

OPA202, OPA2202, OPA4202

SBOS812-OCTOBER 2017

OPAx202 Precision, Low-Noise, Heavy Capacitive Drive, 36-V Operational Amplifier

1 Features

Precision Super-β Performance:

Low Offset Voltage: 200 µV (Maximum)

Ultra-Low Drift: 1 μV/°C (Maximum)

• Excellent Efficiency:

Quiescent Current: 580 μA (Typical)

- Gain-Bandwidth Product: 1 MHz

Low Input Voltage Noise: 9 nV / √Hz

· Ease of Use, Design Simplicity:

 Heavy Capacitive Load Drive: 5-µs Settling Time With 25 nF

– Ultra-High Input Impedance: 3000 G Ω and 0.5 pF

 EMI Hardened, Thermal and Short-Circuit Protection

Stable Performance:

High CMRR and AOL: 126 dB (Minimum)

High PSRR: 126 dB (Minimum)

Low Bias Current: 2 nA (Maximum)

Low 0.1 Hz to 10 Hz Noise: 0.2 μVpp
Wide Supply Voltage: ±2.25 V to ±18 V

Replaces OP-07 and OP-27

2 Applications

Sensor Excitation

Coaxial, Power Plane, Ground Driver

Test and Measurement Equipment

Transducer Application

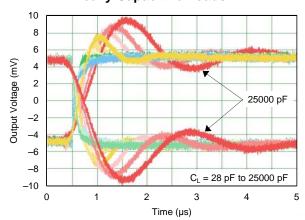
Temperature Measurement

· Precision Active Filters

Battery-Powered Instruments

3 Description

The OPAx202 series is built on Tl's industry-leading precision super- β complementary bipolar semiconductor process which offers ultra-low flicker noise, low offset voltage, low offset voltage temperature drift, and excellent linearity with common-mode and power supply variation. The series offers an exceptional combination of DC precision, heavy capacitive load drive, and protection against external EMI, thermal, and short-circuit events.


Supply current is 580 μ A at ±18 V. The OPAx202 series does not exhibit phase inversion, and the series is stable with high capacitive loads. The OPAx202 series is fully specified with a temperature range from -40° C to $+105^{\circ}$ C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	SOIC (8)	4.90 mm × 3.91 mm	
OPA202	SOT-23 (5)	2.90 mm × 1.60 mm	
	SC-70 (5)	2.00 mm × 1.25 mm	
OPA2202 (2)	SOIC (8)	4.90 mm × 3.91 mm	
OPA2202 (=)	VSSOP (8)	3.00 mm × 3.00 mm	
OPA4202 (2)	TSSOP (14)	5.00 mm × 4.40 mm	
UPA4202 (=)	SOIC (14)	8.65 mm × 3.91 mm	

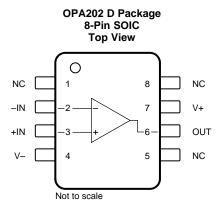
- (1) For all available packages, see the orderable addendum at the end of the data sheet.
- (2) This package is preview only.

OPAx202 Excels Even When Directly Driving Heavy Capacitive Loads

Table of Contents

1	Features 1		8.4 Device Functional Modes	25
2	Applications 1	9	Application and Implementation	26
3	Description 1		9.1 Application Information	26
4	Revision History2		9.2 Typical Application	26
5	Device Comparison Table	10	Power Supply Recommendations	27
6	Pin Configuration and Functions 4	11	Layout	28
7	Specifications 5		11.1 Layout Guidelines	28
•	7.1 Absolute Maximum Ratings 5		11.2 Layout Example	28
	7.2 ESD Ratings	12	Device and Documentation Support	29
	7.3 Recommended Operating Conditions		12.1 Device Support	29
	7.4 Thermal Information: OPA202		12.2 Documentation Support	29
	7.5 Electrical Characteristics		12.3 Related Links	30
	7.6 Typical Characteristics 8		12.4 Receiving Notification of Documentation Upd	ates 30
	7.7 Typical Characteristics		12.5 Community Resources	30
8	Detailed Description 16		12.6 Trademarks	30
-	8.1 Overview		12.7 Electrostatic Discharge Caution	30
	8.2 Functional Block Diagram		12.8 Glossary	30
	8.3 Feature Description	13	Mechanical, Packaging, and Orderable Information	30

4 Revision History


DATE	REVISION	NOTES
October 2017	*	Initial release.

5 Device Comparison Table

PRODUCT	FEATURES
OPA277	20-μV, 0.15-μV/°C, 1-MHz, 8-nV/√Hz, 36-V, Industrial Bipolar Op Amp
OPA325	150-μV, 9-nV/√Hz, 10-MHz, <i>True</i> Rail-to-Rail Input/Output, 5.5-V, Zero-Crossover Op Amp
OPA191	25-μV, 0.8-μV/°C, 140-μA, 2.5-MHz, Rail-to-Rail Input/Output, 36-V, e-Trim CMOS Op Amp
OPA145	150-μV, 5.5-MHz, 475-μA, 36-V JFET Input Industrial Op Amp
OPA827	36-V, 4-nV/√Hz, 150-μV, 22-MHz, 2-μV/°C, JFET Input Industrial Op Amp

Copyright © 2017, Texas Instruments Incorporated

6 Pin Configuration and Functions

NC - No internal connection.

Pin Functions: OPA202

PIN		1/0	DECODIDEION
NAME	NO.	1/0	DESCRIPTION
-IN	2	1	Inverting input
+IN	3	1	Noninverting input
NC	1, 5, 8	_	No internal connection (can be left floating)
OUT	6	0	Output
V-	4	_	Negative (lowest) power supply
V+	7	_	Positive (highest) power supply

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
Supply voltage,	Single-supply	Single-supply		40	
$V_S = (V+) - (V-)$	Dual-supply			±20	V
Signal input pins	Valtage	Common-mode ⁽²⁾	(V-) - 0.5	(V+) + 0.5	V
	Voltage	Differential (3)		±0.5	
	Current	Current		±10	mA
Output short current (4)			Conti	nuous	
Operating temperature, T _A			-40	125	
Junction temperature, T _J				125	°C
Storage temperature, T _{stg}			-65	150	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
\/		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2500	
V _{(E}	SD) Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _S Supply voltage, [(V+) – (V–)]	Single-supply	4.5	36	V	
	Supply voltage, [(v+) – (v–)]	Dual-supply	±2.25	±18	V
Specified temperature			-40	105	°C

7.4 Thermal Information: OPA202

		OPA202	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	136	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	74	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	62	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	19.7	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	54.8	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ Input terminals are diode-clamped to the power-supply rails. Input signals that swing more than 0.5 V beyond the supply rails must be current-limited to 10 mA or less.

⁽³⁾ Input terminals are anti-parallel diode-clamped to each other. Input signals that cause differential voltages of swing more than ± 0.5 V must be current-limited to 10 mA or less.

