch.2/ch.3	0	×	#31	1Fн	FFFF80 _H	ICD10	000000	
PPG ch.2/ch.3	×	×	#32	20н	FFFF7C _H	ICR10	0000ВАн	
UART (Send completed) ch.2/ch.3	0	11	#33	21н	FFFF78 _H	ICR11	0000BB	
PPG ch.4/ch.5	×	×	#34	22н	FFFF74 _H	ICKII	0000ВВн	
UART (Reception completed) ch.2/ch.3	0	10	#35	23н	FFFF70 _H	ICB40	000000	
A/D converter/Free-run timer	Δ	15	#36	24н	FFFF6C _H	ICR12	0000ВСн	
UART (Send completed) ch.0/ch.1	0	13	#37	25н	FFFF68 _H	ICB40	000000	
Extended serial I/O	×	9	#38	26н	FFFF64 _H	ICR13	0000ВDн	
UART (Reception completed) ch.0/ch.1	0	12	#39	27н	FFFF60 _H	ICD4.4	00000	↓
Time-base timer/Watch timer	×	×	#40	28н	FFFF5C _H	ICR14	0000ВЕн	*
Flash memory status	×	×	#41	29н	FFFF58 _H	ICD45	00000	
Delay interrupt output module	×	×	#42	2Ан	FFFF54 _H	ICR15	0000ВFн	Low

(Continued)

- Available, El²OS stop function provided (The interrupt request flag is cleared by the interrupt clear signal.
 With a stop request).
- O: Available (The interrupt request flag is cleared by the interrupt clear signal.)
- △ : Available when any interrupt source sharing ICR is not used.
- × : Unavailable
- *1: If the same level interrupt is output simultaneously, the lower interrupt factor of interrupt vector number has priority.
- *2 : ch.2 and 3 can also be used during Mini-HOST operation.

Notes: • If the same interrupt control register (ICR) has two interrupt factors and the use of the El²OS is permitted, the El²OS is activated when either of the factors is detected. As any interrupt other than the activation factor is masked while the El²OS is running, it is recommended that you should mask either of the interrupt requests when using the El²OS.

- The interrupt flag is cleared by the El²OS interrupt clear signal for the resource that has two interrupt factors in the same interrupt control register (ICR).
- If a resource has two interrupt sources for the same interrupt number, both of the interrupt request flags are cleared by the µDMAC interrupt clear signal. Therefore, when you use either of two interrupt factors for the DMAC function, another interrupt function is disabled. Set the interrupt request permission bit to "0" in the appropriate resource, and take measures by software polling.

• Content of USB interruption factor

USB interrupt factor	Details
USB function 1	End Point0-IN End Point0-OUT
USB function 2	End Point1-5 *
USB function 3	SUSP SOF BRST WKUP CONF
USB function 4	SPK
USB Mini-HOST1	DIRQ CNNIRQ URIRQ RWKIRQ
USB Mini-HOST2	SOFIRQ CMPIRQ

^{*:} Endpoints 1 and 2 can also be used during Mini-HOST operation.

■ PERIPHERAL RESOURCES

1. I/O port

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). MB90330A series model is provided with 12 ports (94 inputs) . The ports function as input/output pins for peripheral functions also.

The port data register (PDR) can be used to send output data to the I/O pin and to receive the signal input to the I/O port. The port direction register (DDR) can be used to set the I/O direction of the I/O pin in bit units.

The following table lists the I/O ports and the peripheral functions with which they share pins.

	Port Pin Name	Pin Name (Peripheral)	Peripheral Function that Shares Pin
Port 0	P00 to P07	_	(External bus)
Port 1	P10 to P17	-	(External bus)
Dort 2	P20 to P23	-	(External bus)
Port 2	P24 to P27	PPG0 to PPG3	8/16-bit PPG timer 0, 1 (External bus)
Port 3	P30 to P33	TIN1, TOT1, TIN2, TOT2	16-bit Reload timer 1, 2 (External bus)
Poits	P34 to P37	-	(External bus)
	P40, P41	TIN0, TOT0	16-bit Reload timer 0 (External bus)
Port 4	P42 to P47	SIN0, SOT0, SCK0, SIN1, SOT1, SCK1	UART0, UART1 (External bus)
Port 5	P50 to P57	_	(External bus)
	P60, P61	INTO, INT1	External interrupt
Port 6	P62 to P64	INT2 to INT4, SIN, SOT, SCK	External interrupt, Serial I/O
	P65	INT5, PWC	External interrupt, PWC
	P66, P67	INT6, INT7, SCL0, SDA0	External interrupt, I ² C 0
Port 7	P70 to P77	AN0 to AN7	8/10-bit A/D converter
Port 8	P80 to P87	AN8 to AN15	8/10-bit A/D converter
Port 9	P90 to P95	SIN2, SOT2, SCK2, SIN3, SOT3, SCK3	UART2, 3
	P96	ADTG, FRCK	8/10-bit A/D converter, Free-run timer
Dowt A	PA0 to PA3	IN0 to IN3	Input capture 0, 1, 2, 3
Port A	PA4 to PA7	OUT0 to OUT3	Output compare 0, 1, 2, 3
	PB0 to PB3	SCL1, SDA1, SCL2, SDA2	I ² C 1, 2
Port B	PB4	_	_
	PB5, PB6	PPG4, PPG5	PPG timer 2

Note: These pins also serve as the analog input pins for ports 7 and 8. To use them as general-purpose ports, be sure to set the corresponding bits in the analog input enable register (ADER) to 0_B . The ADER is initialized to FFH at a reset.

• Register list (port data register)

PDR0 bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000000н	P07	P06	P05	P04	P03	P02	P01	P00	XXXXXXXXB	R/W*
PDR1 bit	15	14	13	12	11	10	9	8		
Address : 000001н	P17	P16	P15	P14	P13	P12	P11	P10	XXXXXXXXB	R/W*
PDR2 bit	7	6	5	4	3	2	1	0		
Address : 000002н	P27	P26	P25	P24	P23	P22	P21	P20	XXXXXXXXB	R/W*
PDR3 bit	15	14	13	12	11	10	9	8		
Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB	R/W*
PDR4 bit	7	6	5	4	3	2	1	0		
Address : 000004н	P47	P46	P45	P44	P43	P42	P41	P40	XXXXXXXXB	R/W*
PDR5 bit	15	14	13	12	11	10	9	8		
Address : 000005н	P57	P56	P55	P54	P53	P52	P51	P50	XXXXXXXXB	R/W*
PDR6 bit	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXB	R/W*
PDR7 bit	15	14	13	12	11	10	9	8		
Address : 000007н	P77	P76	P75	P74	P73	P72	P71	P70	XXXXXXXXB	R/W*
PDR8 bit	7	6	5	4	3	2	1	0		
Address : 000008 _H	P87	P86	P85	P84	P83	P82	P81	P80	XXXXXXXXB	R/W*
PDR9 bit	15	14	13	12	11	10	9			
Address : 000009н	_	P96	P95	P94	P93	P92	P91	P90	- XXXXXXXB	R/W*
ں PDRA bit	7	6	5	4	3	2	1			
Address : 00000Ан	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	XXXXXXXXB	R/W*
ı PDRB bit	7	6	5	4	3	2	1			
Address : 00000CH		PB6	PB5	PB4	PB3	PB2	PB1	PB0	- XXXXXXXB	R/W*

- *: R/W access to I/O ports is a bit different in behavior from R/W access to memory as follows:
 - Input mode

Read: The level at the relevant pin is read. Write: Data is written to the output latch.

• Output mode

Read: The data register latch value is read. Write: Data is output to the relevant pin.

• Register list (port direction register)

Tregister hat (part affect		, ,								
DDR0 bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address: 000010 _H	D07	D06	D05	D04	D03	D02	D01	D00	0000000В	R/W
DDR1 bit	15	14	13	12	11	10	9	8		
Address : 000011н	D17	D16	D15	D14	D13	D12	D11	D10	0000000В	R/W
DDR2 bit	7	6	5	4	3	2	1	0		
Address : 000012н	D27	D26	D25	D24	D23	D22	D21	D20	0000000В	R/W
DDR3 bit	15	14	13	12	11	10	9	8		
Address: 000013 _H	D37	D36	D35	D34	D33	D32	D31	D30	0000000в	R/W
DDR4 bit	7	6	5	4	3	2	1	0		
Address: 000014H	D47	D46	D45	D44	D43	D42	D41	D40	0000000В	R/W
DDR5 bit	15	1.1	10	40	44	10	0			
Address : 000015 _H	15 D57	14 D56	13 D55	12 D54	11 D53	10 D52	9 D51	8 D50	0000000В	R/W
DDR6 bit				_						
Address : 000016 _H	7 D67	6 D66	5 D65	4 D64	3 D63	2 D62	1 D61	0 D60	00000000в	R/W
	D07	D00	D03	D04	D03	D02	וסט	D60	00000000	
DDR7 bit	15	14	13	12	11	10	9	8		D 444
Address : 000017 _H	D77	D76	D75	D74	D73	D72	D71	D70	0000000В	R/W
DDR8 bit	7	6	5	4	3	2	1	0		
Address: 000018 _H	D87	D86	D85	D84	D83	D82	D81	D80	0000000В	R/W
DDR9 bit	15	14	13	12	11	10	9	8		
Address: 000019 _H	_	D96	D95	D94	D93	D92	D91	D90	-000000В	R/W
DDRA bit	7	6	5	4	3	2	1	0		
Address: 00001AH	DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0	00000000в	R/W
DDRB bit	15	14	13	12	11	10	9	8	•	
Address : 00000DH	_	DB6	DB5	DB4	DB3	DB2	DB1	DB0	-000000в	R/W

• When each pin is serving as a port, the corresponding pin is controlled as follows:

0: Input mode

1: Output mode

This bit becomes 0 after a reset.

Note: If these registers are accessed by a read modify write instruction (such as a bit set instruction), the bits manipulated by the instruction are set to prescribed values but those other bits in output registers which have been set for input are rewritten to current input values of the pins. When switching a pin from input port to output port, therefore, write a desired value in the PDR first, then set the DDR to switch the pin for output.

• Register list (Analog input enable register)

ADER0 bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address: 00001EH	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111в	R/W
ADER1 bit										
	15	14	13	12	11	10	9	8		
A 1 1 00004 -									4444444	D // //
Address : 00001F _H	ADE15	ADE14	ADE13	ADE12	ADE11	ADE10	ADE9	ADE8	11111111в	R/W

This register controls the port 7, 8 pins as follows.

- 0: Port input/output mode.
- 1: Analog input mode.

This bit becomes 1 after a reset.

• Register list (Port pull-up resistance register)

RDR0 bit	7	6	5	4	3	2	1	0	Initial Value Access
Address : 00001C _H	RD07	RD06	RD05	RD04	RD03	RD02	RD01	RD00	00000000в R/W
RDR1 bit	15	14	13	12	11	10	9	8	
Address : 00001DH	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	00000000в R/W

Controls the pull-up resistor in input mode.

- 0: Without pull-up resistor in input mode.
- 1: With pull-up resistor in input mode.

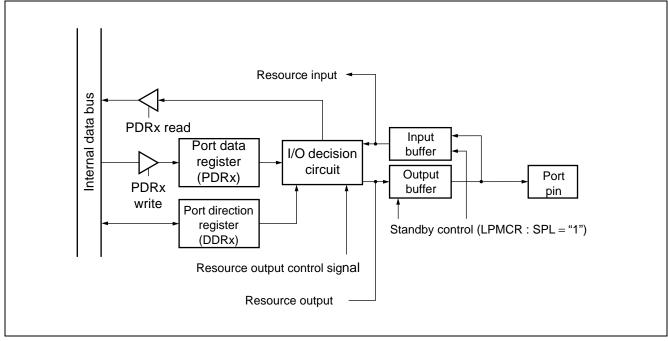
Meaningless in output mode. (Without pull-up resistor)/The input/output mode is decided by the setting of the port direction register (DDR).

Without pull-up resistor is used in stop mode (SPL = 1). (High-Z) This function is disabled when the external bus is used. Do not attempt to write to this register.

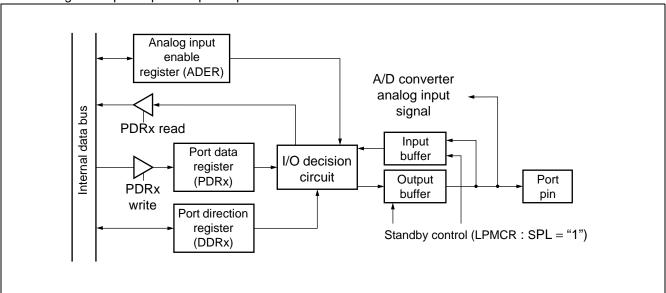
• Register list (Output pin register)

ODR4	bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 00	001Вн	OD47	OD46	OD45	OD44	OD43	OD42	OD41	OD40	0000000В	R/W

Controls open-drain in output mode.


- 0 : Serves as a standard output port in output mode.
- 1 : Serves as an open-drain output port in output mode.

Meaningless in input mode (output High-Z)./The input/output mode is decided by the setting of the port direction register (DDR). This function is disabled when the external bus is used. Do not attempt to write to this register.


• Block diagram of port 0 pin and port 1 pin

• Block diagram of port 2 pin, port 3 pin, port 4 pin, port 5 pin, port 6 pin, port 9 pin, port A pin and port B pin

• Block diagram of port 7 pin and port 8 pin

Notes: • When using as an input port, set "0" in the corresponding bit of the port-7 and port-8 direction register (DDR7 and DDR8) and "0" in the related bit of the analog input enable register (ADER).

• When using as an analog input pin, set "0" in the corresponding bit of the port-7 and port-8 direction register (DDR7 and DDR8) and "1" in the related bit of the analog input enable register (ADER).

2. Time-base timer

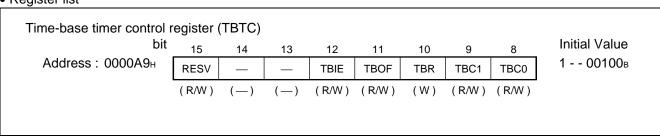
The time-base timer is an 18-bit free-run counter (time-base timer counter) that counts in synchronization with the main clock (2 cycles of the oscillation clock HCLK). Four different time intervals can be selected, for each of which an interrupt request can be generated. Operating clock signals are supplied to peripheral resources such as the oscillation stabilization wait timer and watchdog timer.

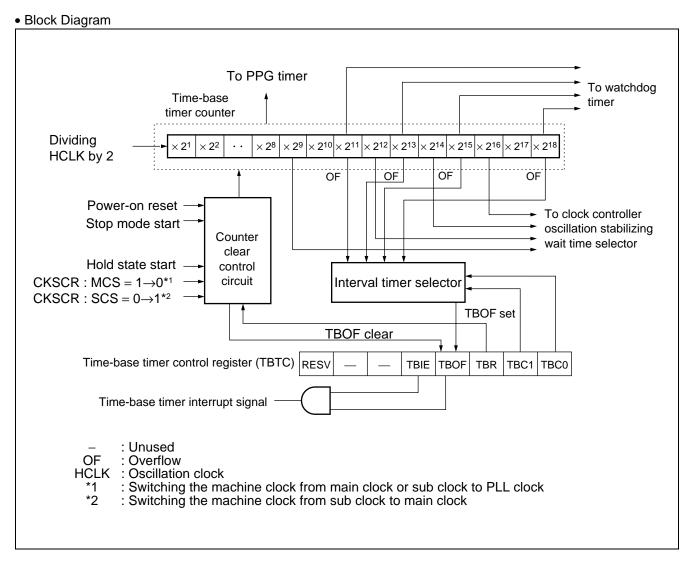
• Interval time of time-base timer

Internal count clock cycle	Interval time		
	2 ¹² /HCLK (Approx. 0.68 ms)		
2/HCLK (0.22	2 ¹⁴ /HCLK (Approx. 2.7 ms)		
2/HCLK (0.33 μs)	2 ¹⁶ /HCLK (Approx. 10.9 ms)		
	2 ¹⁹ /HCLK (Approx. 87.4 ms)		

Notes: • HCLK: Oscillation clock frequency

• The parenthesized values assume an oscillator clock frequency of 6 MHz.


• Clock cycles supplied from time-base timer


Where to supply clock	Clock cycle		
	2 ¹³ /HCLK (Approx. 1.36 ms)		
Main clock oscillation stabilization wait	2 ¹⁵ /HCLK (Approx. 5.46 ms)		
otabilization wait	2 ¹⁷ /HCLK (Approx. 21.84 ms)		
	2 ¹² /HCLK (Approx. 0.68 ms)		
Matab dag timog	2 ¹⁴ /HCLK (Approx. 2.7 ms)		
Watch dog timer	216/HCLK (Approx. 10.9 ms)		
	2 ¹⁹ /HCLK (Approx. 87.4 ms)		

Notes: • HCLK: Oscillation clock frequency

• The parenthesized values assume an oscillator clock frequency of 6 MHz.