⁽⁴⁾ Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.5 Electrical Characteristics

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2, $R_L = 10$ k Ω connected to V_S / 2 (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFFSET \	VOLTAGE						
		V _S = ±18 V			±20	±200	
Vos	Input offset voltage	$V_S = \pm 18 \text{ V}, T_A = -40^\circ$	°C to 105°C			±250	μV
dV _{OS} /dT	Input offset voltage drift	$T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$			±0.5	±1	μV/°C
	Input offset voltage	V _S = ±2.25 V to ±18 V	/		±0.1	±0.5	
PSRR	versus power supply	$V_S = \pm 2.25 \text{ V to } \pm 18 \text{ V}$	/, T _A = -40°C to 105°C			±0.5	μV/V
INPUT BI	AS CURRENT	1 -		1			
	1				±0.25	±2	
I _B	Input bias current	$T_A = -40^{\circ}C \text{ to } 105^{\circ}C$				±2.1	nA
					±15	±150	
los	Input offset current	$T_A = -40^{\circ}C \text{ to } 105^{\circ}C$				±700	pA
NOISE		+				· ·	
					0.2		μV_{PP}
	Input voltage noise	f = 0.1 Hz to 10 Hz			0.03		μV_{RMS}
	e _n Input voltage noise density	f = 10 Hz			9.5		
e _n		f = 100 Hz			9.1		nV/√ Hz
		f = 1 kHz			9		
i _n	Input current noise	f = 1 kHz			0.076		pA/√ Hz
INPUT VO	DLTAGE RANGE						
V _{CM}	Common-mode voltage range			(V-) + 1.5		(V+) - 1.5	٧
Com			(V–) + 1.5 V < V _{CM} < (V+) – 1.5 V	114	131		
	Common-mode rejection	V _S = ±2.25 V	$(V-) + 1.5 V < V_{CM} < (V+) - 1.5 V,$ $T_A = -40$ °C to 105°C	114			15
CMRR	ratio		(V–) + 1.5 V < V _{CM} < (V+) – 1.5 V	126	148		dB
		V _S = ±18 V	$(V-) + 1.5 V < V_{CM} < (V+) - 1.5 V,$ $T_A = -40$ °C to 105°C	119			
INPUT CA	APACITANCE		,				
	Differential				10 3.3		MΩ pF
	Common-mode				3 0.5		TΩ pF
OPEN-LO	OP GAIN						
		V 0.05 V	$(V-) + 1.25 V \le V_O \le (V+) - 1.25 V$, $R_L = 10 k\Omega$	120	135		
		V _S = ±2.25 V	$(V-) + 1.25 \text{ V} \le V_O \le (V+) - 1.25 \text{ V},$ $R_L = 10 \text{ k}\Omega, T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$	119			
		V = +18 V	$(V-) + 1.25 \ V \le V_O \le (V+) - 1.25 \ V,$ $R_L = 10 \ k\Omega$	126	150		
	Open leep voltage gain	V _S = ±18 V	$(V-) + 1.25 \text{ V} \le V_O \le (V+) - 1.25 \text{ V},$ $R_L = 10 \text{ k}\Omega, T_A = -40^{\circ}\text{C to } 105^{\circ}\text{C}$	126			dР
A _{OL}	Open-loop voltage gain	V = +2.25 V	$(V-) + 1.25 \ V \le V_O \le (V+) - 1.25 \ V,$ $R_L = 2 \ k\Omega$	120	133		dB
		V _S = ±2.25 V	$(V-) + 1.25 \text{ V} \le V_O \le (V+) - 1.25 \text{ V},$ $R_L = 2 \text{ k}\Omega, T_A = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}$	119			
		V = +18 V	$(V-) + 1.25 \text{ V} \le V_0 \le (V+) - 1.25 \text{ V},$ $R_L = 2 \text{ k}\Omega$	126	150		
		V _S = ±18 V	$(V-) + 1.25 V \le V_O \le (V+) - 1.25 V$, $R_L = 2 k\Omega$, $T_A = -40$ °C to 105 °C	126			

Submit Documentation Feedback

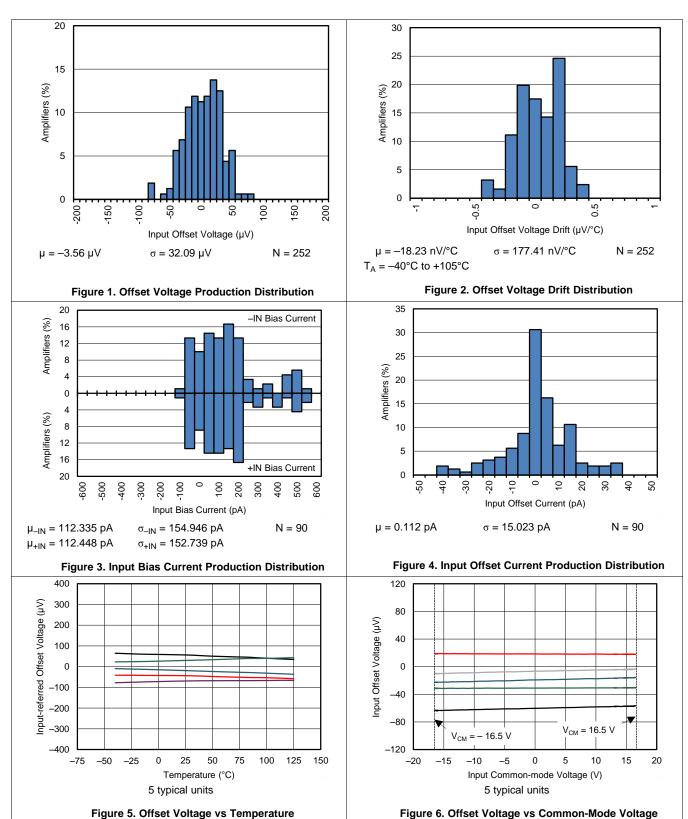
Copyright © 2017, Texas Instruments Incorporated

Electrical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, and $V_{OUT} = V_S$ / 2, $R_L = 10$ k Ω connected to V_S / 2 (unless otherwise noted)

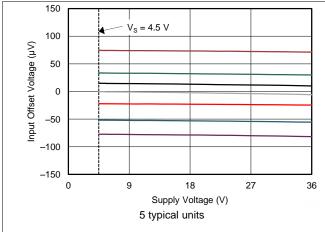
	PARAMETER		TEST CONDITIONS	MIN TY	P MAX	UNIT	
FREQUE	NCY RESPONSE						
GBW	Gain-bandwidth product				1	MHz	
SR	Slew rate	10-V Step, G = +1		0.3	35	V/µs	
4	Cattling time	To 0.1%, 10-V step	, G = +1	3	30		
t _S	Settling time	To 0.01%, 10-V step	o , G = +1	3	32	μs	
 	Overload recovery time	V _{IN} × gain > V _S			4	μs	
THD+N	Total harmonic distortion + noise	$V_{O} = 3 V_{RMS}, G = +1$	1, f = 1 kHz, $R_L = 10 \text{ k}\Omega$	0.0002	%		
OUTPUT							
			T _A = 25°C, No Load	65	50 750	\/	
			$T_A = 25^{\circ}C, R_L = 10 \text{ k}\Omega$	80	900	mV V	
	Voltage output swing		$T_A = 25$ °C, $R_L = 2 \text{ k}\Omega$	1.0	05 1.15		
	from rail		$T_A = -40$ °C to 105°C, $R_L = 10 \text{ k}\Omega$		1		
				$A_{OL} > 120 \text{ dB}, R_L = 10 \text{ k}\Omega$		1.05	V
			$A_{OL} > 120 \text{ dB}, R_L = 2 \text{ k}\Omega$		1.25		
	Short-circuit current	Sinking		3	35	mA	
I _{SC}	Short-circuit current	Sourcing		3	35	mA	
C_{LOAD}	Capacitive load drive			Figure 2	8		
Z _O	Open-loop output impedance	I _O = 0 mA, f = 1 MH:	z; see Figure 27	ţ	50	Ω	
POWER	SUPPLY						
Vs	Specified voltage range			4.5	36	V	
	Quiescent current per	I _O = 0		58	800		
IQ	amplifier	I _O = 0, T _A = -40°C to 105°C			900	μA	
TEMPER	ATURE						
	Specified range			-40	105	°C	
	Operating range			-40	125		

7.6 Typical Characteristics


Table 1. Table of Graphs

DESCRIPTION	FIGURE
Offset Voltage Production Distribution	Figure 1
Offset Voltage Drift Distribution From –40°C to +105°C	Figure 2
Input Bias Current Production Distribution	Figure 3
Input Offset Current Production Distribution	Figure 4
Offset Voltage vs Temperature	Figure 5
Offset Voltage vs Common-Mode Voltage	Figure 6
Offset Voltage vs Supply Voltage	Figure 7
Open-Loop Gain and Phase vs Frequency	Figure 8
Closed-Loop Gain vs Frequency	Figure 9
Input Bias Current vs Common-Mode Voltage	Figure 10
Input Bias Current and Offset vs Temperature	Figure 11
Output Voltage Swing vs Output Current	Figure 12
Output Voltage Swing vs Output Current (Sourcing)	Figure 13
Output Voltage Swing vs Output Current (Sinking)	Figure 14
CMRR and PSRR vs Frequency	Figure 15
CMRR vs Temperature	Figure 16
PSRR vs Temperature	Figure 17
0.1-Hz to 10-Hz Voltage Noise	Figure 18
Input Voltage Noise Spectral Density vs Frequency	Figure 19
THD+N Ratio vs Frequency	Figure 20
THD+N vs Output Amplitude	Figure 21
Quiescent Current vs Supply Voltage	Figure 22
Quiescent Current vs Temperature	Figure 23
Open-Loop Gain vs Temperature (10-kΩ)	Figure 24
Open-Loop Gain vs Output Voltage Swing to Supply	Figure 25, Figure 26
Open-Loop Output Impedance vs Frequency	Figure 27
Small-Signal Overshoot vs Capacitive Load (10-mV Step)	Figure 28
No Phase Reversal	Figure 29
Positive Overload Recovery	Figure 30
Negative Overload Recovery	Figure 31
Small-Signal Step Response (10-mV Step)	Figure 32, Figure 33
Large-Signal Step Response (10-V Step)	Figure 34, Figure 35
Settling Time (10-V Step)	Figure 36
Short-Circuit Current vs Temperature	Figure 37
Maximum Output Voltage vs Frequency	Figure 38
EMIRR vs Frequency	Figure 39

7.7 Typical Characteristics


at $T_A = 25^{\circ}C$, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

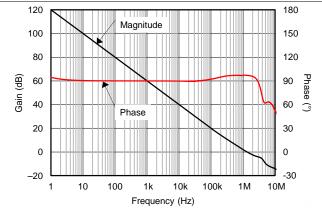
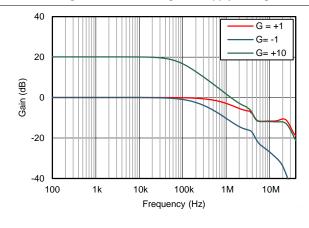



Figure 7. Offset Voltage vs Supply Voltage

Figure 8. Open-Loop Gain and Phase vs Frequency

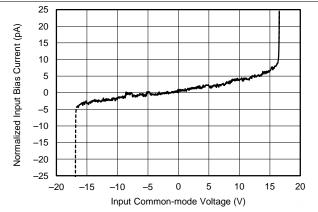
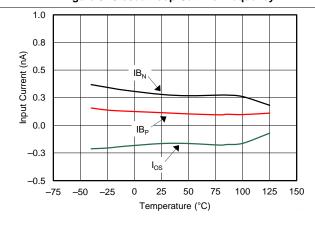
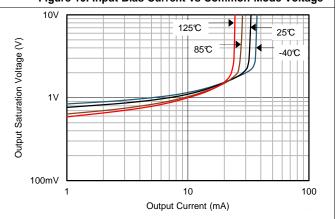



Figure 9. Closed-Loop Gain vs Frequency

Figure 10. Input Bias Current vs Common-Mode Voltage



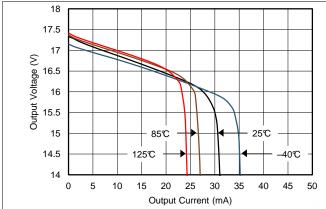

Figure 11. Input Bias Current and Offset vs Temperature

Figure 12. Output Voltage Swing vs Output Current

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

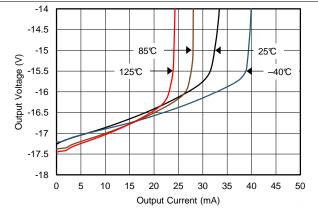
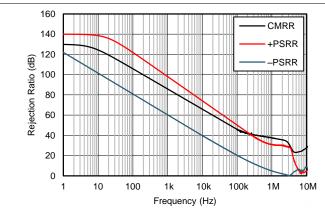



Figure 13. Output Voltage Swing vs Output Current (Sourcing)

Figure 14. Output Voltage Swing vs Output Current (Sinking)

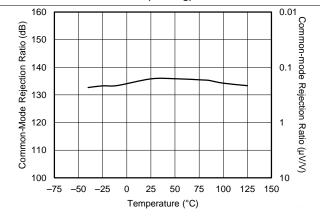


Figure 15. CMRR and PSRR vs Frequency

Figure 16. CMRR vs Temperature

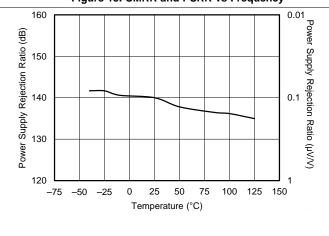


Figure 17. PSRR vs Temperature

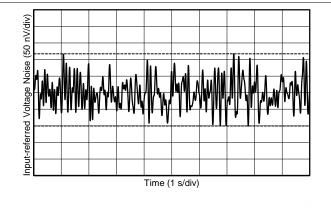
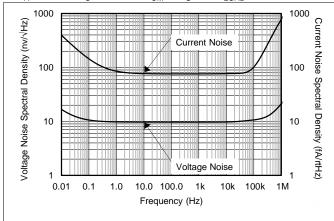



Figure 18. 0.1-Hz to 10-Hz Voltage Noise

Typical Characteristics (continued)


at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

= -1, 2-kΩ Load Total Harmonic Distortion + Noise (%) = -1, $600-\Omega$ Load G = -1, $10-k\Omega$ Load 0.1 -60 Harmonic G = +1, $2-k\Omega$ Load $G = +1,600-\Omega$ Load 10-kΩ Load 0.01 -80 0.001 0.0001 0.00001 -140 20 200 2k 20k Frequency (Hz) $V_{OUT} = 3.5 V_{RMS}$ BW = 90 kHz