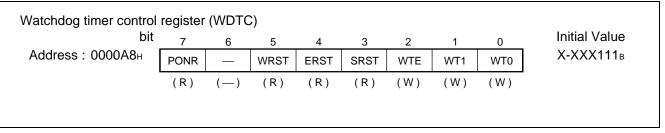
• Register list

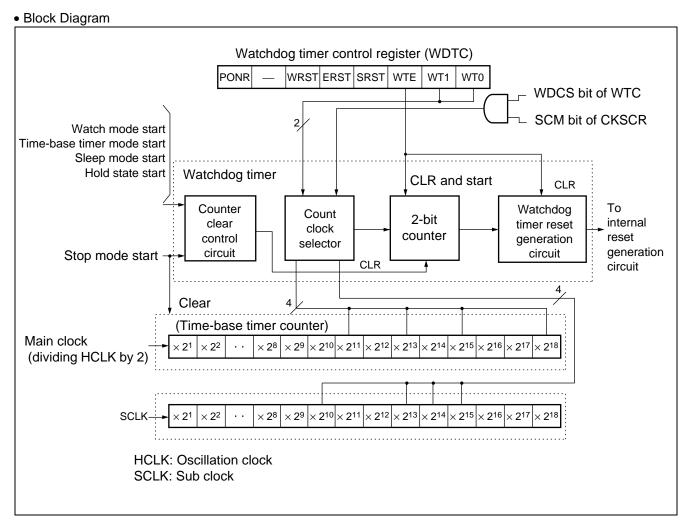
Actual interrupt request number of time-base timer is as follows:

Interrupt request number: #40 (28H)

3. Watchdog timer

The watchdog timer is timer counter provided for measure of program runaway. It is a 2-bit counter operating with an output of the timebase timer or watch timer as the count clock and resets the CPU when the counter is not cleared for a preset period of time after start.

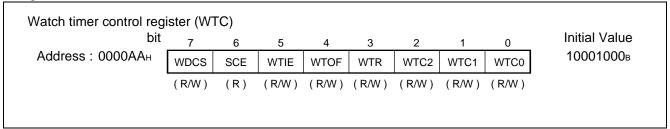

• Interval time of watchdog timer

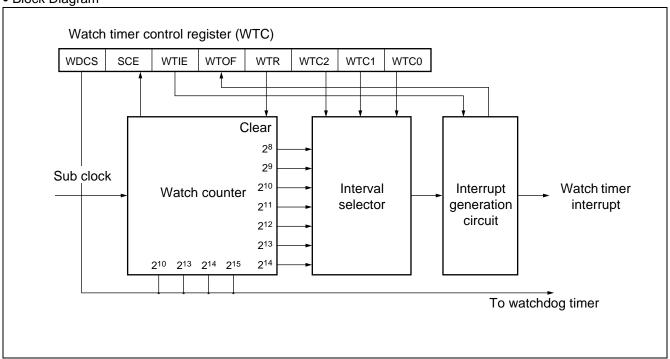

HCLK: Oscillation clock(6 MHz) SCLK: Sub clock(8 kHz)				
Min	Max	Clock cycle		
Approx. 2.39 ms	Approx. 3.07 ms	$(2^{14} \pm 2^{11})$ /HCLK		
Approx. 9.56 ms	Approx. 12.29 ms	$(2^{16}\pm 2^{13})$ /HCLK		
Approx. 38.23 ms	Approx. 49.15 ms	$(2^{18}\pm 2^{15})$ /HCLK		
Approx. 305.83 ms	Approx. 393.22 ms	$(2^{21}\pm 2^{18})$ /HCLK		
Approx. 0.448 s	Approx. 0.576 s	$(2^{12}\pm 2^9)$ /SCLK		
Approx. 3.584 s	Approx. 4.608 s	$(2^{15}\pm 2^{12})$ /SCLK		
Approx. 7.168 s	Approx. 9.216 s	$(2^{16}\pm 2^{13})$ /SCLK		
Approx. 14.336 s	Approx. 18.432 s	$(2^{17}\pm 2^{14})$ /SCLK		

Notes: • The maximum and minimum time intervals for the watchdog timer depend on the counter clear timing.

- The watchdog timer contains a 2-bit counter that counts the carry-up signal from the time-base timer or watch timer.
- Interval time of watchdog timer is longer than the set time during the following conditions.
 - When clearing the timebase timer during operation on oscillation (HCLK)
 - When clearing the watch timer during operation on sub clock (SCLK)
- Events that stop the watchdog timer
 - Stop due to a power-on reset
 - Watchdog reset
- · Clear factor of watchdog timer
 - External reset input by RST pin
 - Writing "0" to the software reset bit
 - Writing "0" to the watchdog timer control bit (second and subsequent times)
 - Transition to sleep mode (clearing the watchdog timer to suspend counting)
 - Transition to time-base timer mode (clearing the watchdog timer to suspend counting)
 - Transition to stop mode (clearing the watchdog timer to suspend counting)

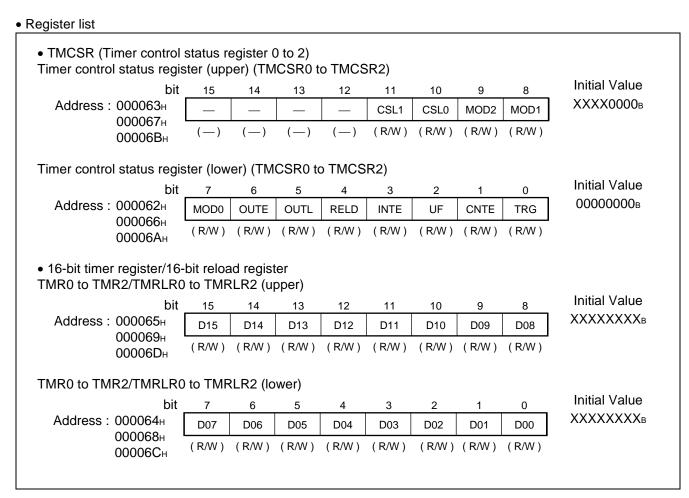
• Register list

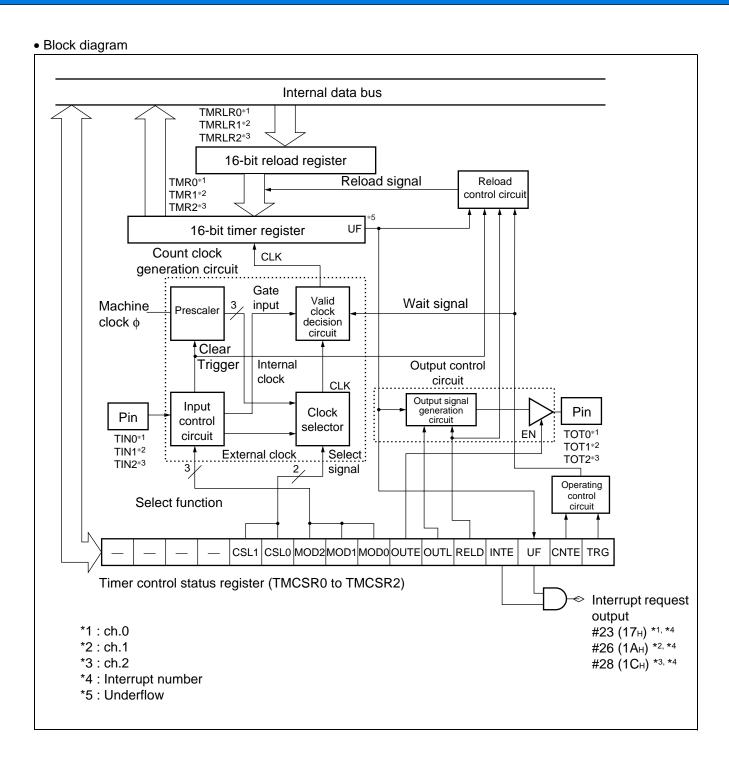



4. Watch timer

The watch timer is a 15-bit timer using the sub clock. It can generate interval interrupts. It can also be used as a clock source for the watchdog timer.

• Register list




Block Diagram

5. 16-bit reload timer

The 16-bit reload timer has the internal clock mode to decrement in synchronization with 3 different internal clocks and the event count mode to decrement upon detection of an arbitrary edge of the pulse input to the external pin. Either can be selected. This timer defines when the count value changes from 0000H to FFFFH as an underflow. The timer therefore causes an underflow when the count reaches [reload register setting + 1]. Either mode can be selected for the count operation from the reload mode which repeats the count by reloading the count setting value at the underflow occurrence or the one-shot mode which stops the count at the underflow occurrence. The interrupt can be generated at the counter underflow occurrence so as to correspond to the DTC.

6. Multi function timer

The multi-function timer enables the following based on the 16-bit free-run timer.

- Output of independent waveform
- Measurement of input pulse width
- Measurement of external clock cycle

· Configuration of a multi-functional timer

16-bit free-run timer	16-bit Output Compare	16-bit Input Capture	8/16-bit PPG timer	16-bit PWC timer
1 channel	4 channels	4 channels	8-bit \times 6 channels (16-bit \times 3 channels)	1 channel

• 16-bit free-run timer: 1 channel

The 16-bit free-run timer consists of a 16-bit up counter (timer data register (TCDT)), compare clear register (CPCLR), timer control status register (TCCS), and prescaler.

The counter output value of the 16-bit free-run timer is used as the base timer for the output compare and input capture units.

• The count clock can be set, selected from among the following eight types.

1/φ, 2/φ, 4/φ, 8/φ, 16/φ, 32/φ, 64/φ, 128/φ

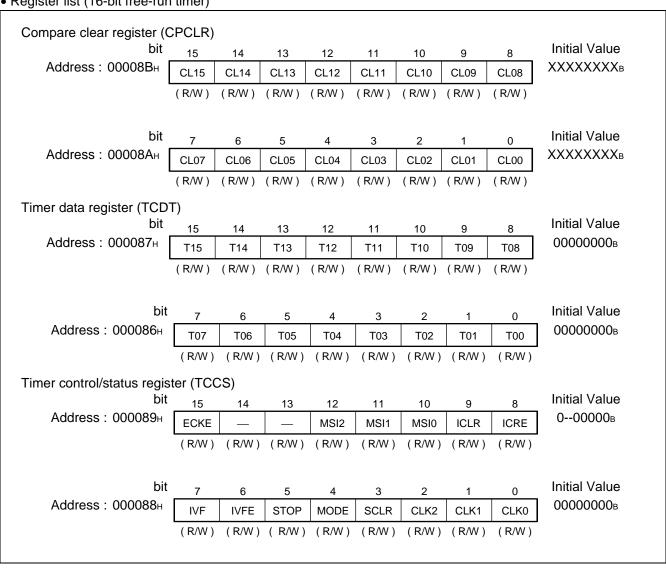
- During the following conditions, the interrupt should be output.
 - The counter value of 16-bit free run timer will be overflowed.
 - The counter value of 16-bit free run timer will be cleared after the counter value of 16-bit free run timer = the compare clear register value (CPCLR) (TCCS : ICRE = "1", MODE = "1")
- The counter value of 16-bit free run timer should be cleared to "0000H" during the following conditions.
 - Reset
 - When setting the clear bit (SCLR) of timer control status register (TCCS) to "1"
 - When the counter value of the 16-bit free run timer = the compare clear register value (CPCLR) (TCCS : MODE = "1")
 - When setting "0000н" to the timer data register (TCDT)

• Output compare: 4 channels

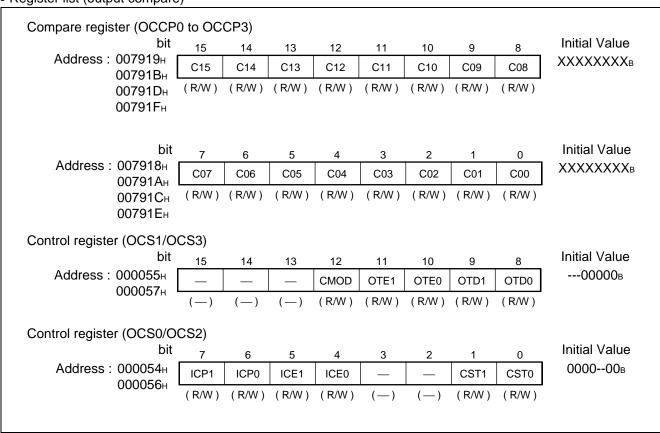
The output compare unit consists of compare registers (OCCP0 to OCCP3), compare control registers (OCS0 to OCS3), and a compare output latch.

The output compare unit can invert the output level and output an interrupt when a compare register (OCCP0 to OCCP3) value matches the counter value of the 16-bit free-run timer.

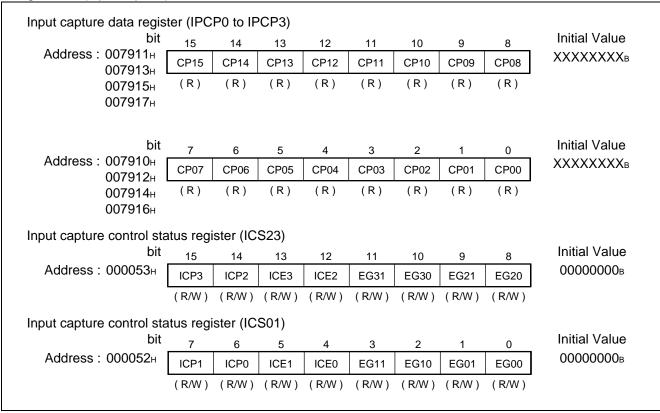
- Output compare registers can operate as 4 independent channels. The output compare registers (OCCP0 to OCCP3) of each channel have interrupt request flags of their respective output pins.
- Pin output can be inverted by using 2 channels of output compare registers (OCCP0 to OCCP3).
- If the counter value of 16-bit free run timer = the output compare register (OCCP0 to OCCP3) (OCS0, OCS2 : ICP0 = "1", ICP1 = "1"), the interrupt request should be generated. (OCS0, OCS2 : ICE0 = "1", ICE1 = "1")
- The initial value for pin output of each channel can be set.

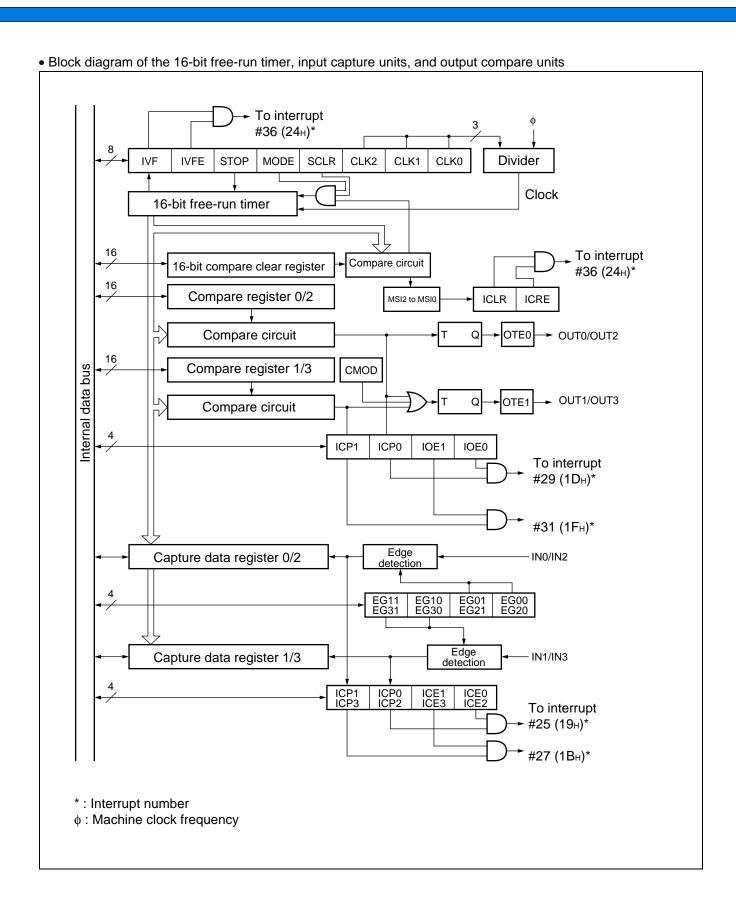

• Input capture : 4 channels

The input capture unit consists of the input capture data registers (IPCP0 to IPCP3) corresponding to external input pins (IN0 to IN3) and input capture control registers (ICS01, ICS23).


The input capture unit can capture the counter value of the 16-bit free-run timer into the input capture data register (IPCP0 to IPCP3) to generated an interrupt request upon detection of the effective edge of the signal input through the external input.

- The input capture unit in each channel can operate independently.
- The effective edge of the external signal can be selected (rising edge, falling edge, both edges).
- · An interrupt request can be generated upon detection of the selected effective edge of the external signal.(ICS01, ICS2: ICE0 = "1", ICE1 = "1", ICE2 = "1", ICE3 = "1").