Figure 19. Input Voltage Noise Spectral Density vs Frequency

Figure 20. THD+N Ratio vs Frequency

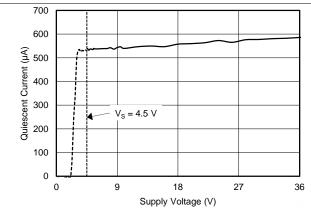
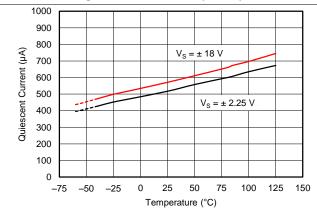



Figure 21. THD+N vs Output Amplitude

Figure 22. Quiescent Current vs Supply Voltage

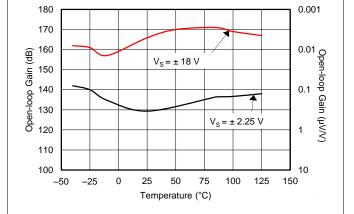


Figure 23. Quiescent Current vs Temperature

Figure 24. Open-Loop Gain vs Temperature (With 10-k Ω Load)

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2, and $C_L = 100$ pF (unless otherwise noted)

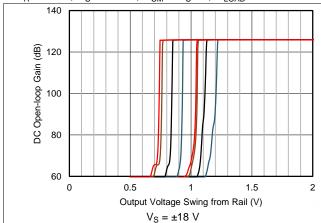


Figure 25. Open-Loop Gain vs Output Voltage Swing to Supply

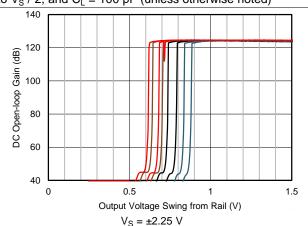


Figure 26. Open-Loop Gain vs Output Voltage Swing to Supply

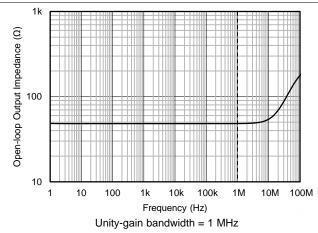


Figure 27. Open-Loop Output Impedance vs Frequency

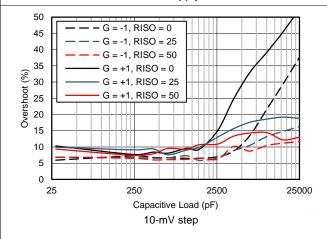
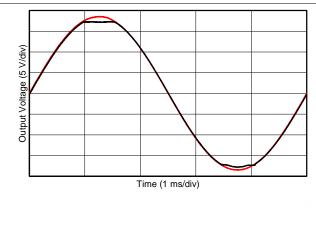
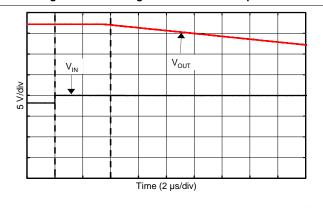
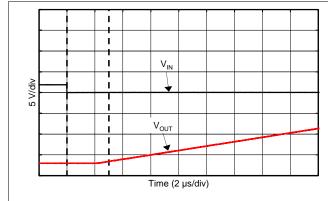
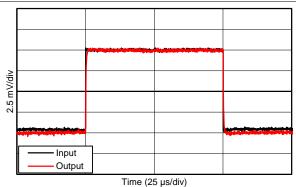



Figure 28. Small-Signal Overshoot vs Capacitive Load

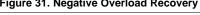



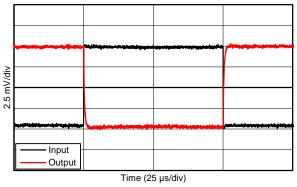

Figure 30. Positive Overload Recovery

STRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)





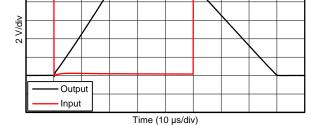

G = +1

Figure 32. Small-Signal Step Response (10-mV Step)

Figure 31. Negative Overload Recovery

G = -1

10-V step

Figure 33. Small-Signal Step Response (10-mV Step)

G = -1

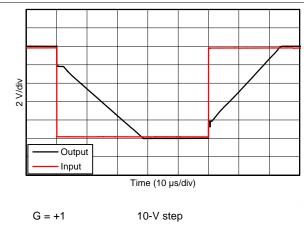
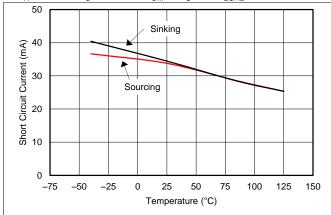


Figure 35. Large-Signal Step Response



10-V step

Figure 36. Settling Time

Typical Characteristics (continued)

at $T_A = 25$ °C, $V_S = \pm 18$ V, $V_{CM} = V_S / 2$, $R_{LOAD} = 10$ k Ω connected to $V_S / 2$, and $C_L = 100$ pF (unless otherwise noted)

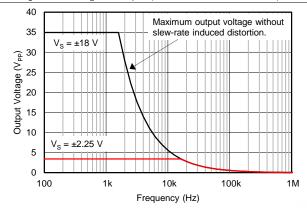


Figure 37. Short-Circuit Current vs Temperature

Figure 38. Maximum Output Voltage Amplitude vs Frequency

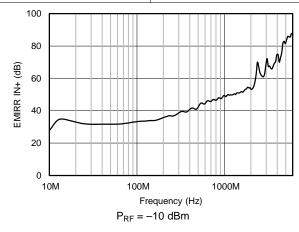
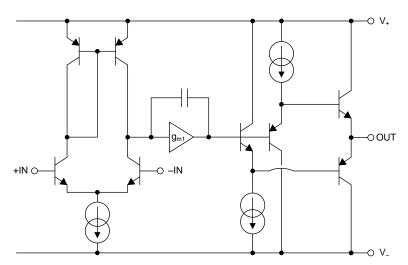


Figure 39. EMIRR vs Frequency

TEXAS INSTRUMENTS

8 Detailed Description


8.1 Overview

The OPAx202 family of operational amplifiers is a series of low-power super-beta bipolar junction transistor (super- β BJT) input amplifiers that feature superior drift performance and low input bias current. The low output impedance and heavy capacitive load drive abilities allow designers to interface to modern, fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references and drive power supply decoupling capacitors. The OPAx202 series achieves 1-MHz gain-bandwidth product and 0.35-V/ μ s slew rate and consumes only 580 μ A (typical) of quiescent current, making the series well-suited for low-power applications. These devices operate on a single 4.5-V to 36-V supply or dual ± 2.25 -V to ± 18 -V supplies.

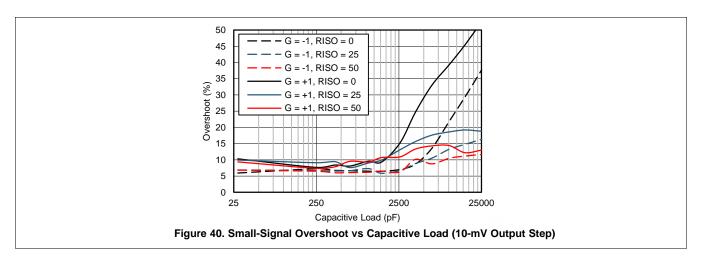
All versions are fully specified from -40°C to +105°C for use in the most challenging environments. The single-channel OPA202 is available in the 8-pin SOIC package.