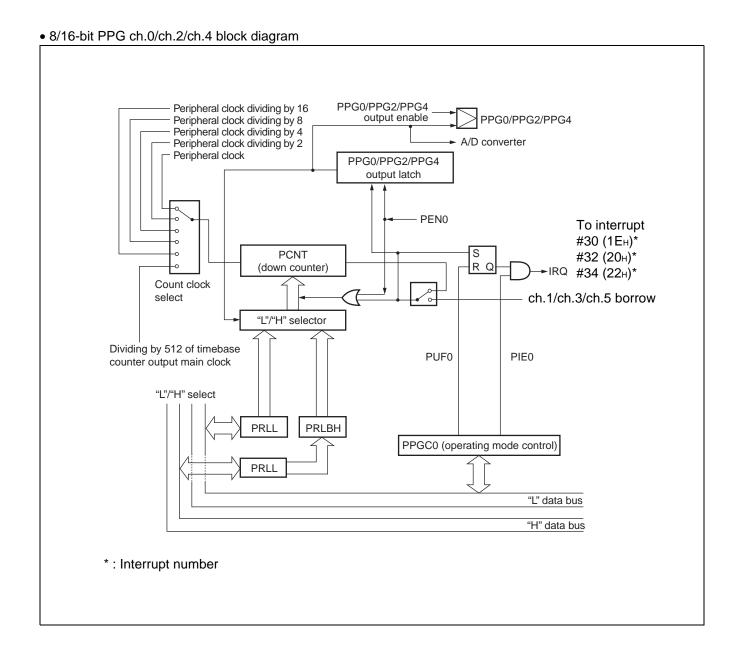

• Register list (16-bit free-run timer)

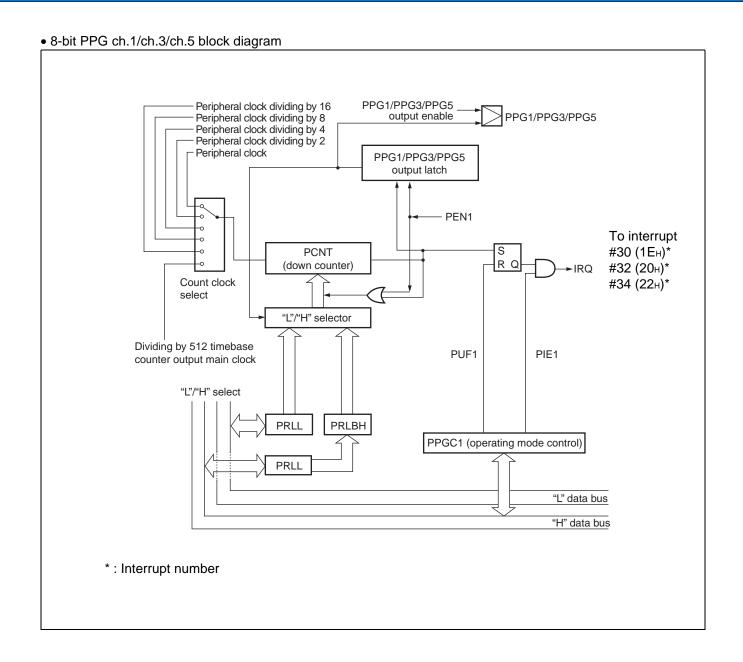


• Register list (output compare)

• Register list (input capture)

• 8/16-bit PPG timer (8-bit : 6 channels, 16-bit : 3 channels)

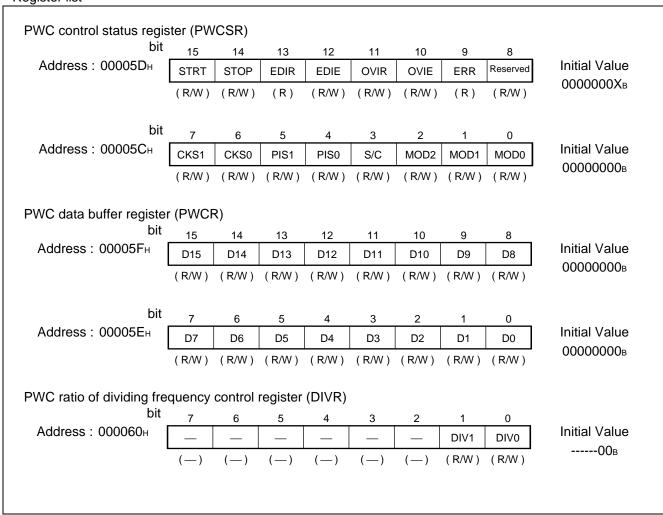

8/16-bit PPG timer consists of an 8-bit down counter (PCNT), PPG operation mode control register (PPGC0 to PPGC5), PPG output control register (PPG01, PPG23, PPG45) and PPG reload register (PRLL0 to PRLL5, PRLH0 to PRLH5).

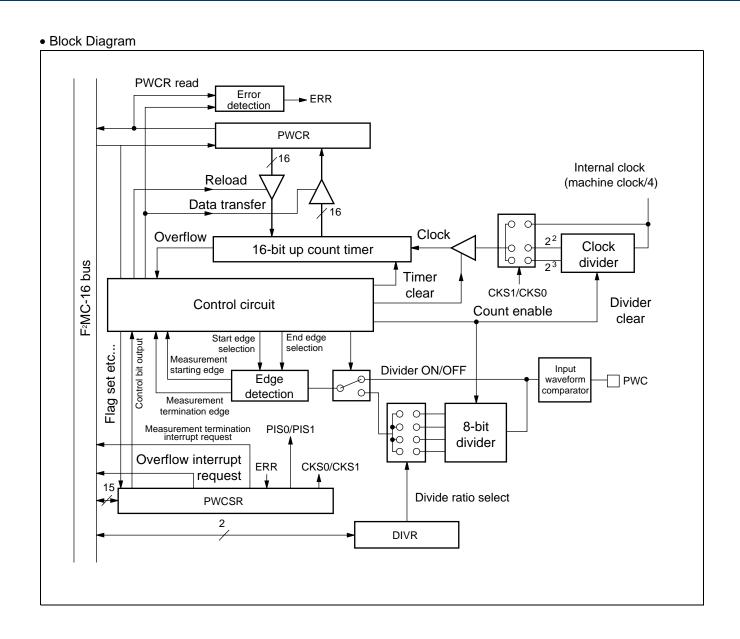

When used as an 8-/16-bit reload timer, the PPG timer serves as an event timer. It can also output pulses of an arbitrary duty ratio at an arbitrary frequency.

- 8-bit PPG mode
 - Each channel operates as an independent 8-bit PPG.
- 8-bit prescaler + 8-bit PPG mode
 Operates as an arbitrary-cycle 8-bit PPG with PPG0 (PPG2, PPG4) operating as an 8-bit prescaler and PPG1 (PPG3, PPG5) counted by the borrow output of PPG0 (PPG2, PPG4).
- 16-bit PPG mode
 Operates as a 16-bit PPG with PPG0 (PPG2, PPG4) and PPG1 (PPG3, PPG5) connected.
- PPG operation

The PPG timer outputs pulses of an arbitrary duty ratio (the ratio between the High and Low level periods of pulse waveform) at an arbitrary frequency. This can also be used as a D/A converter by an external circuit.

• Register list PPG operation mode control register (PPGC1/PPGC3/PPGC5) bit **Initial Value** 15 14 13 10 9 8 12 11 Address: 000047H 0X00001_B PEN1 PE10 PIE1 PUF1 MD1 MD0 Reserved 000049н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 00004Вн (PPGC0/PPGC2/PPGC4) Initial Value bit 7 3 0 6 5 4 2 1 Address: 000046H 0X000XX1B PIE0 PUF0 Reserved PEN0 PE00 000048н (R/W) (R/W) (R/W) (R/W) (R/W) (--)00004Ан PPG output control register (PPG01/PPG23/PPG45) **Initial Value** 7 0 6 3 2 1 Address: 00004CH 000000XXB PCM2 PCM0 Reserved Reserved PCS2 PCS1 PCS0 PCM1 00004Ен (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 000050н (R/W) PPG reload register (PRLH0 to PRLH5) bit Initial Value 15 14 13 11 10 9 8 12 Address: 007901н XXXXXXXXB D15 D14 D13 D12 D11 D10 D09 D08 007903н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 007905н 007907н 007909н 00790Вн (PRLL0 to PRLL5) bit Initial Value 7 6 5 4 3 2 1 0 Address: 007900H XXXXXXXXB D07 D06 D05 D04 D03 D02 D01 D00 007902н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 007904н 007906н 007908н 00790Ан





• PWC timer

The PWC timer is a 16-bit multi-function up-count timer capable of measuring the input signal pulse width.

• Register list

7. UART

UART is a general purpose serial communication interface for synchronous or asynchronous (start-stop synchronization) communications with external devices. It supports bi-directional communication (normal mode) and master/slave communication (multi-processor mode: supported on master side only). An interrupt can be generated upon completion of reception, detection of a reception error, or completion of transmission. El²OS is supported.

UART functions

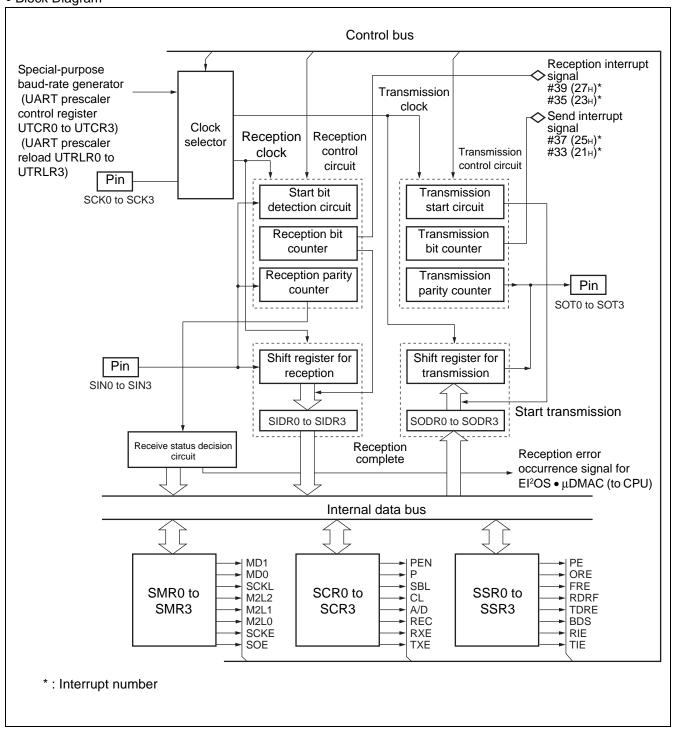
UART, or a generic serial data communication interface that sends and receives serial data to and from other CPU and peripherals, has the functions listed in following.

	Function
Data buffer	Full-duplex double-buffered
Transmission mode	Clock synchronous (without start/stop bit)Clock asynchronous (start-stop synchronous)
Baud rate	 Special-purpose baud-rate generator It is optional from 8 kinds. Baud rate by external clock (SCK0/SCK1/SCK2/SCK3 terminal input)
Data length	 8-bit or 7-bit (in the asynchronous normal mode only) 1-bit to 8-bit (synchronous mode only)
Signal system	Non Return to Zero (NRZ) system
Reception error detection	 Framing error Overrun error Parity error (Not supported in operation mode 1)
Interrupt request	 Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Both the transmission and reception support El²OS.
Master/slave type communication function (multi processor mode)	Capable of 1 (master) to many (slaves) communication (available just as master)

Note: In clock synchronous transfer mode, the UART transfers only data with no start or stop bit added.

• UART operation modes

	Operation mode	Data I	ength	Synchronization	Stop bit length	
	Operation mode	Without parity With parity		Synchronization	Stop bit length	
0	Normal mode	7-bit or 8-bit		Asynchronous	1-bit or 2-bit *2	
1	Multi processor mode	8-bit + 1*1 —		Asynchronous	1-bit of 2-bit	
2	Normal mode	1 to 8-bit —		Synchronous	No	

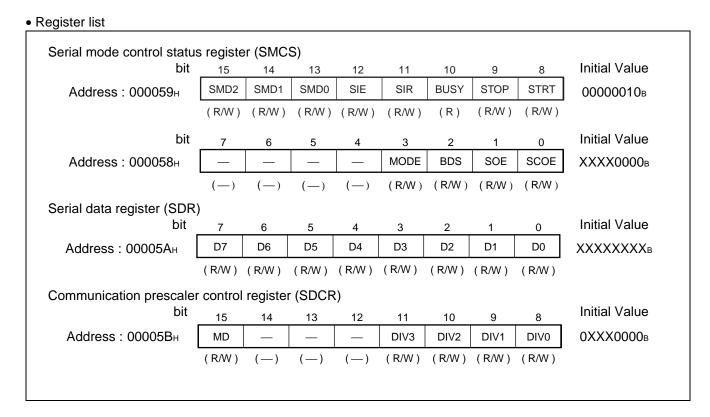

^{-:} Setting disabled

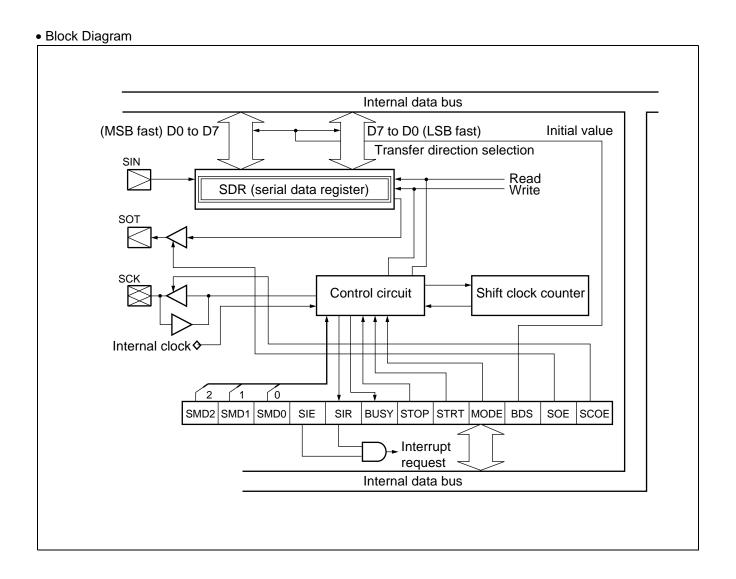
^{*1: +1} is an address/data setting bit (A/D) which is used for communication control.

^{*2 :} Only one bit can be detected as a stop bit at reception.

egister list										
Serial mode re	egister (SMR	0 to SM	R3)							
	bit	7	6	5	4	3	2	1	0	Initial Value
Address :	000020н 000026н	MD1	MD0	SCKL	M2L2	M2L1	M2L0	SCKE	SOE	00100000в
	000020н 00002Сн	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
	000032н									
Serial control	register (SCI	R0 to SC	CR3)							
	bit	15	14	13	12	11	10	9	8	Initial Value
Address :	000021н 000027н	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	00000100в
	000027н 00002Dн	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(W)	(R/W)	(R/W)	
	000033н									
Serial input/ou	utput data reg	gister (S	IDR0 to	SIDR3	/ SODR	0 to SO	DR3)			
·	bit	7	6	5	4	3	2	1	0	Initial Value
Address :	000022н 000028н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXX
	000026н	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
	000034н									
Serial status r	egister (SSR	0 to SSI	R3)							
	bit	15	14	13	12	11	10	9	8	Initial Value
Address :	000023н	PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE	00001000в
	000029н 00002Fн	(R)	(R)	(R)	(R)	(R)	(R/W)	(R/W)	(R/W)	
	000035н									
UART presca	ler reload red	ister (U	TRLR0	to UTRL	_R3)					
'	bit	7	6	5	4	3	2	1	0	Initial Value
Address :	000024н	D7	D6	D5	D4	D3	D2	D1	D0	0000000в
	00002Ан 000030н	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	•
	000036н									
UART presca		gister (U	TCR0 t	o UTCR						Initial Value
Address :	bit 000025н	15	14	13	12	11	10	9	8	Initial Value 1
Auul 633 .	000023н 00002Вн	MD	SRST	CKS	Reserved		D10	D9	D8	0000-000в
	000031н	(R/W)	(R/W)	(R/W)	(R/W)	(—)	(R/W)	(R/W)	(R/W)	
	000037н									

Block Diagram

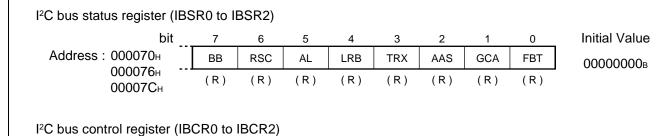



8. Extended I/O serial interface

The extended I/O serial interface is a serial I/O interface in an 8-bit, single-channel, capable of clock synchronous data transfer. LSB-first or MSB-first transfer mode can be selected for data transfer.

There are 2 serial I/O operation modes available:

- Internal shift clock mode: Transfer data in synchronization with the internal clock.
- External shift clock mode: Transfer data in synchronization with the clock supplied via the external pin (SCK). By manipulating the general-purpose port sharing the external pin (SCK) in this mode, data can also be transferred by a CPU instruction.



9. I2C Interface

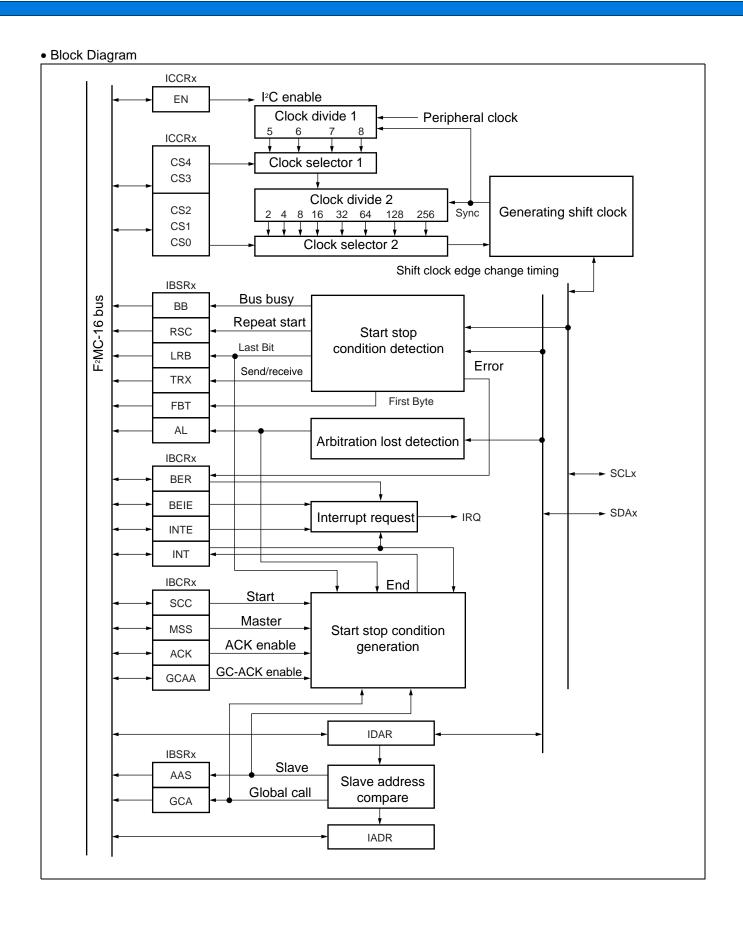
The I²C interface is a serial I/O port supporting the Inter IC BUS. It serves as a master/slave device on the I²C bus and has the following features.

- Master/slave sending and receiving
- · Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Detecting transmitting direction function
- Start condition repeated generation and detection function
- Bus error detection function

• Register list

bit 13 12 10 Initial Value 15 14 11 Address: 000071н BEIE SCC MSS **ACK GCAA** BER INTE INT 0000000B 000077н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 00007Dн

I²C bus clock control register (ICCR0 to ICCR2)

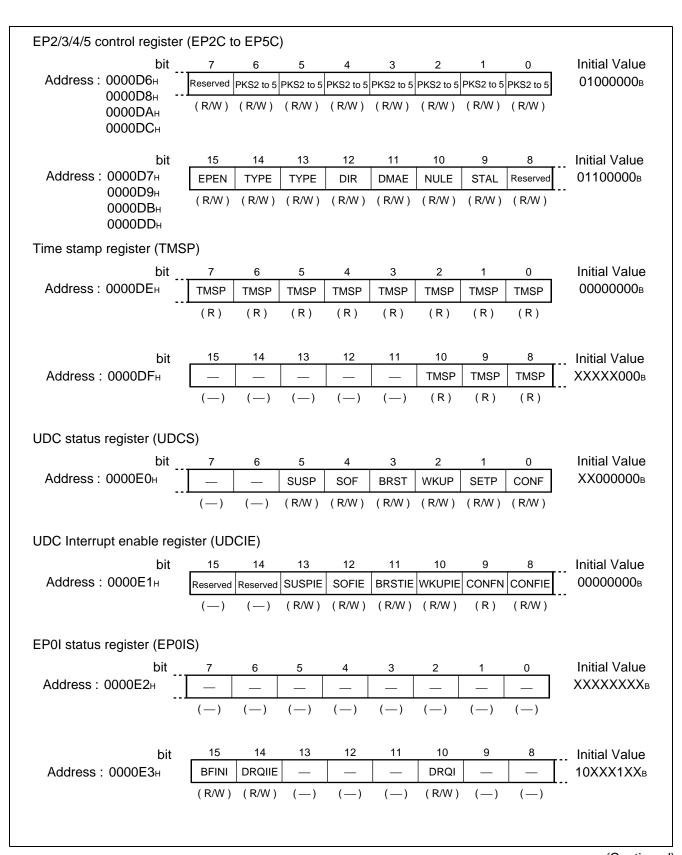

Initial Value 3 2 1 0 Address: 000072H CS4 CS3 CS2 CS₁ CS₀ XX0XXXXXB000078н (R/W) (R/W) (R/W) (R/W) (R/W) 00007Ен

I²C bus address register (IADR0 to IADR2)

bit 15 Initial Value 13 12 11 10 Address: 000073H Α6 Α5 Α4 АЗ Α2 A0 XXXXXXXXXB000079н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 00007Fн

I²C bus data register (IDAR0 to IDAR2)

7 3 2 0 Initial Value Address: 000074H D6 D5 D3 D2 D7 D4 D1 D0 XXXXXXXXB 00007Ан (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 000080н


10. USB Function

The USB function is an interface supporting the USB (Universal Serial Bus) communications protocol.

- Feature of USB function
 - Correspond to USB Full Speed
 - Full speed (12 Mbps) is supported.
 - The device status is auto-answer.
 - · Bit stripping, bit stuffing, and automatic generation and check of CRC5 and CRC16
 - · Toggle check by data synchronization bit
 - Automatic response to all standard commands except Get/SetDescriptor and SynchFrame commands (these 3 commands can be processed the same way as the class vendor commands).
 - The class vendor commands can be received as data and responded via firmware.
 - Supports up to 6 EndPoints (EndPoint0 is fixed to control transfer)
 - 2 transfer data buffers integrated for each end point (one IN buffer and one OUT buffer for EndPoint 0)
 - Supports automatic transfer mode for transfer data via DMA (except buffers for EndPoint 0)

Register list UDC control register (UDCC) 6 3 2 1 0 Initial Value Address: 0000D0H 10100000B RST **RESUM HCON USTP** Reserved Reserved **RFBK PWC** (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (--)bit 15 14 13 12 11 10 9 8 Initial Value Address: 0000D1H Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 0000000B (--)(--)(--)EP0 control register (EP0C) Initial Value bit 7 6 5 4 3 2 1 0 Address: 0000D2H 01000000в Reserved PKS0 PKS0 PKS0 PKS0 PKS0 PKS0 PKS0 (--)(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) Initial Value bit 15 14 13 12 11 10 9 8 Address: 0000D3H XXXX0000_B Reserved Reserved Reserved STAL (R/W) EP1 control register (EP1C) Initial Value 7 6 5 3 2 0 4 1 Address: 0000D4H 0000000B PKS1 PKS1 PKS1 PKS1 PKS1 PKS1 PKS1 PKS1 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 15 14 13 12 11 10 9 bit Initial Value DMAE **EPEN TYPE TYPE** DIR NULE STAL PKS1 01100001в Address: 0000D5H (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

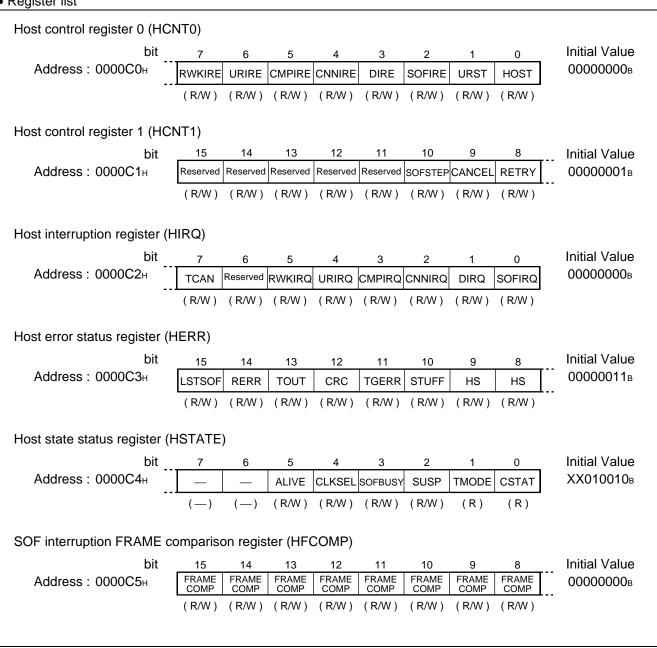
(Continued)

(Continued)

(Continued) EP0O status register (EP0OS) Initial Value 7 6 5 4 3 2 1 0 Address: 0000E4H 0XXXXXXXB Reserved SIZE SIZE SIZE SIZE SIZE SIZE SIZE (R) (R) (R) (R) (R) (R) (R) 14 Initial Value bit 15 13 12 11 10 8 100XX000B Address: 0000E5H BFINI DRQOIE **SPKIE** DRQO SPK Reserved (R/W) (R/W) (R/W) (-)(--)(R/W) (R/W) (-)EP1 status register (EP1S) 7 4 3 0 Initial Value 6 5 2 1 Address: 0000E6H SIZE XXXXXXXXB SIZE SIZE SIZE SIZE SIZE SIZE SIZE (R) (R) (R) (R) (R) (R) (R) (R) bit **Initial Value** 15 14 13 12 11 10 9 8 Address: 0000E7H 1000000XB **BFINI** DRQIE SPKIE BUSY DRQ SPK SIZE Reserved (R/W) (R/W) (R/W) (**—**) (R) (R/W) (R/W) (R) EP2/3/4/5 status register (EP2S to EP5S) bit Initial Value 7 5 2 1 0 6 4 3 Address: 0000E8H XXXXXXXXB SIZE SIZE Reserved SIZE SIZE SIZE SIZE SIZE 0000ЕАн 0000ECH (--)(R) (R) (R) (R) (R) (R) (R) 0000ЕЕн Initial Value bit 15 14 13 8 12 11 10 9 Address: 0000E9H 1000000B BUSY **BFINI** DRQIE **SPKIE** Reserved SPK Reserved DRQ 0000EBH (R/W) (R/W) (R/W) (R) (R/W) (R/W) 0000EDH (--)(--)0000ЕГн EP0/1/2/3/4/5 data register (EP0DT to EP5DT) Initial Value Address: 0000F0H 7 5 1 6 3 2 0 XXXXXXXXB 0000F2н **BFDT BFDT BFDT BFDT BFDT BFDT BFDT BFDT** 0000F4н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 0000F6н 0000F8н 0000FAH bit Initial Value 15 9 14 13 12 11 10 8 Address: 0000F1H XXXXXXXXB **BFDT BFDT BFDT BFDT BFDT BFDT BFDT BFDT** 0000F3н 0000F5н (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) 0000**F7**н 0000F9н 0000FВн

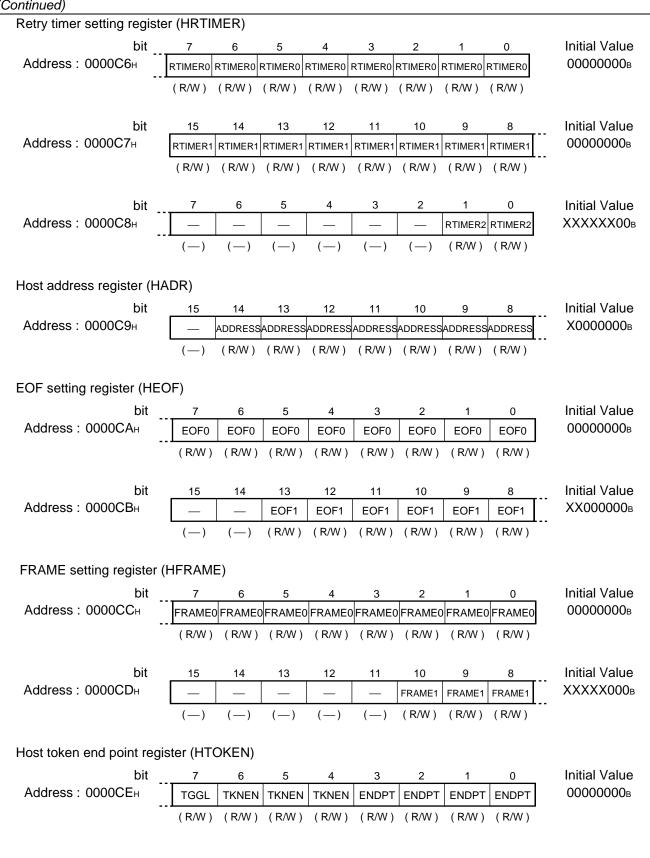
11. USB Mini-HOST

USB Mini-HOST provides minimal host operations required and is a function that enables data to be transferred to and from Device without PC intervention.


- Feature of USB Mini-HOST
 - · Automatic detection of Low Speed/Full Speed transfer
 - Low Speed/Full Speed transfer support
 - Automatic detection of connection and cutting device
 - Reset sending function support to USB-bus
 - Support of IN/OUT/SETUP/SOF token
 - In-token handshake packet automatic transmission (excluding STALL)
 - Out-token handshake packet automatic detection
 - Supports a maximum packet length of 256 bytes.
 - Error (CRC error/toggle error/time-out) various supports
 - Wake-Up function support

• Differences between the USB HOST and USB Mini-HOST

		HOST	Mini-HOST
Hub support		0	×
	Bulk transfer	0	0
Transfer	Control transfer	0	0
Transiei	Interrupt transfer	0	0
	ISO transfer	0	×
Transfer speed	Low Speed	0	0
Transier speed	Full Speed	0	0
PRE packet support		0	×
SOF packet support		0	0
	CRC error	0	0
Error	Toggle error	0	0
LIIOI	Time-out	0	0
	Maximum packet < receive data	0	0
Detection of connection and cutting of device		0	0
Transfer speed detection		0	0


SupportedNot supported

• Register list

(Continued)

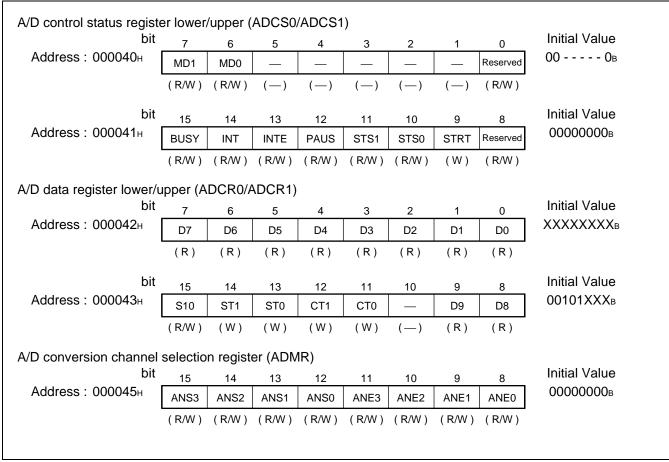
(Continued)

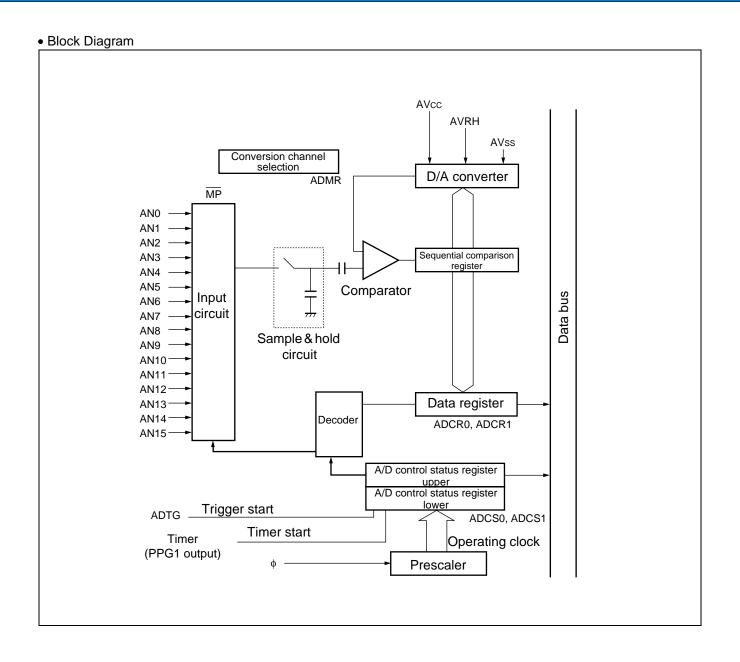
12. 8/10-bit A/D converter

The A/D converter converts analog input voltages into digital values and has the following features.

- RC sequential compare conversion method with sample and hold circuit
- Selectable 8-bit resolution or 10-bit resolution
- Analog input program-selectable from among 16 channels

Single conversion mode: Convert 1 selected channel


Scan conversion mode: Continuous plural channels (maximum 16 channels can be programmed) are converted.


Continuous conversion mode: Repeatedly convert the specified channels.

Stop conversion mode: Convert 1 channel then suspend conversion to remain on standby until the next activation (Simultaneous conversion start available).

- An interrupt request to the CPU can be generated upon completion of A/D conversion. Suitable for continuous processing as this interrupt activates µDMA to transfer the data resulting from A/D conversion to memory.
- The activation source can be selected from among software, external trigger (falling edge), and timer (rising edge).

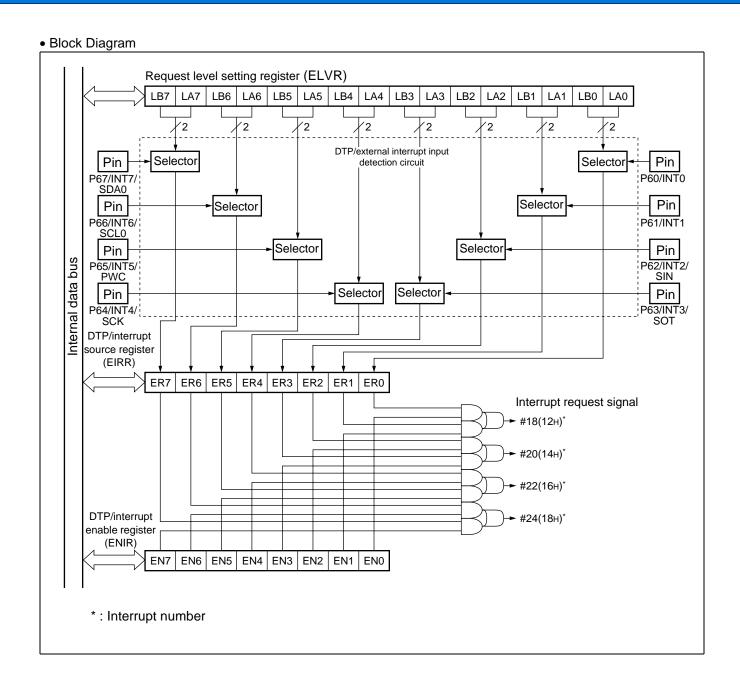
Register list

13. DTP/External interrupt circuit

DTP (Data Transfer Peripheral)/External interrupt circuit detects the interrupt request input from the external interrupt input terminal (INT7 to INT0), and outputs the interrupt request.