The Functional Block Diagram shows the simplified diagram of the OPAx202.

8.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

8.3 Feature Description


8.3.1 Operating Voltage

The OPA202, OPA2202, and OPA4202 series of op amps can be used with single or dual supplies from an operating range of $V_S = 4.5 \text{ V}$ ($\pm 2.25 \text{ V}$) up to $V_S = 36 \text{ V}$ ($\pm 18 \text{ V}$). These devices do not require symmetrical supplies; they only require a minimum supply voltage of 4.5 V ($\pm 2.25 \text{ V}$). For V_S less than $\pm 3.5 \text{ V}$, the common-mode input range does not include midsupply. Supply voltages higher than 40 V can permanently damage the device; see *Absolute Maximum Ratings*. Key parameters are specified over the operating temperature range of $T_A = -40 \,^{\circ}\text{C}$ to $+105 \,^{\circ}\text{C}$. Key parameters that vary over the supply voltage, temperature range, or frequency are shown in *Typical Characteristics*.

8.3.2 Capacitive Load and Stability

The dynamic characteristics of the OPAx202 are optimized for commonly encountered gains, loads, and operating conditions. The OPAx202 features a patented output stage capable of driving large capacitive loads. In a unity-gain configuration, the series is capable of directly driving to 25 nF of pure capacitive load. Increasing the gain enhances the ability of the series to drive greater capacitive loads. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier is stable in operation.

The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. Add a small resistor (R_{OUT} equal to 50 Ω , for example) in series with the output to achieve isolation. Figure 40 shows the effects on small-signal overshoot for several capacitive loads and combinations of isolation resistance. See *Feedback Plots Define Op Amp AC Performance* for details of analysis techniques and application circuits, available for download from the TI website. By using isolation resistors, driving capacitive loads of 100 nF and beyond is possible.

For additional drive capability in unity-gain configurations, insert a small (10 Ω to 20 Ω) resistor (R_{ISO}) in series with the output to improve capacitive load drive, as shown in Figure 41. This resistor reduces ringing and maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the capacitive load, then a voltage divider is created, which introduces a gain error at the output and reduces the output swing. The error is proportional to the ratio R_{ISO} / R_L and is generally negligible at low output levels. A high capacitive load drive makes the OPAx202 well-suited for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 41 uses an isolation resistor (R_{ISO}) to stabilize the output of an op amp. R_{ISO} modifies the open-loop gain of the system for increased phase margin. Table 2 lists the results using the OPA202. For additional information on techniques to optimize and design using this circuit, TI Precision Design TIDU032 details complete design goals, simulation, and test results.

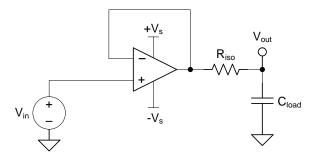


Figure 41. Extending Capacitive Load Drive with the OPAx202

Table 2. OPA202 Capacitive Load Drive Solution Using Isolation Resistor Measured Results

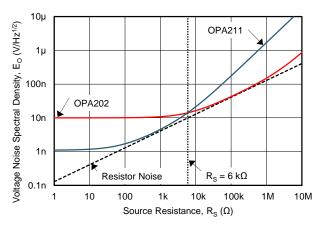
PARAMETER	MEASURED OVERSHOOT (%)											
CONFIGURATION		INVERTING			NONINVERTING							
C _{LOAD} (pF)	$R_{ISO} = 0 \Omega$	$R_{ISO} = 25 \Omega$	$R_{ISO} = 50 \Omega$	$R_{ISO} = 0 \Omega$	$R_{ISO} = 25 \Omega$	$R_{ISO} = 50 \Omega$						
31	8.6	6.6	6.6	9.3	9	9.4						
251	6.7	6.4	6.7	8.9	8.9	8.9						
421	6.4	6.3	6.6	8.8	8.8	8.7						
641	6.7	6.3	6.5	8.1	8.8	8.5						
1079	6.1	6.1	6.4	8.6	8.7	9.8						
1539	6.4	6.3	6.1	8.9	10.3	10.1						
2579	6.1	6.3	6.9	16	13.3	12						
3949	8.1	7.9	8.3	25	16	14.1						
6269	14.9	10.8	9.9	33.1	18.1	14.5						
10139	21.8	13.5	10.8	40.2	19.1	15.4						
15729	29.4	15.2	11.6	46.2	19.6	14.5						
25069	37	16.5	12.3	52.6	19.2	13.9						

For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, refer to TI Precision Design TIDU032, Capacitive Load Drive Solution using an Isolation Resistor.

8.3.3 Output Current Limit

The output current of the OPAx202 series is limited by internal circuitry to ±35 mA (sinking or sourcing) to protect the device if the output is accidentally shorted. This short-circuit current depends on temperature, as Figure 37 shows.

8.3.4 Noise Performance


Figure 42 shows the total circuit noise for varying source impedances with the operational amplifier in a unity-gain configuration (with no feedback resistor network and therefore no additional noise contributions). The OPAx202 and OPA211 are shown with total circuit noise calculated. The op amp itself contributes a voltage noise component and a current noise component. The voltage noise is commonly modeled as a time-varying component of the offset voltage. The current noise is modeled as the time-varying component of the input bias current and reacts with the source resistance to create a voltage component of noise. Therefore, the lowest noise op amp for a given application depends on the source impedance. For low source impedance, current noise is negligible and voltage noise dominates. The OPA202, OPA2202, and OPA4202 family has both low voltage noise and low current noise because of the super-beta bipolar junction transistor (super-β BJT) input of the op amp. As a result, the current noise contribution of the OPAx202 series is negligible for most practical source impedances, which makes the series the better choice for applications with high source impedance.

SBOS812-OCTOBER 2017

The equation in Figure 42 shows the calculation of the total circuit noise with these parameters:

- e_n = voltage noise
- I_n = current noise
- R_S = source impedance
- $k = Boltzmann's constant = 1.38 \times 10^{-23} J/K$
- T = temperature in degrees Kelvin (K)

For more details on calculating noise, see Basic Noise Calculations.

 $R_S = 6 \text{ k}\Omega$ is shown in Figure 42.

This is the source impedance above which the OPAx202 is a lower noise option than the OPA211.

Figure 42. Noise Performance of the OPA202 and OPA211 in Unity-Gain Buffer Configuration

8.3.5 Basic Noise Calculations

Low-noise circuit design requires careful analysis of all noise sources. External noise sources dominates in many cases; consider the effect of source resistance on overall op amp noise performance. Total noise of the circuit is the root-sum-square combination of all noise components.

The resistive portion of the source impedance produces thermal noise proportional to the square root of the resistance. Figure 42 shows this function. The source impedance is usually fixed; consequently, select the opamp and the feedback resistors to minimize the respective contributions to the total noise.

Figure 43 shows noninverting (A) and inverting (B) op amp circuit configurations with gain. In circuit configurations with gain, the feedback network resistors contribute noise. Typically, the current noise of the opamp reacts with the feedback resistors to create additional noise components. However, the extremely low current noise of the OPAx202 means that the current noise contribution is neglected.

The feedback resistor values are typically selected to make these noise sources negligible. Low impedance feedback resistors load the output of the amplifier. The equations for total noise are shown for both configurations.

Copyright © 2017, Texas Instruments Incorporated

(A) Noise in Noninverting Gain Configuration

GND

R₂

GND

R₈

Source

GND

Noise at the output is given as Eo, where

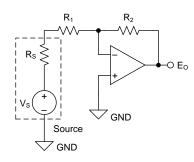
(1)
$$E_0 = \left(1 + \frac{R_2}{R_1}\right) \cdot \sqrt{(e_S)^2 + (e_N)^2 + \left(e_{R_1 \parallel R_2}\right)^2 + (i_N \cdot R_S)^2 + \left(i_N \cdot \left[\frac{R_1 \cdot R_2}{R_1 + R_2}\right]\right)^2} \quad [V_{RMS}]$$

(2)
$$e_S = \sqrt{4 \cdot k_B \cdot T(K) \cdot R_S} \quad \left[\frac{V}{\sqrt{Hz}} \right]$$

Thermal noise of R_S

(3)
$$e_{R_1 \parallel R_2} = \sqrt{4 \cdot k_B \cdot T(K) \cdot \left[\frac{R_1 \cdot R_2}{R_1 + R_2}\right]} \left[\frac{V}{\sqrt{Hz}}\right]$$
 Therma

Thermal noise of $R_1 \parallel R_2$


(4)
$$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{K} \right]$$

Boltzmann Constant

(5)
$$T(K) = 237.15 + T({}^{\circ}C)$$
 [K]

Temperature in kelvins

(B) Noise in Inverting Gain Configuration

Noise at the output is given as Eo, where

(6)
$$E_0 = \left(1 + \frac{R_2}{R_S + R_1}\right) \cdot \sqrt{(e_N)^2 + \left(e_{R_1 + R_S \parallel R_2}\right)^2 + \left(i_N \cdot \left[\frac{(R_S + R_1) \cdot R_2}{R_S + R_1 + R_2}\right]\right)^2} \quad [V_{RMS}]$$

$$(7) \quad e_{R_1+R_S\parallel R_2} = \sqrt{4\cdot k_B\cdot T(K)\cdot \left[\frac{(R_S+R_1)\cdot R_2}{R_S+R_1+R_2}\right]} \quad \left[\frac{V}{\sqrt{Hz}}\right] \quad \text{Thermal noise of } (R_1+R_S)\parallel R_2$$

(8)
$$k_B = 1.38065 \cdot 10^{-23} \left[\frac{J}{K} \right]$$

Boltzmann Constant

(9)
$$T(K) = 237.15 + T({}^{\circ}C)$$
 [K]

Temperature in kelvins

Copyright © 2017, Texas Instruments Incorporated

- (1) e_N is the voltage noise of the amplifier. For the OPAx202 series of operational amplifiers, $e_N = 9 \text{ nV}/\sqrt{\text{Hz}}$ at 1 kHz.
- (2) i_N is the current noise of the amplifier. For the OPAx202 series of operational amplifiers, $i_N = 76 \text{ fA}/\sqrt{\text{Hz}}$ at 1 kHz.
- (3) For additional resources on noise calculations, visit TI's Precision Labs Series.

Figure 43. Noise Calculation in Gain Configurations

8.3.6 Phase-Reversal Protection

The OPA202, OPA2202, and OPA4202 family has internal phase-reversal protection. Many FET- and bipolar-input op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input circuitry of the OPA202, OPA2202, and OPA4202 prevents phase reversal with excessive common-mode voltage; instead, the output limits into the appropriate rail (see Figure 29).

8.3.7 Thermal Protection

The OPAx202 series of op amps are capable of driving $2\text{-k}\Omega$ loads with power-supply voltages of up to ± 18 V over the specified temperature range. In a single-supply configuration, where the load is connected to the negative supply voltage, the minimum load resistance is 1.1 k Ω at a supply voltage of 36 V. For lower supply voltages (either single-supply or symmetrical supplies), a lower load resistance may be used as long as the output current does not exceed 35 mA; otherwise, the device short circuit current protection circuit may activate.

Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the OPA202, OPA2202, and OPA4202 devices improves heat dissipation. Printed-circuit-board (PCB) layout can help reduce a possible increase in junction temperature. Wide copper traces help dissipate the heat by acting as an additional heat sink. An increase in temperature is further minimized by soldering the devices directly to the PCB rather than using a socket.

Although the output current is limited by internal protection circuitry, accidental shorting of one or more output channels of a device can result in excessive heating. For instance, when an output is shorted to midsupply, the typical short-circuit current of 35 mA leads to an internal power dissipation of over 600 mW at a supply of ±18 V.

To prevent excessive heating, the OPAx202 series has an internal thermal shutdown circuit, which shuts down the device if the die temperature exceeds approximately 135°C. When this thermal shutdown circuit activates, a built-in hysteresis of 10°C ensures that the die temperature must drop to approximately 125°C before the device switches on again. Additional consideration must be given to the combination of maximum operating voltage, maximum operating temperature, load, and package type.

8.3.8 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

It is helpful to have a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event. See Figure 44 for an illustration of the ESD circuits contained in the OPAx202 series (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where they meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

An ESD event produces a short duration, high-voltage pulse that is transformed into a short duration, high-current pulse as the pulse discharges through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to protect the core from damage. The energy absorbed by the protection circuitry is then dissipated as heat.

When an ESD voltage develops across two or more of the amplifier device pins, current flows through one or more of the steering diodes. Depending on the path that the current takes, the absorption device may activate. The absorption device has a trigger, or threshold voltage, that is above the normal operating voltage of the OPAx202 but below the device breakdown voltage level. Once this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level.

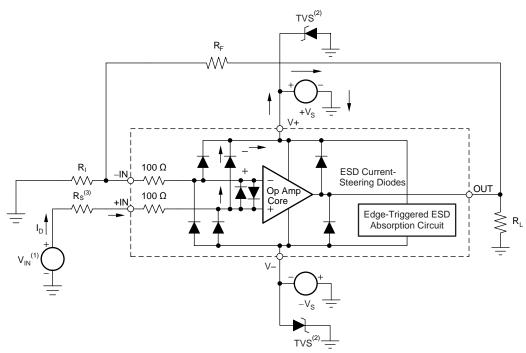
When the operational amplifier connects into a circuit (such as the one Figure 44 shows), the ESD protection components are intended to remain inactive and not become involved in the application circuit operation. However, circumstances may arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that some of the internal ESD protection circuits may be biased on and conduct current. Any such current flow occurs through steering diode paths and rarely involves the absorption device.

Figure 44 shows a specific example where the input voltage, V_{IN} , exceeds the positive supply voltage (+V_S) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If +V_S can sink the current, one of the upper input steering diodes conducts and directs current to +V_S. Excessively high current levels can flow with increasingly higher V_{IN} . As a result, the data sheet specifications recommend that applications limit the input current to 10 mA.

If the supply is not capable of sinking the current, V_{IN} may begin sourcing current to the operational amplifier, and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings.

Another common question involves what happens to the amplifier if an input signal is applied to the input while the power supplies $+V_S$ or $-V_S$ are at 0 V.

It depends on the supply characteristic while at 0 V, or at a level below the input signal amplitude. If the supplies appear as high impedance, then the operational amplifier supply current may be supplied by the input source through the current steering diodes. This state is not a normal bias condition; the amplifier most likely does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path.