• DTP/External interrupt circuit function

The DTP/External interrupt function outputs an interrupt request upon detection of the edge or level signal input to the external interrupt input pins (INT7 to INT0).

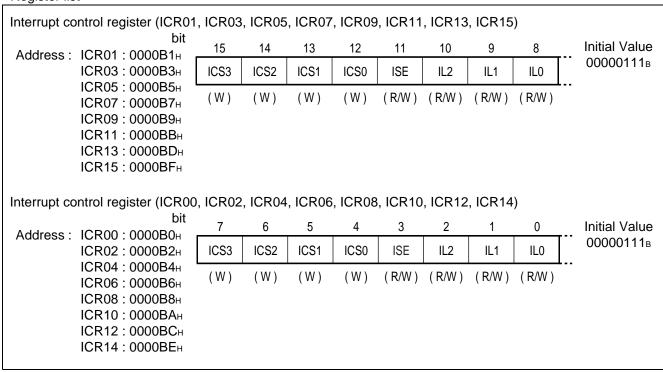

If CPU accepts the interrupt request, and if the extended intelligent I/O service (El²OS) is enabled, branches to the interrupt handling routine after completing the automatic data transfer (DTP function) performed by El²OS. And if El²OS is disabled, it branches to the interrupt handling routine without activating the automatic data transfer (DTP function) performed by El²OS.

• Overview of DTP/External interrupt circuit

	External interrupt	DTP function			
Input pin	8 channels (P60/INT0, P61/INT1, P62/INT2/SIN, P63/INT3/SOT, P64/INT4/SCK, P65/INT5/PWC, P66/INT6/SCL0, P67/INT7/SDA0)				
Interrupt source	The detection level or the type of the edge for each terminal can be set in the request level setting register (ELVR).				
	Input of H level/L level/rising edge/falling	edge.			
Interrupt number	#18 (12н), #20 (14н), #22 (16н), #24 (18н)				
Interrupt control	Enabling/disabling the interrupt request output using the DTP/interrupt enable register (ENIR)				
Interrupt flag	Holding the interrupt causes using the DTP/interrupt cause register (EIRR)				
Process setting	Disable El ² OS (ICR: ISE="0") Enable El ² OS (ICR: ISE="1")				
Process	Branched to the interrupt handling routine	After an automatic data transfer by EI2OS, branched to the interrupt handling routine			

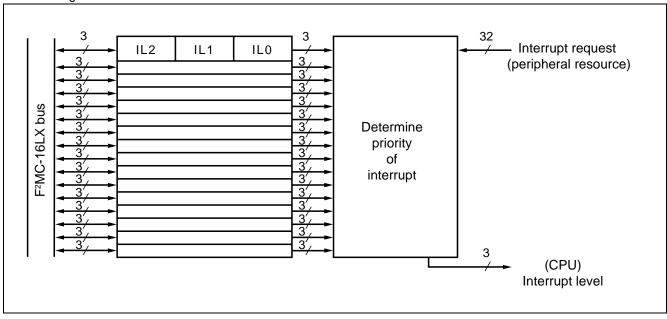
• Register list

DTP/Interrupt enable register (ENIR)									
bit	7	6	5	4	3	2	1	0	Initial Value
Address: 00003CH	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	0000000в
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	•
DTP/Interrupt source reg	jister (E	IRR)							
bit	15	14	13	12	11	10	9	8	Initial Value
Address: 00003DH	ER7	ER6	ER5	ER4	ER3	ER2	ER1	ER0	0000000в
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	
Request level setting reg	ister (E	LVR)							
bit	7	6	5	4	3	2	1	0	Initial Value
Address: 00003EH	LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000
,	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	•
bit	15	14	13	12	11	10	9	8	Initial Value
Address: 00003FH	LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	0000000
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	•



14. Interrupt controller

The interrupt control register is located inside the interrupt controller; it exists for every I/O having an interrupt function. This register has the following functions.

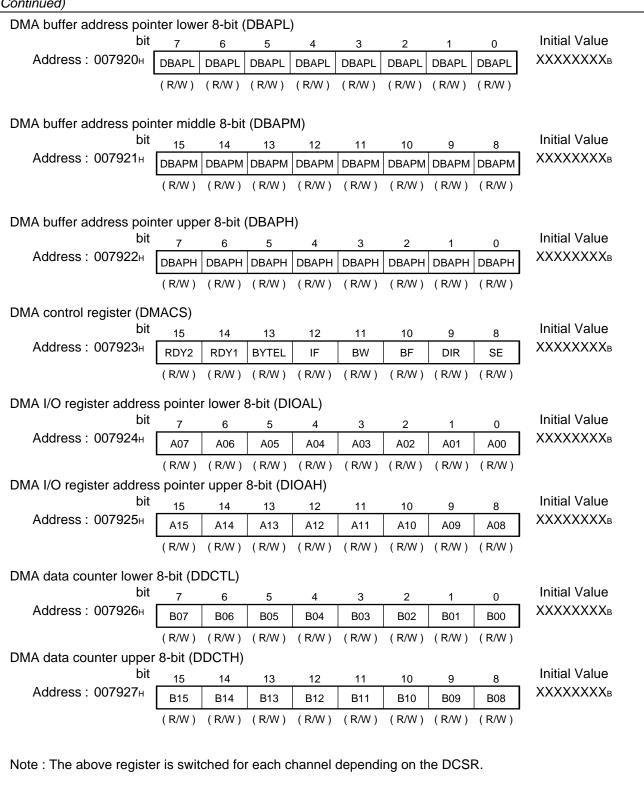

• Setting of the interrupt levels of relevant resources

• Register list

Note: Do not access interrupt control registers using any read modify write instruction because it causes a malfunction.

Block Diagram

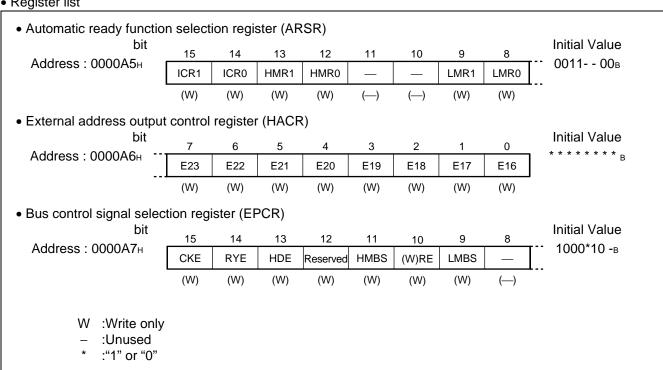
15. μ**DMAC**

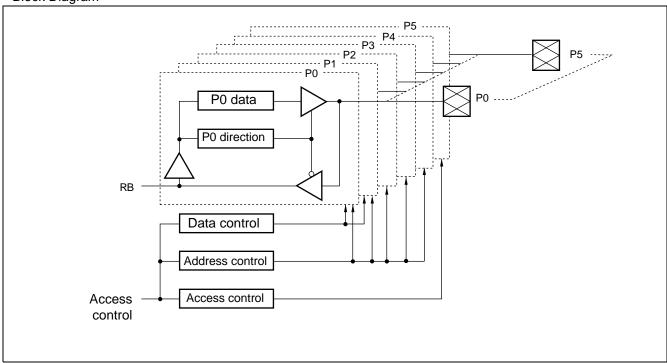

μDMAC is simple DMA with the function equal with El²OS. It has 16 channels DMA transfer channels with the following features.

- Performs automatic data transfer between the peripheral resource (I/O) and memory
- The program execution of CPU stops in the DMA start-up
- · Capable of selecting whether to increment the transfer source and destination addresses
- DMA transfer is controlled by the DMA enable register, DMA stop status register, DMA status register, and descriptor.
- A STOP request is available for stopping DMA transfer from the resource.
 Upon completion of DMA transfer, the flag bit corresponding to the transfer completed channel in the DMA status register is set and a termination interrupt is output to the transfer controller.

Register list DMA enable register upper (DERH) Initial Value bit 15 14 8 13 12 11 10 9 Address: 0000ADH 0000000В EN15 EN14 EN13 EN12 EN11 EN10 EN9 EN8 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) DMA enable register lower (DERL) Initial Value 6 5 4 3 2 0 Address: 0000ACH 0000000В EN7 EN6 EN5 EN4 EN3 EN2 EN1 EN0 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) DMA stop status register (DSSR) bit Initial Value 3 0 STP6 STP14 Address: 0000A4H STP4 STP3 00000000B STP5 STP2 STP0 STP8 STP7 STP1 STP15 STP13 STP12 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) DMA status register upper (DSRH) bit Initial Value 15 14 13 12 11 10 9 8 Address: 00009DH 00000000B DTE15 DTE13 DTE14 DTE12 DTE11 DTE₁₀ DTE9 DTE8 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) DMA status register lower (DSRL) Initial Value bit 0 6 5 4 3 2 1 Address: 00009CH 0000000B DTE7 DTE6 DTE5 DTE4 DTE3 DTE2 DTE1 DTE0 (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) DMA descriptor channel specification register (DCSR) Initial Value bit 15 14 10 8 13 12 11 9 0000000B Address: 00009BH STP Reserved Reserved Reserved DCSR3 DCSR2 DCSR1 DCSR0 (R/W) (R/W) (R/W) (R/W) (R/W) *: The DSSR is lower when the STP bit of DCSR in the DSSR is "0". The DSSR is upper when the STP bit of DCSR in the DSSR is "1".

(Continued)


(Continued)


16. External bus pin control circuit

The external bus pin control circuit controls external bus pins to extend the CPU address and data buses to externals.

• Register list

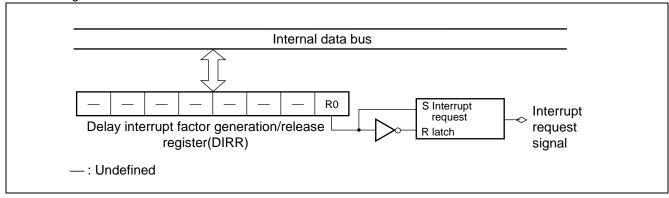
Block Diagram

17. Address matching detection function

When the address is equal to the value set in the address detection register, the instruction code to be read into the CPU is forcibly replaced with the INT9 instruction code (01H). As a result, the CPU executes the INT9 instruction when executing the set instruction. By performing processing by the INT#9 interrupt routine, the program patch function is enabled.

2 address detection registers are provided, for each of which there is an interrupt enable bit. When the address matches the value set in the address detection register with the interrupt enable bit set to 1, the instruction code to be read into the CPU is forcibly replaced with the INT9 instruction code.

Register list Program address detect register 0 to 2 (PADR0) PADR0 (lower) bit 7 6 5 4 3 2 1 0 Initial Value Address: 001FF0H XXXXXXXX_B (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) PADR0 (middle) bit 15 14 13 12 11 10 9 8 Initial Value Address: 001FF1H XXXXXXXXB (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) PADR0 (upper) bit 7 6 5 4 3 0 2 1 Initial Value Address: 001FF2H XXXXXXXX (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) Program address detect register 3 to 5 (PADR1) PADR1 (lower) 15 14 13 12 11 10 Initial Value Address: 001FF3H XXXXXXXXB (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) PADR1 (middle) bit 7 6 5 3 4 2 Initial Value Address: 001FF4H XXXXXXXXB (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) PADR1 (upper) bit 15 14 13 12 11 10 **Initial Value** Address: 001FF5H XXXXXXXX_B (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) Program address detection control status register (PACSR) **PACSR** bit 6 5 3 2 1 0 Initial Value Address: 00009EH Reserved Reserved Reserved Reserved ADIE Reserved ADDE Reserved 0000000В (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) R/W: Readable and Writable : Undefined Χ

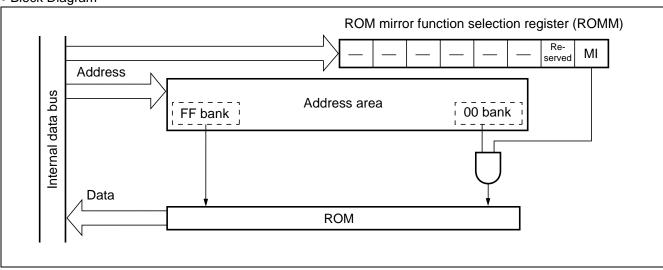

18. Delay interrupt generator module

The delay interrupt generation module is a module that generates interrupts for switching tasks. A hardware interrupt can be generated by software.

• Delay interrupt generator module function

	Function and control
Interrupt source	 Setting the R0 bit in the delayed interrupt request generation/release register to 1 (DIRR: R0 = 1) generates a delayed interrupt request. Setting the R0 bit in the delayed interrupt request generation/release register to 0 (DIRR: R0 = 0) cancels the delayed interrupt request.
Interrupt control	No setting of permission register is provided.
Interrupt flag	Set in bit R0 of the delayed interrupt request generation /clear register (DIRR : R0)
El ² OS support	Not ready for extended intelligent I/O service (EI ² OS).

• Block Diagram

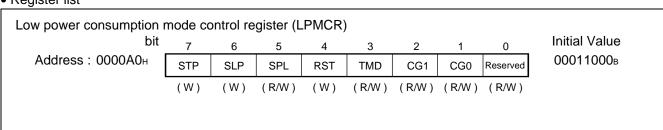

19. ROM mirror function selection module

The ROM mirror function select module can make a setting so that ROM data located in bank FF can be read by accessing bank 00.

• ROM mirroring function selection module function

	Description
Mirror setting address	FFFFFFн to FF8000н in the FF bank can be read through 00FFFFн to 008000н in the 00 bank.
Interrupt source	None.
El ² OS support	Not ready for extended intelligent I/O service (EI ² OS) .

• Block Diagram


20. Low power consumption (standby) mode

The $F^2MC-16LX$ can be set to save power consumption by selecting and setting the low power consumption mode.

• CPU operation mode and functional description

CPU operating clock	Operation mode	Description
	Normal run	The CPU and peripheral resources operate at the clock frequency obtained by PLL multiplication of oscillator clock (HCLK) frequency.
PLL clock	Sleep	Only peripheral resources operate at the clock frequency obtained by PLL multiplication of the oscillator clock (HCLK) .
	Time-base timer	Only the time-base timer operates at the clock frequency obtained by PLL multiplication of the oscillator clock (HCLK) frequency.
	Stop	The CPU and peripheral resources are suspended with the oscillator clock stopped.
	Normal run	The CPU and peripheral resources operate at the clock frequency obtained by dividing the oscillator clock (HCLK) frequency by two.
Main clock	Sleep	Only peripheral resources operate at the clock frequency obtained by dividing the oscillator clock (HCLK) frequency by two.
	Time-base timer	Only the time-base timer operates at the clock frequency obtained by dividing the oscillator clock (HCLK) frequency by two.
	Stop	The CPU and peripheral resources are suspended with the oscillator clock stopped.
	Normal run	The CPU and peripheral resources operate at the clock frequency obtained by dividing the sub clock (SCLK) frequency by four.
Sub clock	Sleep	Only peripheral resources operate at the clock frequency obtained by dividing the sub clock (SCLK) frequency by four.
	Watch mode	Only the watch timer operates at the clock frequency obtained by dividing the sub clock (SCLK) frequency by four.
	Stop	The CPU and peripheral resources are suspended with the sub clock stopped.
CPU intermittent operation mode	Normal run	The halved or PLL-multiplied oscillator clock (HCLK) frequency or the sub clock (SCLK) frequency is used for operation while being decimated in a certain period.

21. Clock

The clock generator controls the internal clock as the operating clock for the CPU and peripheral resources. The internal clock is referred to as machine clock whose one cycle is defined as machine cycle. The clock based on source oscillation is referred to as oscillator clock while the clock based on internal PLL oscillation is referred to as PLL clock.

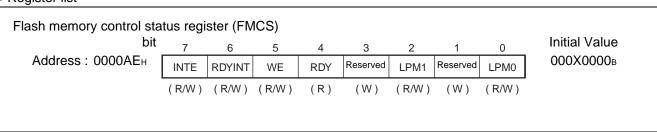
• Register list

22. 3 Mbits flash memory

The description that follows applies to the flash memory built in the MB90F334A; it is not applicable to evaluation ROM or MASK ROM.

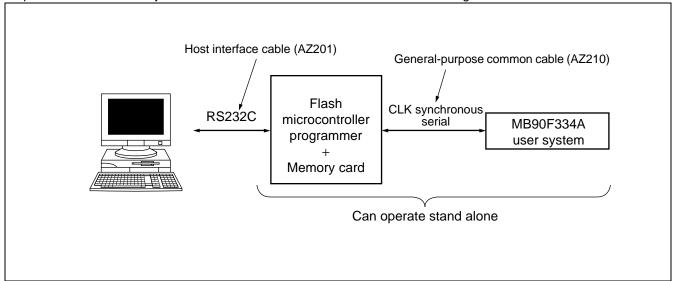
The flash memory is located in bank FF in the CPU memory map.

• Function to flash memory


	Description
Memory capacity	3072 Kbits (384 Kbytes)
Memory configuration	384 Kwords × 8 bits/192 Kwords × 16 bits
Sector configuration	64 Kbytes × 5 + 32 Kbytes + 8 Kbytes × 2 + 16 Kbytes
Sector protect function	Possibility that set up with a recommendation parallel writer
Program algorithm	Automatic program algorithm (Embedded Algorithm : Similar to MBM29LV400TC)
Operation command	 Compatibility with the JEDEC standard-type command Built-in deletion pause/deletion resume function Detection of programming/erasure completion using data polling and the toggle bit Capable of erasing data sector by sector (in arbitrary combination of sectors)
Program/Erase cycle	At least 10000 times guaranteed
How to program and erase memory	 Parallel programmer available for programming and erasure (Flash Support Group, Inc.: AF9708, AF9709, AF9709B) Can be written and erased using a dedicated serial writer (Yokogawa Digital Computer Corporation: AF220/AF210/AF120/AF110) Write/delete operation by program execution
Interrupt source	Programming/erasure completion sources
El ² OS supports	Not ready for expanded intelligent I/O service (EI ² OS).

• Sector configuration of flash memory

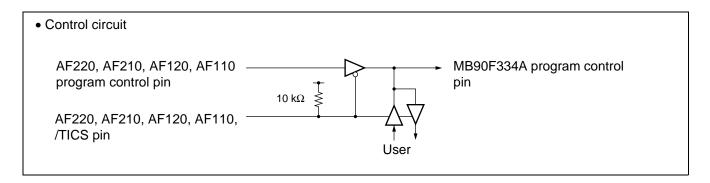
Flash Memory	CPU address	Writer address *		
Prohibited	F80000н	00000н		
Trombitou	F8FFFFH ;	0FFFFH		
SA0 (64 Kbytes)	F90000н	10000н		
SAU (04 Nbytes)	F9FFFFH	1FFFFH		
SA1 (64 Kbytes)	FA0000н	20000н		
SAT (64 Kbyles)	FAFFFFH	2FFFFH		
CAO (CA Khutaa)	FB0000н	30000н		
SA2 (64 Kbytes)	FBFFFFH	3FFFFH		
Prohibited	FC0000H	40000н		
rionibited	FCFFFFH	4FFFFH		
CA2 (64 Khytoo)	FD0000H	50000н		
SA3 (64 Kbytes)	FDFFFFH	5FFFFH		
CAA (CA Khutaa)	FE0000H	60000н		
SA4 (64 Kbytes)	FEFFFFH	6FFFFH		
0.45 (00 K/h, 4)	FF0000H	70000н		
SA5 (32 Kbytes)	FF7FFFH	77FFFH		
CAG (Q Khytaa)	FF8000H	78000н		
SA6 (8 Kbytes)	FF9FFFH	79FFFн		
CA7 (0 Kb) (to -)	FFA000H	7А000н		
SA7 (8 Kbytes)	FFBFFFH	7BFFFH		
0.40 (40 (4)	FFC000H	7С000н		
SA8 (16 Kbytes)	FFFFFFH	7FFFFH		


^{*:} The writer address is relative to the CPU address when data is programmed into flash memory by a parallel programmer. Programming and erasing by the general-purpose parallel programmer are executed based on writer addresses.

Register list

• Standard configuration for Fujitsu Microelectronics standard serial on-board writing

The flash microcontroller programmer (AF220/AF210/AF120/AF110) made by Yokogawa Digital Computer Corporation is used for Fujitsu Microelectronics standard serial on-board writing.



Note: Inquire of Yokogawa Digital Computer Corporation for details about the functions and operations of the AF220, AF210, AF120 and AF110 flash microcontroller programmer, general-purpose common cable for connection (AZ210) and connectors.

• Pins Used for Fujitsu Microelectronics Standard Serial On-board Programming

Pin	Function	Description				
MD2, MD1, MD0	Mode input pins	The device enters the serial program mode by setting MD2=1, MD1=1 and MD0 =0.				
X0, X1	Oscillation pins	Because the internal CPU operation clock is set to be the 1 multiplication PLL clock in the serial write mode, the internal operation clock frequency is the same as the oscillation clock frequency.				
P60, P61	Programming program start pins	Input a Low level to P60 and a High level to P61.				
RST	Reset input pin	_				
SIN0	Serial data input pins.	UART0 is used as CLK synchronous mode.				
SOT0	Serial data output pin	In program mode, the pins used for the UART0 CLK synchronous mode are SIN0, SOT0 and SCK0.				
SCK0	Serial clock input pin					
Vcc	Power source input pin	When supplying the write voltage (MB90F334A: $3.3~V\pm0.3~V$) from the user system, connection with the flash microcontroller programmer is not necessary. When connecting, do not short-circuit with the user power supply.				
Vss	GND Pin	Share GND with the flash microcontroller programmer.				

The control circuit shown in the figure is required for using the P60, P61, SIN0, SOT0 and SCK0 pins on the user system. Isolate the user circuit during serial on-board writing, with the /TICS signal of the flash microcontroller programmer.

The MB90F334A serial clock frequency that can be input is determined by the following expression: Use the flash microcontroller programmer to change the serial clock input frequency setting depending on the oscillator clock frequency to be used.

Inputable serial clock frequency = $0.125 \times \text{oscillation}$ clock frequency.

• Maximum serial clock frequency

Oscillation clock frequency	Maximum serial clock frequency acceptable to the flash microcontroller	Maximum serial clock frequency that can be set with the AF220, AF210, AF120 or AF110	Maximum serial clock frequency that can be set with the AF200
At 6 MHz	750 kHz	500 kHz	500 kHz

• System configuration of the flash microcontroller programmer (AF220/AF210/AF120/AF110) (made by Yokogawa Digital Computer Corporation)

P	art number	Function							
	AF220/AC4P	Model with internal Ethernet interface	/100 V to 220 V power adapter						
Unit	AF210/AC4P	Standard model	/100 V to 220 V power adapter						
Offic	AF120/AC4P	Single key internal Ethernet interface mode	/100 V to 220 V power adapter						
	AF110/AC4P	Single key model	/100 V to 220 V power adapter						
AZ221 F		PC/AT RS232C cable for writer							
AZ210	0	Standard target probe (a) length : 1 m							
FF20	1	Control module for Fujitsu Microelectronics F ² MC-16LX flash microcontroller control module							
AZ290	0	Remote controller	mote controller						
/P4		4 Mbytes PC Card (option) Flash memory capacity	y to 512 Kbytes correspondence						

Contact to: Yokogawa Digital Computer Corporation TEL: 81-423-33-6224

Note: The AF200 flash microcontroller programmer is a retired product, but it can be supported using control module FF201.

■ ELECTRICAL CHARACTERISTICS

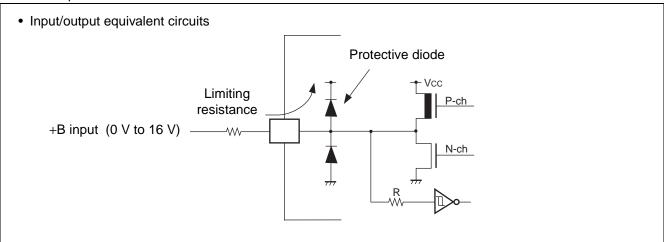
1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ting	Unit	Remarks	
raiailletei	Syllibol	Min	Max	Onit	Keillaiks	
	Vcc	Vss - 0.3	Vss + 4.0	V		
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 4.0	V	Vcc ≥ AVcc*2	
	AVRH	Vss - 0.3	Vss + 4.0	V	$AVcc \ge AVR \ge 0 V^{*3}$	
		Vss - 0.3	Vss + 4.0	V	*4	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	N-ch open-drain (Withstand voltage of 5 V I/O)*5	
		- 0.5	Vss + 4.5	V	USB I/O	
Output voltage*1	Vo	Vss - 0.3	Vss + 4.0	V	*4	
Output voltage	Vo	- 0.5	Vss + 4.5	V	USB I/O	
Maximum clamp current	ICLAMP	- 2.0	+2.0	mA	*6	
Total maximum clamp current	Σ ICLAMP	_	20	mA	*6	
"I " lovel maximum output ourrent	lol1		10	mA	Other than USB I/O*7	
"L" level maximum output current	lol2		43	mA	USB I/O*7	
	lolav1		4	mA	*8	
"L" level average output current	lolav2	_	15/4.5	mA	USB-IO (Full speed/ Low speed) *8	
"L" level maximum total output current	ΣΙοι	_	100	mA		
"L" level average total output current	Σ lolav		50	mA	*9	
"I I" lovel province on the standard	І он1	_	- 10	mA	Other than USB I/O*7	
"H" level maximum output current	10н2		- 43	mA	USB I/O*7	
	IOHAV1	_	- 4	mA	*8	
"H" level average output current	lohav2	_	-15/-4.5	mA	USB-IO (Full speed/ Low speed) *8	
"H" level maximum total output current	ΣІон	_	- 100	mA		
"H" level average total output current	ΣΙομαν	_	- 50	mA	*9	
Power consumption	Pd	_	340	mW		
Operating temperature	TA	- 40	+ 85	°C		
Storage temperature	Tota	- 55	+ 150	°C		
Storage temperature	Tstg	- 55	+ 125	°C	USB I/O	

^{*1 :} The parameter is based on Vss = AVss = 0.0 V.

(Continued)

^{*2 :} Be careful not to let AVcc exceed Vcc, for example, when the power is turned on.


^{*3:} Be careful not to let AVRH exceed AVcc.

^{*4 :} V_I and V_O must not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

^{*5 :} Applicable to pins : P60 to P67, P96, PA0 to PA7, PB0 to PB4, UTEST

(Continued)

- *6: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95, PB5, PB6
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, DVP, DVM, HVP, HVM, UTEST, HCON
 - Sample recommended circuits:

- *7 : A peak value of an applicable one pin is specified as a maximum output current.
- *8 : The average output current specifies the mean value of the current flowing in the relevant single pin during a period of 100 ms.
- *9: The average total output current specifies the mean value of the currents flowing in all of the relevant pins during a period of 100 ms.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks
raiailletei	Syllibol	Min	Max	Offic	Remarks
		3.0	3.6	V	At normal operation (when using USB)
Power supply voltage	Vcc	2.7	3.6	V	At normal operation (when not using USB)
		1.8	3.6	V	Hold state of stop operation
	VIH	0.7 Vcc	Vcc + 0.3	V	CMOS input pin
	V _{IHS1}	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin
Input "H" voltage	V _{IHS2}	0.8 Vcc	Vss + 5.3	V	N-ch open-drain (Withstand voltage of 5 V I/O)*
	VIHM	Vcc - 0.3	Vcc + 0.3	V	MD pin input
	VIHUSB	2.0	Vcc + 0.3	V	USB pin input
	VIL	Vss - 0.3	0.3 Vcc	V	CMOS input pin
Input "L" voltage	VILS	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin
iliput L voltage	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input
	VILUSB	Vss	0.8	V	USB pin input
Differential input sensitivity	V _{DI}	0.2	_	V	USB pin input
Differential common mode input voltage range	Vсм	0.8	2.5	V	USB pin input
Operating	TA	- 40	+ 85	°C	When not using USB
temperature	IA	0	+ 70	°C	When using USB

^{*:} Applicable to pins: P60 to P67, P96, PA0 to PA7, PB0 to PB4, UTEST

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

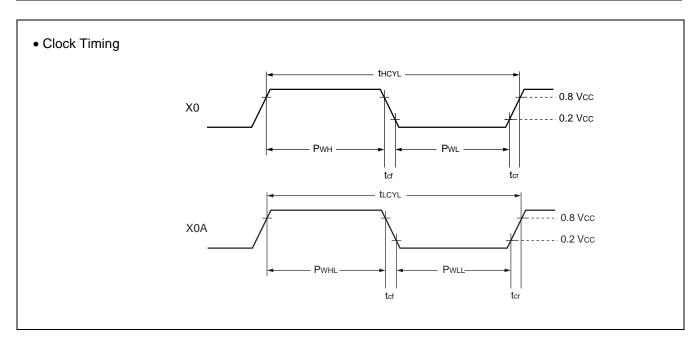
(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, TA = - 40 °C to + 85 °C)

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
rarameter	bol	Pili liaille	Conditions	Min	Тур	Max	Ullit	Remarks
Output "H" voltage	Vон	Output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, HVP, HVM, DVP, DVM	Iон = - 4.0 mA	Vcc - 0.5	_	Vcc	V	
		HVP, HVM, DVP, DVM	$R_L = 15~k\Omega \pm 5\%$	2.8	_	3.6	V	
Output "L" voltage	Vol	Output pins other than HVP, HVM, DVP, DVM	IoL = 4.0 mA	Vss	_	Vss + 0.4	V	
voltago		HVP, HVM, DVP, DVM	$R_L = 1.5 \text{ k}\Omega \pm 5\%$	0	—	0.3	V	
Input leak current	Iı∟	Output pins other than P60 to P67, P96, PA0 to PA7, PB0 to PB4, HVP, HVM, DVP, DVM	Vcc = 3.3 V, Vss < Vı < Vcc	- 10	_	+ 10	μΑ	
		HVP, HVM, DVP, DVM	_	- 5	_	+ 5	μΑ	
Pull-up resistance	Rpull	P00 to P07, P10 to P17	$V_{CC} = 3.3 \text{ V},$ $T_A = +25 {}^{\circ}\text{C}$	25	50	100	kΩ	
Open drain output current	ILIOD	P60 to P67, P96, PA0 to PA7, PB0 to PB4	_	_	0.1	10	μΑ	
	Icc		Vcc = 3.3 V, Internal frequency 24 MHz,		75	85	mA	MB90F334A
			At normal operating At USB operating (USTP = 0)		65	75	mA	MB90333A
			Vcc = 3.3 V, Internal frequency 24 MHz, At normal operating		70	80	mA	MB90F334A
			At non-operating USB (USTP = 1)	_	60	70	mA	MB90333A
Power supply current	Iccs	Vcc	Vcc = 3.3 V, Internal frequency 24 MHz, At sleep mode		27	40	mA	
	Істѕ		Vcc = 3.3 V, Internal frequency 24 MHz, At timer mode		3.5	10	mA	
			Vcc = 3.3 V, Internal frequency 3 MHz, At timer mode		1	2	mA	
	Iccl		$V_{\rm CC} = 3.3 \ V,$ Internal frequency 8 kHz, At sub clock operation, $(T_{\rm A} = +25 \ ^{\circ}{\rm C})$	_	25	150	μА	

(Continued)

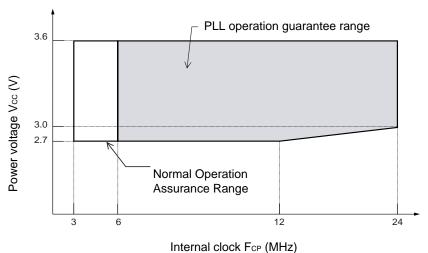
(Continued)

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = - 40 °C to + 85 °C)

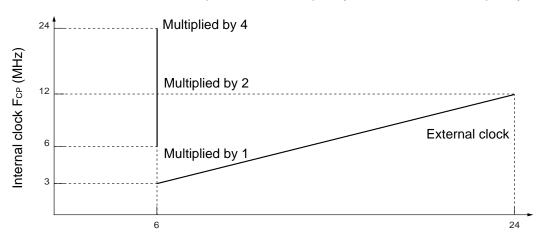

Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
raiailletei	bol	Fili lialile	Conditions	Min	Тур	Max	Onit	Kemarks
lccLS		$V_{\rm CC} = 3.3 \text{ V},$ Internal frequency 8 kHz, At sub clock, At sleep operating, $(T_{\rm A} = +25 ^{\circ}{\rm C})$	_	10	50	μА		
supply current	Ісст	Vcc	$V_{\rm CC} = 3.3 \text{ V},$ Internal frequency 8 kHz, Watch mode, $(T_{\rm A} = +25 ^{\circ}\text{C})$	_	1.5	40	μА	
	Іссн		$T_A = +25 ^{\circ}\text{C},$ At stop	_	1	40	μА	
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	5	15	pF	
Pull-up resistor	Rup	RST	_	25	50	100	kΩ	
USB I/O output impedance	Zusb	DVP, DVM HVP, HVM	_	3		14	Ω	

Note: P60 to P67, P96, PA0 to PA7, and PB0 to PB4 are N-ch open-drain pins usually used as CMOS.