If there is an uncertainty about the ability of the supply to absorb this current, external Zener diodes may be added to the supply pins as shown in Figure 44. The Zener voltage must be selected such that the diode does not turn on during normal operation.

However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin rises above the safe operating supply voltage level.

22

Product Folder Links: OPA202 OPA2202 OPA4202

Copyright © 2017, Texas Instruments Incorporated

- (1) $V_{IN} = +V_S + 500 \text{ mV}.$
- (2) TVS: $+V_{S(max)} > V_{TVSBR (Min)} > +V_{S}$
- (3) Suggested value is approximately 5 $k\Omega$ in overvoltage conditions.

Figure 44. Equivalent Internal ESD Circuitry in a Typical Application Circuit

TEXAS INSTRUMENTS

8.3.9 EMI Rejection

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification. An op amp that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR is performed in many ways, but this section provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the op amp. In general, only the noninverting input is tested for EMIRR for the following three reasons:

- Op amp input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
- The noninverting and inverting op amp inputs have symmetrical physical layouts and exhibit matching EMIRR performance
- EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can be isolated on a PCB. This isolation allows the RF signal to be applied directly to the noninverting input pin with no complex interactions from other components or connecting PCB traces.

High-frequency signals conducted or radiated to any pin of the operational amplifier may result in adverse effects, as the amplifier does not have sufficient loop gain to correct for signals with spectral content outside the bandwidth. Conducted or radiated EMI on inputs, power supply, or output may result in unexpected DC offsets, transient voltages, or other unknown behavior. Take care to properly shield and isolate sensitive analog nodes from noisy radio signals and digital clocks and interfaces. shows the effect of conducted EMI to the power supplies on the input offset voltage of OPAx202.

The EMIRR IN+ of the OPA202 is plotted versus frequency as shown in Figure 45. If available, any dual and quad op amp device versions have similar EMIRR IN+ performance. The OPA202 unity-gain bandwidth is 1 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the op amp bandwidth.

See EMI Rejection Ratio of Operational Amplifiers, available for download from www.ti.com.

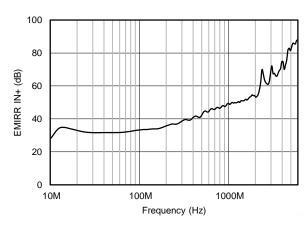


Figure 45. OPA202 EMIRR IN+

24

SBOS812-OCTOBER 2017

Table 3 lists the EMIRR IN+ values for the OPAx202 at particular frequencies commonly encountered in realworld applications. Table 3 lists applications that may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

FREQUENCY	APPLICATION OR ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications	41 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications	47 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	54 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	67 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	67 dB
5 GHz	802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)	81 dB

8.3.10 EMIRR +IN Test Configuration

Figure 46 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the op amp noninverting input pin using a transmission line. The op amp is configured in a unity-gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the op amp input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting DC offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.

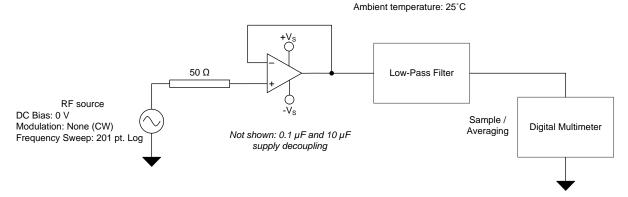


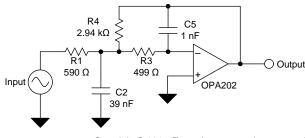
Figure 46. EMIRR +IN Test Configuration

8.4 Device Functional Modes

The OPAx202 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum power supply voltage for the OPAx202 is 36 V (±18 V).

Product Folder Links: OPA202 OPA2202 OPA4202

9 Application and Implementation


NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The OPA202, OPA2202, and OPA4202 are unity-gain stable operational amplifiers with low noise, low input bias current, and low input offset voltage. Applications with noisy or high-impedance power supplies require decoupling capacitors placed close to the device pins. In most cases, 0.1-µF capacitors are adequate. Designers can use the low output impedance and heavy capacitive load drive abilities to interface to modern, fast-acquisition, precision analog-to-digital converters (ADCs) and buffer precision voltage references and drive power supply decoupling capacitors.

9.2 Typical Application

Copyright © 2017, Texas Instruments Incorporated

Figure 47. 25-kHz Low-Pass Filter

9.2.1 Design Requirements

Low-pass filters are used in signal processing applications to reduce noise and prevent aliasing. The OPAx202 devices are ideally suited to construct high-speed, high-precision active filters. Figure 47 shows a second-order, low-pass filter commonly encountered in signal processing applications.

Use the following parameters for this design example:

- Gain = 5 V/V (inverting gain)
- Low-pass cutoff frequency = 25 kHz
- Second-order Chebyshev filter response with 3-dB gain peaking in the passband

9.2.2 Detailed Design Procedure

The infinite-gain multiple-feedback circuit for a low-pass network function is shown in Figure 47. Use Equation 1 to calculate the voltage transfer function.

$$\frac{\text{Output}}{\text{Input}}(s) = \frac{-1/R_1 R_3 C_2 C_5}{s^2 + (s/C_2)(1/R_1 + 1/R_3 + 1/R_4) + 1/R_3 R_4 C_2 C_5}$$
(1)

This circuit produces a signal inversion. For this circuit, the gain at DC and the low-pass cutoff frequency are calculated by Equation 2:

Gain =
$$\frac{R_4}{R_1}$$

 $f_C = \frac{1}{2\pi} \sqrt{(1/R_3 R_4 C_2 C_5)}$ (2)

Typical Application (continued)

Software tools are readily available to simplify filter design. WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH® Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

Available as a web based tool from the WEBENCH Design Center, WEBENCH Filter Designer allows you to design, optimize, and simulate complete multistage active filter solutions within minutes.

9.2.3 Application Curve

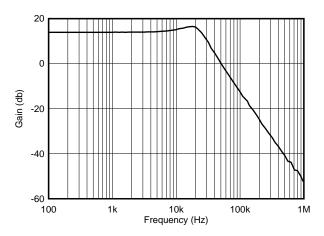


Figure 48. OPAx202 Second-Order, 25-kHz, Chebyshev, Low-Pass Filter

10 Power Supply Recommendations

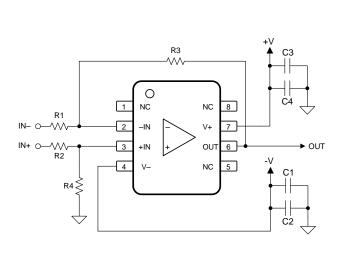
The OPAx202 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to +105°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are shown in the *Typical Characteristics*.

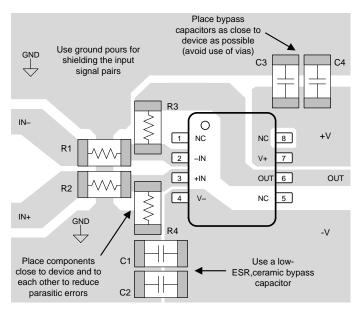
CAUTION

Supply voltages larger than 40 V can permanently damage the device; see the *Absolute Maximum Ratings*.

Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see *Layout*.

TEXAS INSTRUMENTS


11 Layout


11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and the op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close as possible to the device. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground
 planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically
 separate digital and analog grounds paying attention to the flow of the ground current. For more detailed
 information, see 'The PCB is a component of op amp design".
- To reduce parasitic coupling, run the input traces as far away as possible from the supply or output traces. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace.
- Place the external components as close as possible to the device. As shown in Figure 49, keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.
- For best performance, TI recommends cleaning the PCB following board assembly.
- Any precision integrated circuit may experience performance shifts due to moisture ingress into the
 plastic package. Following any aqueous PCB cleaning process, TI recommends baking the PCB
 assembly to remove moisture introduced into the device packaging during the cleaning process. A low
 temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.

11.2 Layout Example

Copyright © 2017, Texas Instruments Incorporated

Figure 49. Operational Amplifier Board Layout for Difference Amplifier Configuration

12 Device and Documentation Support

12.1 Device Support

12.1.1 Development Support

12.1.1.1 TINA-TI™ (Free Software Download)

TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic guick-start tool.

NOTE

These files require that either the TINA software (from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

12.1.1.2 WEBENCH Filter Designer Tool

WEBENCH® Filter Designer is a simple, powerful, and easy-to-use active filter design program. The WEBENCH Filter Designer lets you create optimized filter designs using a selection of TI operational amplifiers and passive components from TI's vendor partners.

12.1.1.3 TI Precision Designs

TI Precision Designs are available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

- The PCB is a component of op amp design (SLYT166)
- Compensate Transimpedance Amplifiers Intuitively (SBOA055)
- Operational amplifier gain stability, Part 3: AC gain-error analysis (SLYT383)
- Operational amplifier gain stability, Part 2: DC gain-error analysis (SLYT374)
- Using infinite-gain, MFB filter topology in fully differential active filters (SLYT343)
- Op Amp Performance Analysis (SBOA054)
- Single-Supply Operation of Operational Amplifiers (SBOA059)
- Tuning in Amplifiers (SBOA067)
- Shelf-Life Evaluation of Lead-Free Component Finishes (SZZA046)
- Feedback Plots Define Op Amp AC Performance (SBOA015)
- EMI Rejection Ratio of Operational Amplifiers (SBOA128)

ISTRUMENTS

12.3 Related Links

Table 4 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 4. Related Links

PARTS	PRODUCT FOLDER	ORDER NOW	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
OPA202	Click here	Click here	Click here	Click here	Click here
OPA2202	Click here	Click here	Click here	Click here	Click here
OPA4202	Click here	Click here	Click here	Click here	Click here

12.4 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.5 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.6 Trademarks

E2E is a trademark of Texas Instruments.

TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.

WEBENCH is a registered trademark of Texas Instruments.

Bluetooth is a registered trademark of Bluetooth SIG, Inc.

TINA, DesignSoft are trademarks of DesignSoft, Inc.

12.7 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

20-Oct-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
OPA202ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	OPA202	Samples
OPA202IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 105	OPA202	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

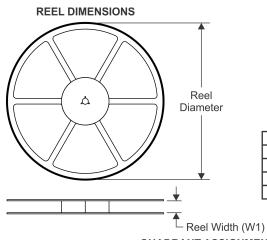
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

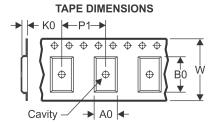
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

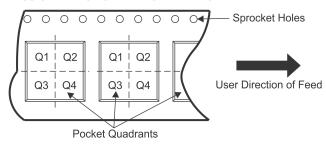
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



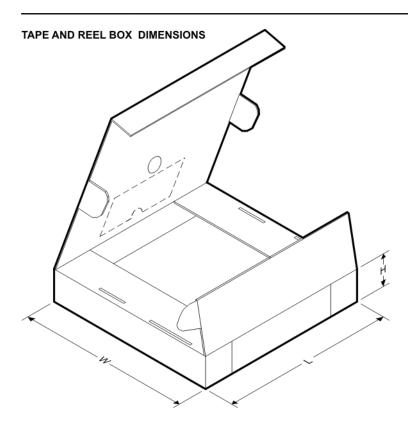

20-Oct-2017

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Oct-2017


TAPE AND REEL INFORMATION

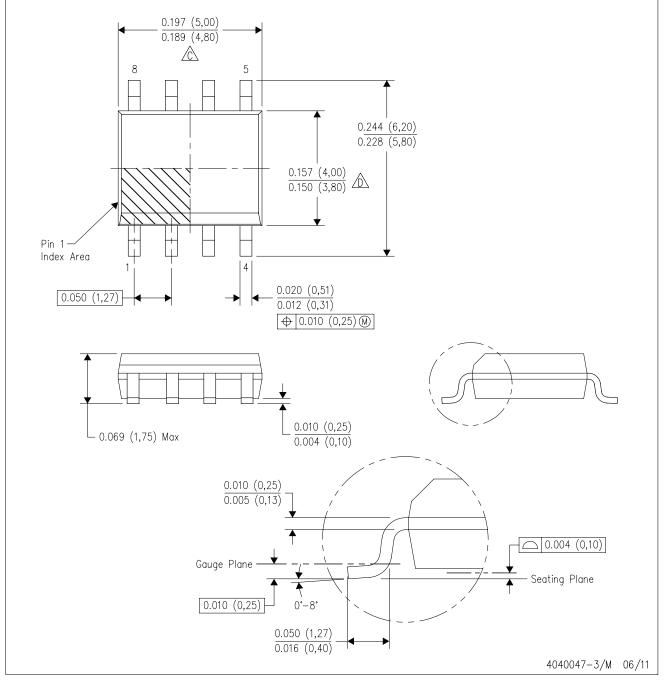
		Dimension designed to accommodate the component width
E	30	Dimension designed to accommodate the component length
K	(0	Dimension designed to accommodate the component thickness
	N	Overall width of the carrier tape
F	21	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPA202IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 4-Oct-2017

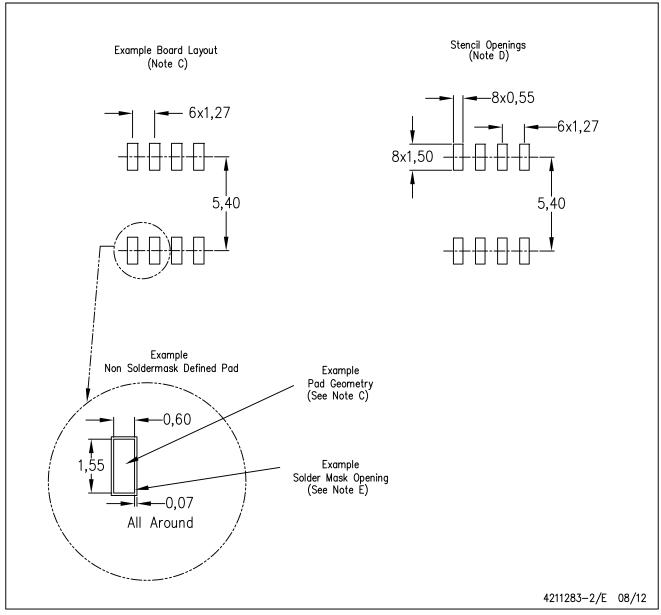


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPA202IDR	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.