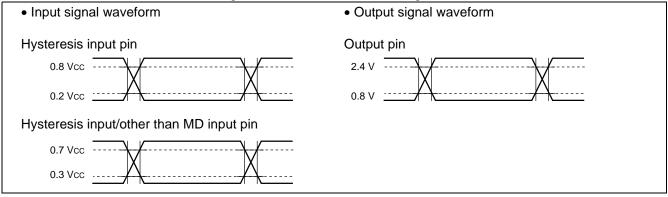
4. AC Characteristics (1)Clock input timing


(Vcc = AVcc = $3.3 \text{ V} \pm 0.3 \text{ V}$, Vss = AVss = 0.0 V, T_A = $-40 \,^{\circ}\text{C}$ to + $85 \,^{\circ}\text{C}$)

Parameter	Sym-	Pin name		Value		Unit	Remarks
i di difficter	bol	I III IIailic	Min	Тур	Max	Oiiit	Kemarks
	fсн	X0, X1	_	6	_	MHz	When oscillator is used
Clock frequency	ICH	Λυ, Λ1	6	_	24	MHz	External clock input
	fcL	X0A, X1A	_	32.768	_	kHz	
	thcyl	V0 V1	_	166.7	_	ns	When oscillator is used
Clock cycle time	THCYL	X0, X1	166.7	_	41.7	ns	External clock input
	t LCYL	X0A, X1A	_	30.5		S	
Input clock pulse width	P _{WH} P _{WL}	X0	10	_	_	ns	A reference duty ratio is 30% to 70%.
input clock pulse width	P _{WHL} P _{WLL}	X0A		15.2		s	
Input clock rise time and fall time	tcr tcf	X0			5	ns	At external clock
Internal operating clock	fcp	_	3	_	24	MHz	When main clock is used
frequency	fcpl	_	_	8.192		kHz	When sub clock is used
Internal operating clock	t CP	_	42	_	333	ns	When main clock is used
cycle time	t CPL	_		122.1	_	S	When sub clock is used


• PLL operation guarantee range

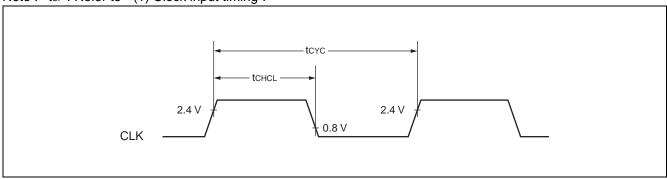
Relation between power supply voltage and internal operation clock frequency


Note: When the USB is used, operation is guaranteed at voltages between 3.0 V and 3.6 V.

Relation between internal operation clock frequency and external clock frequency

External clock Fc (MHz)

The AC standards assume the following measurement reference voltages.

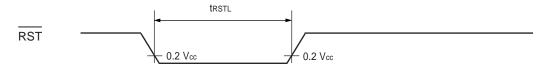


(2)Clock output timing

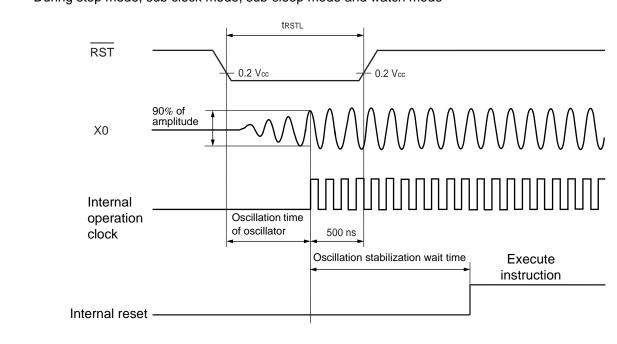
 $(Vss = AVss = 0.0 \text{ V}, T_A = -40 \, ^{\circ}\text{C to} + 85 \, ^{\circ}\text{C})$

Daramatar	Cumbal	Din nama	Conditions	Va	lue	Unit	Remarks	
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	Remarks	
Cycle time	tcyc	CLK	_	t CP	_	ns		
				tcp/2 - 15	tcp/2 + 15	ns	At fcp = 24 MHz	
CLK↑→CLK↓	t chcL	CLK	Vcc = 3.0 V to 3.6 V	tcp/2 - 20	tcp/2 + 20	ns	At fcp = 12 MHz	
				tcp/2 - 64	tcp/2 + 64	ns	At fcp = 6 MHz	

Note: t_{CP} : Refer to "(1) Clock input timing".

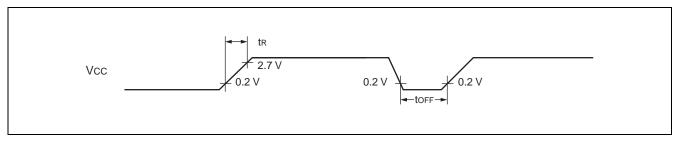

(3) Reset

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)


Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks	
Farameter	Syllibol	name	Conditions	Min	Max	Oilit		
Reset input time trest. RST		500		ns	At normal operating, At time base timer mode, At main sleep mode, At PLL sleep mode			
	trstl R	K31		Oscillation time of oscillator* + 500 ns		μs	At stop mode, At sub clock mode, At sub sleep mode, At watch mode	

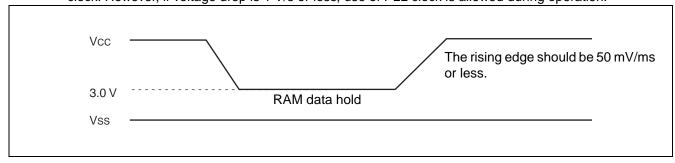
^{*:} Oscillation time of oscillator is the time that the amplitude reaches 90%. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a ceramic oscillator, and 0 milliseconds on an external clock.

• During normal operation, time-base timer mode, main sleep mode and PLL sleep mode


• During stop mode, sub clock mode, sub-sleep mode and watch mode

(4) Power-on reset

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to +85 °C)

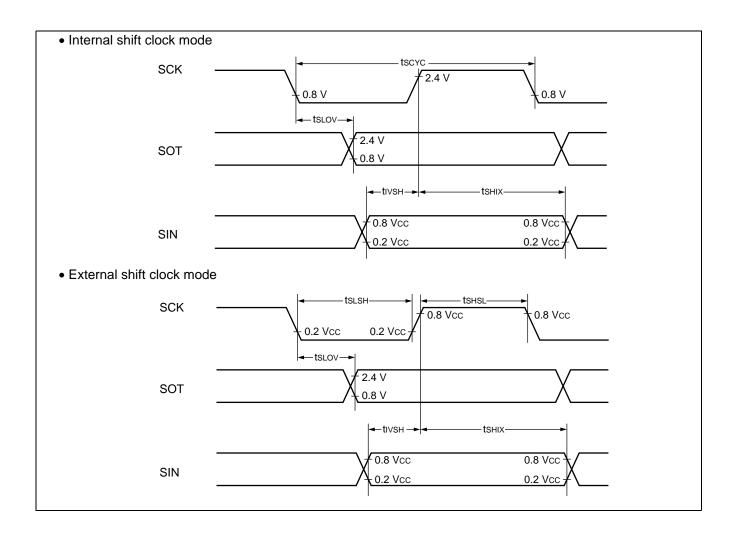

Parameter	Symbol	Din namo	Conditions	Va	lue	Unit	Remarks
Farameter	Symbol	riii iiaiiie	Conditions	Min	Max	Oilit	Nemarks
Power supply rising time	t R	Vcc		0.05	30	ms	
Power supply shutdown time	toff	Vcc	_	1	_	ms	Waiting time until power-on

Notes: • Vcc must be lower than 0.2 V before the power supply is turned on.

- The above standard is a value for performing a power-on reset.
- In the device, there are internal registers which is initialized only by a power-on reset. When the initialization of these items is expected, turn on the power supply according to the standards.
- Sudden change of power supply voltage may activate the power-on reset function.

 When changing the power supply voltage during operation as illustrated below, voltage fluctuation should be minimized so that the voltage rises as smoothly as possible. When raising the power, do not use PLL clock. However, if voltage drop is 1 V/s or less, use of PLL clock is allowed during operation.

(5) UART0, UART1, UART2, UART3 I/O extended serial timing


 $(Vcc = AVcc = 3.3 \text{ V} \pm 0.3 \text{ V}, Vss = AVss = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit
Parameter	Symbol	Pili liaille	Conditions	Min	Max	Onit
Serial clock cycle time	tscyc	SCKx		8 tcp	_	ns
SCK↓→SOT delay time	tsLov	SCKx, SOTx	Internal shift clock	- 80	+ 80	ns
Valid SIN→SCK↑	t ıvsh	SCKx, SINx	mode output pin is : $C_L = 80 \text{ pF} + 1 \text{TTL}$	100	_	ns
SCK↑→valid SIN hold time	t sнıx	SCKx, SINx		60	_	ns
Serial clock H pulse width	t shsl	SCKx, SINx		4 tcp	_	ns
Serial clock L pulse width	t slsh	SCKx, SINx		4 tcp	_	ns
SCK↓→SOT delay time	tsLov	SCKx, SOTx	External shift clock mode output pin is:	_	150	ns
Valid SIN→SCK↑	t ıvsh	SCKx, SINx	C _L = 80 pF + 1TTL	60	_	ns
SCK↑→valid SIN hold time	t sнıx	SCKx, SINx		60	_	ns

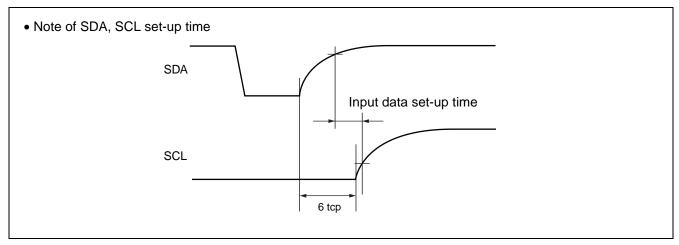
Notes : \bullet Above rating is the case of CLK synchronous mode.

• C_L is a load capacitance value on pins for testing.

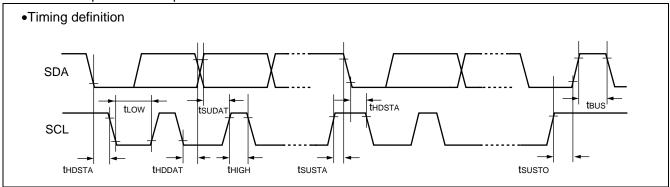
• tcp: Refer to "(1) Clock input timing".

(6) I²C timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, TA = - 40 °C to + 85 °C)


Parameter	Symbol	Conditions	Va	lue	Unit
Parameter	Syllibol	Conditions	Min	Max	Onit
SCL clock frequency	fscL		0	100	kHz
(Repeat) [start] condition hold time SDA $\downarrow \to$ SCL \downarrow	t HDSTA	Power-supply voltage of external pull-up resistor at 5.0 V.	4.0	_	μs
SCL clock "L" width	tLOW	R = 1.2 kΩ, C = 50 pF* ²	4.7	_	μs
SCL clock "H" width	t HIGH	Power-supply voltage of external pull-up	4.0		μs
Repeat [start] condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	resistor at 3.6 V. R = 1.0 kΩ, C = 50 pF* ²	4.7	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hddat		0	3.45*3	μs
Data setup time	4	Power-supply voltage of external pull-up resistor at 5.0 V. fcp*1 \leq 20 MHz, R = 1.2 k Ω , C = 50 pF*2 Power-supply voltage of external pull-up resistor at 3.6 V. fcp*1 \leq 20 MHz, R = 1.0 k Ω , C = 50 pF*2	250*4	_	9
SDA ↓↑ → SCL↑	tsudat	Power-supply voltage of external pull-up resistor at 5.0 V. fcp*1 > 20 MHz, R = 1.2 k Ω , C = 50 pF*2 Power-supply voltage of external pull-up resistor at 3.6 V. fcp*1 > 20 MHz, R = 1.0 k Ω , C = 50 pF*2	200*4	_	ns
[Stop] condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t susto	Power-supply voltage of external pull-up resistor at 5.0 V.	4.0	—	μs
Bus free time between [stop] condition and [start] condition	t BUS	R = 1.2 kΩ, C = 50 pF* ² Power-supply voltage of external pull-up resistor at 3.6 V. R = 1.0 kΩ, C = 50 pF* ²	4.7	_	μs

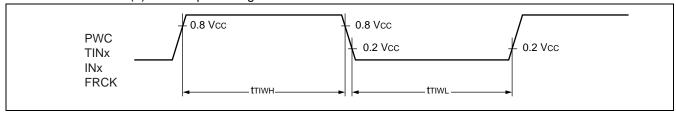
^{*1 :} fcp is internal operating clock frequency. Refer to " (1) Clock input timing".


^{*2 :} R and C are pull-up resistance of SCL and SDA lines and load capacitance.

^{*3 :} The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

^{*4 :} Refer to "• Note of SDA, SCL set-up time".

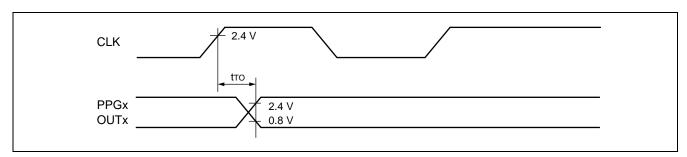
Note: The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.



(7) Timer input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)

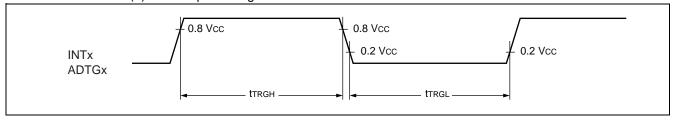
Parameter	Symbol	Pin name	Conditions	Va	Unit	
Farameter	Syllibol	Fili lialile	Conditions	Min	Max	Oill
Input pulse width	tтıwн tтıwL	FRCK, INx, TINx, PWC	_	4 tcp	_	ns


Note: tcp: Refer to "(1) Clock input timing".

(8) Timer output timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, TA = - 40 °C to + 85 °C)

Parameter	Symbol	Pin name	Conditions	Va	Unit		
Farameter	Symbol		Conditions	Min	Max		
CLK↑→To∪т change time		TOTx,					
PPG0 to PPG5 change time	t TO	PPGx,		30	_	ns	
OUT0 to OUT3 change time		OUTx					

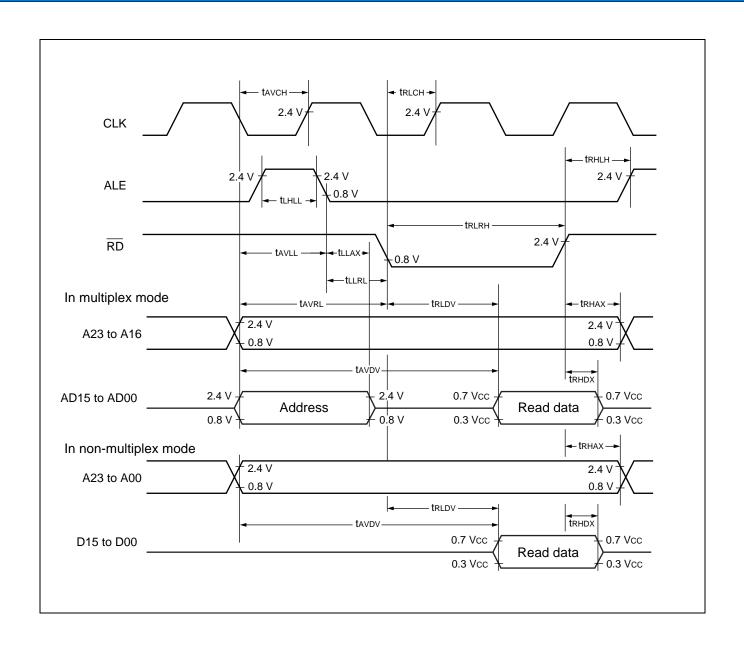


(9) Trigger input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = - 40 °C to + 85 °C)

Parameter	Symbol	Pin name	name Conditions		Value		Remarks	
raiametei	Syllibol	riii iiaiii c	Conditions	Min	Max	Unit	Remarks	
Input pulse width	t trgh	INTx,	_	5 t CP	_	ns	At normal operating	
	t trgl	ADTG		1		μs	In Stop mode	

Note: tcp: Refer to "(1) Clock input timing".

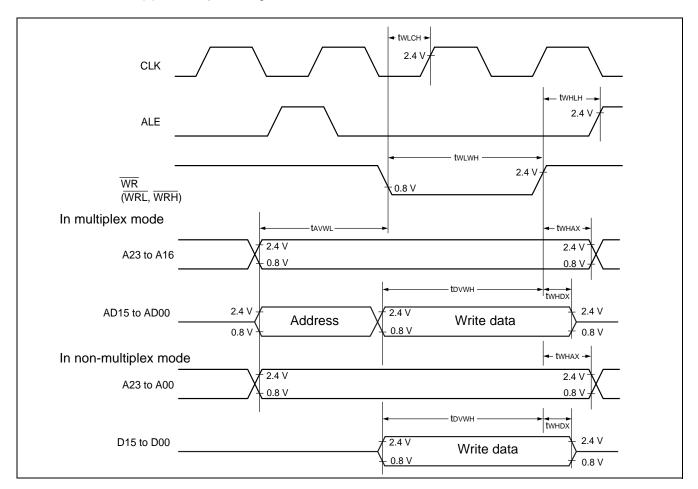


(10) Bus read timing

(Vcc = AVcc = $3.3 \text{ V} \pm 0.3 \text{ V}$, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter	Sym-	Pin name	Conditions		lue	Unit	Remarks
Parameter	bol	riii iiaiiie	Conditions	Min	Max	Oilit	Remarks
				tcp/2 - 15	_	ns	At f _{cp} = 24 MHz
ALE pulse width	t LHLL	ALE	_	tcp/2 - 20		ns	$At f_{cp} = 12 \ MHz$
				$t_{\text{CP}}/2-35$		ns	At $f_{cp} = 6 \text{ MHz}$
Valid address→ALE↓time	t avll	Address,		$t_{\text{CP}}/2-17$		ns	
Valid address—ALLVIIIIe	L AVLL	ALE		$t_{\text{CP}}/2-40$		ns	At $f_{cp} = 6 \text{ MHz}$
ALE↓→Address valid time	t llax	ALE, Address	_	tcp/2 - 15	_	ns	
Valid address→RD↓time	t avrl	RD, Address	_	tcp - 25		ns	
Valid address→valid data	+	Address/			5 tcp/2 - 55	ns	
input	t avdv	data		_	5 tcp/2 - 80	ns	At fcp = 6 MHz
RD pulse width	t rlrh	RD		3 tcp/2 - 25	_	ns	At f _{cp} = 24 MHz
ND puise widin	IRLRH	ΚD		3 tcp/2 - 20	_	ns	At fcp = 12 MHz
RD↓→valid data input	trldv	\overline{RD} ,			3 tcp/2 - 55	ns	
NDVyvalid data iriput	I RLDV	Data			3 tcp/2 - 80	ns	At $f_{cp} = 6 \text{ MHz}$
RD↓→data hold time	t RHDX	RD, Data	_	0	_	ns	
RD↑→ALE↑time	t RHLH	RD, ALE	_	tcp/2 - 15	_	ns	
RD↑→address valid time	t RHAX	Address, RD	_	tcp/2 - 10	_	ns	
Valid address→CLK [↑] time	t avch	Address, CLK	_	tcp/2 - 17	_	ns	
RD↓→CLK↑time	t RLCH	RD, CLK	_	tcp/2 - 17	_	ns	
ALE↓→RD↓time	tllrl	RD, ALE		tcp/2 - 15	_	ns	

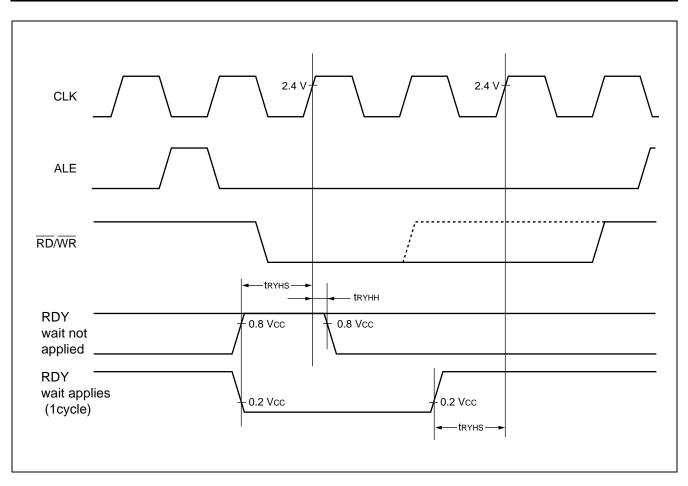
Note: tcp: Refer to "(1) Clock input timing".



(11) Bus write timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, T_A = 0 °C to + 70 °C)

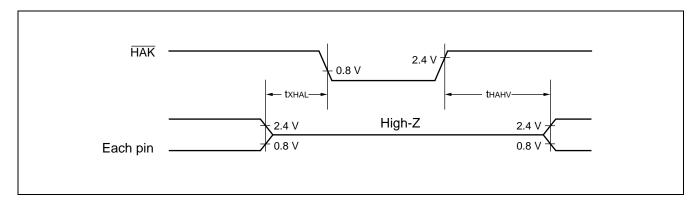
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Conditions	Min	Max	Ollit	Remarks
Valid address→WR↓ time	t avwl	Address, WR	_	tcp — 15	_	ns	
WR pulse width	twlwh	WRL, WRH	_	3 tcp/2 - 25	_	ns	At $f_{cp} = 24 \text{ MHz}$
Wix puise width	LVVLVVH	WKL, WKH	_	3 tcp/2 - 20	_	ns	At $f_{cp} = 12 \text{ MHz}$
Valid data output→WR↑ time	t dvwh	Data, WR	_	3 tcp/2 - 15	_	ns	
		WR, Data	_	10		ns	At f _{cp} = 24 MHz
WR↑→data hold time	twhox		_	20	_	ns	At f _{cp} = 12 MHz
		Data	_	30		ns	At fcp = 6 MHz
WR↑→address valid time	twhax	WR, Address	_	tcp/2 - 10	_	ns	
WR↑→ALE↑time	twhlh	WR, ALE	_	tcp/2 - 15		ns	
WR↓→CLK↑time	t wlch	WR, CLK	_	tcp/2 - 17	_	ns	


Note: tcp: Refer to "(1) Clock input timing".

(12) Ready input timing

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max	Ollic	iveillai ks
RDY set-up time	t RYHS	RDY	_	35	_	ns	
			_	70		ns	f _{cp} = 6 MHz
RDY hold time	t RYHH		_	0		ns	



(13) Hold timing

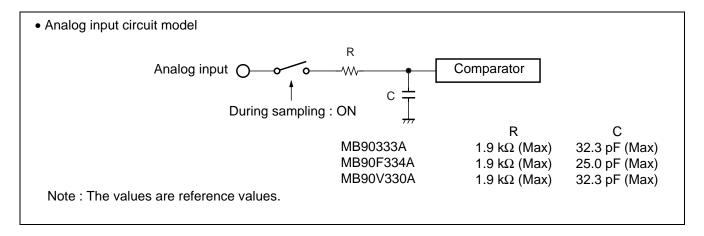
(Vcc = AVcc = 3.3 V
$$\pm$$
 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter	Symbol	Pin name	Conditions	Va	Unit	
				Min	Max	Oilit
$Pin floating \rightarrow \overline{HAK} \downarrow time$	t xhal	HAK		30	t cp	ns
$\overline{HAK} \downarrow \to pin \ valid \ time$	t hahv	HAK		t cp	2 tcp	ns

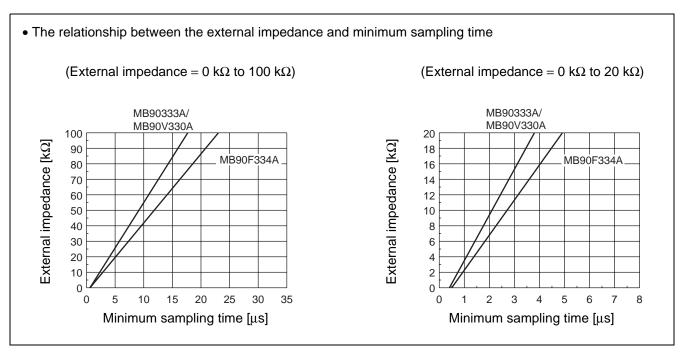
Notes: • It takes one cycle or more for \overline{HAK} to change after the HRQ pin is captured. • tcp: Refer to " (1) Clock input timing".

5. Electrical Characteristics for the A/D Converter

(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, TA = - 40 °C to + 85 °C)


Parameter	Sym-	Pin name	Value			Unit	Remarks
Parameter	bol	rin name	Min Typ		Max	Unit	Remarks
Resolution	_	_	_	_	10	bit	
Total error	_	_	_	_	± 3.0	LSB	
Nonlinear error	_	_	_	_	± 2.5	LSB	
Differential linear error	_	_	_	_	± 1.9	LSB	
Zero transition voltage	Vот	AN0 to AN15	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	mV	1 LSB = AVRH/1024
Full-scale transition voltage	V _{FST}	AN0 to AN15	AVRH – 3.5 LSB	AVRH – 1.5 LSB	AVRH + 0.5 LSB	mV	1 LSB = AVRI / 1024
Conversion time	_	_	_	176 tcp*1	_	ns	
Sampling time	_	_	_	64 tcp*1	_	ns	
Analog port input current	IAIN	AN0 to AN15	_	_	10	μА	
Analog input voltage	Vain	AN0 to AN15	0	_	AVRH	V	
Reference voltage	_	AVRH	2.7		AVcc	V	
Power supply current	lΑ	AVcc		1.4	3.5	mA	
	Іан	AVcc			5	μΑ	*2
Reference voltage	IR	AVRH	_	95	170	μΑ	
supplying current	Irн	AVRH			5	μΑ	*2
Interchannel disparity		AN0 to AN15			4	LSB	

^{*1 :} tcp : Refer to " 4. AC Characteristics (1) Clock input timing".


^{*2:} The current when the CPU is in stop mode and the A/D converter is not operating (For Vcc = AVcc = AVRH = 3.3 V).

Notes:

- About the external impedance of the analog input and its sampling time
 - A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

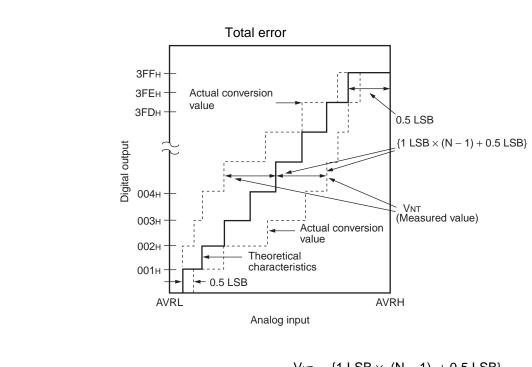
About errors

As AVRH becomes smaller, values of relative errors grow larger.

A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter.

Linearity error : The deviation of the straight line connecting the zero transition point


("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics.

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the

theoretical value.

Total error: The total error is defined as a difference between the actual value and the theoretical

value, which includes zero-transition error/full-scale transition error and linearity error.

Total error for digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$
 [LSB]

1 LSB (Theoretical value) =
$$\frac{AVR - AVss}{1024}$$
 [V]

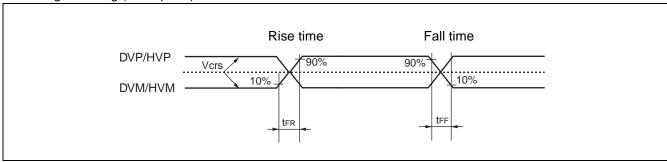
Vot (Theoretical value) = AVss + 0.5 LSB [V]

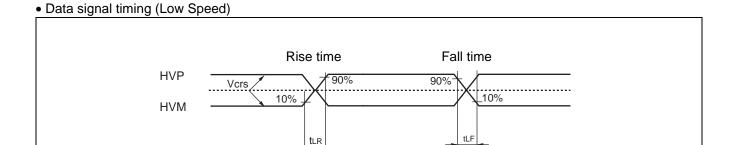
V_{FST} (Theoretical value) = AVR - 1.5 LSB [V]

 V_{NT} : Voltage at a transition of digital output from (N - 1) $_{H}$ to N_{H}

(Continued)

(Continued)

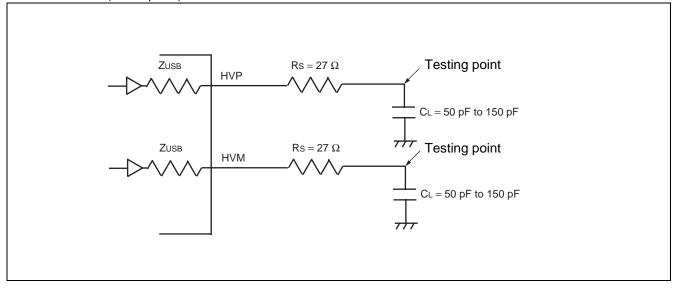

6. USB characteristics


(Vcc = AVcc = 3.3 V \pm 0.3 V, Vss = AVss = 0.0 V, Ta = 0 °C to + 70 °C)

Parameter		Sym- Value		Unit	Remarks	
		bol	Min	Max	Unit	Neillai NS
Input characteristics	Input High level voltage	ViH	2.0	_	V	
	Input Low level voltage	VIL	_	0.8	V	
	Differential input sensitivity	VDI	0.2	_	V	
	Differential common mode range	Vсм	0.8	2.5	V	
	Output High level voltage	Vон	2.8	3.6	V	Іон = – 200 μА
	Output Low level voltage	Vol	0.0	0.3	V	IoL = 2 mA
	Cross over voltage	Vcrs	1.3	2.0	V	
	Discribed and	t FR	4	20	ns	Full Speed
Output characteristics	Rise time	t LR	75	300	ns	Low Speed
	Fall time a	tff	4	20	ns	Full Speed
	Fall time	t LF	75	300	ns	Low Speed
	Diaina/fallina tima matahina	t RFM	90	111.11	%	(Tfr/Tff)
	Rising/falling time matching	t RLM	80	125	%	(Tlr/Tlf)
	Output impedance	ZDRV	28	44	Ω	Including Rs = 27 Ω
Series resistance		Rs	25	30	Ω	Recommended value = 27 Ω at using USB*

^{*:} Arrange the series resistance Rs values in order to set the impedance value within the output impedance ZSRV.

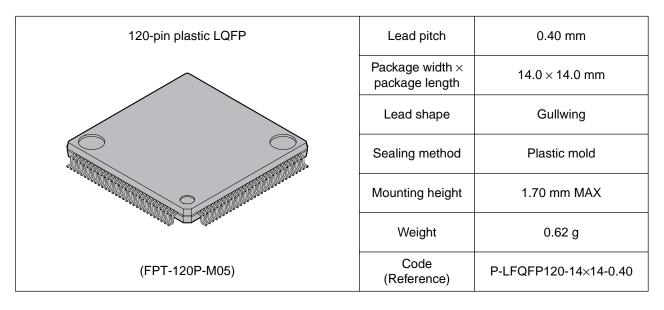
• Data signal timing (Full Speed)

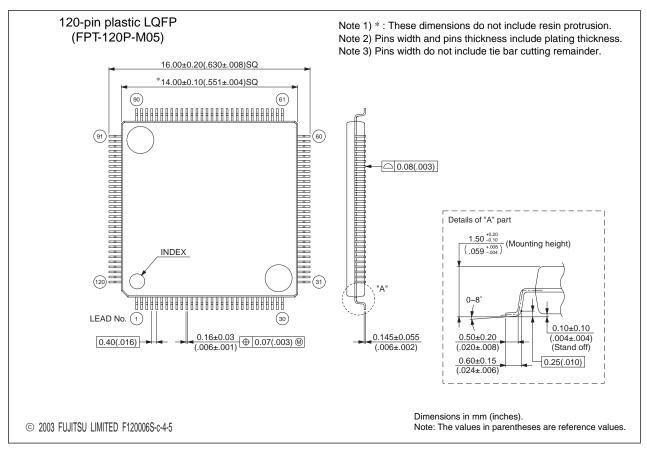


• Load condition (Full Speed)

• Load condition (Low Speed)

7. Flash memory write/erase characteristics

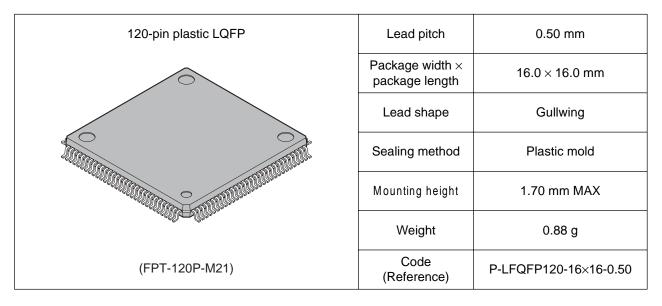

Parameter	Condition	Value			Unit	Remarks
Parameter	Min Typ Max		Offic	Remarks		
Sector erase time		_	1	15	s	Excludes 00 _H programming prior to erasure.
Chip erase time	$T_A = +25 ^{\circ}C$ $V_{CC} = 3.0 V$	_	9	_	s	Excludes 00 _H programming prior to erasure.
Word (16-bit width) programming time		_	16	3600	μs	Except for over head time of system level
Programming/erase cycle	_	10000	_	_	cycle	
Flash memory data retaining period	Average T _A = +85 °C	20	_	_	year	*

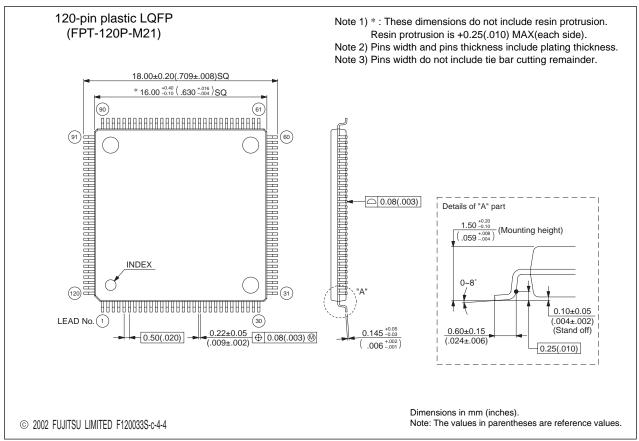

 $^{^*}$: This value comes from the technology qualification. (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 $^{\circ}$ C)

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F334APFF MB90333APFF	120-pin plastic LQFP (FPT-120P-M05)	
MB90F334APMC MB90333APMC	120-pin plastic LQFP (FPT-120P-M21)	
MB90V330A	299-pin ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSIONS





Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
3	■ INTERNAL PERIPHERAL FUNCTION (RESOURCE)	Changed as follows conform to USB2.0 Full Speed \rightarrow
4	■ PRODUCT LINEUP	correspond to USB Full Speed
64	■ PERIPHERAL RESOURCES 10. USB Function • Feature of USB function	

The vertical lines marked in the left side of the page show the changes

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.

151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.