

MB39C603

Phase Dimmable PSR LED Driver IC for LED Lighting

Description

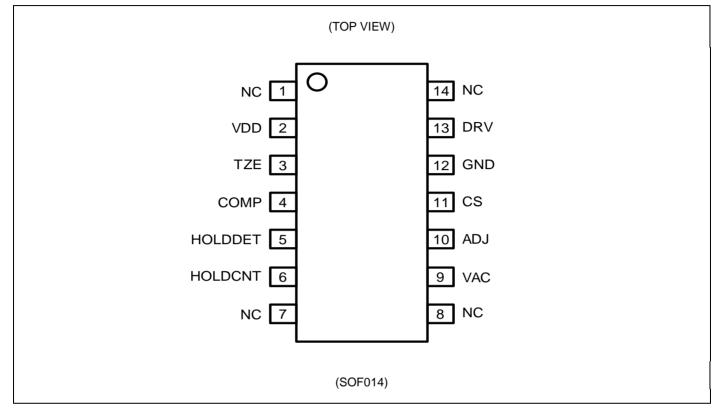
MB39C603 is a Primary Side Regulation (PSR) LED driver IC for LED lighting. Using the information of the primary peak current and the transformer-energy-zero time, it is able to deliver a well regulated current to the secondary side without using an opto-coupler in an isolated flyback topology. Operating in critical conduction mode, a smaller transformer is required. In addition, MB39C603 has a built-in phase dimmable circuit and can constitute flicker less lighting systems for phase dimming with low-component count. It is most suitable for the general lighting applications, for example replacement of commercial and residential incandescent lamps.

Features

- ■PSR topology in an isolated flyback circuit
- ■High power factor (>0.9 : without dimmer) in Single Conversion
- High efficiency (>80 % : without dimmer) and low EMI by detecting transformer zero energy
- Built-in phase dimmable circuit
 Dimming curve based on conduction angle
 Dimmer hold current control
- Highly reliable protection functions
 Under voltage lock out (UVLO)
 Over voltage protection (OVP)
 Over current protection (OCP)
 - □ Over temperature protection (OTP)
- Switching frequency setting : 30 kHz to 133 kHz
- ■Input voltage range VDD : 9 V to 20 V
- ■Input voltage for LED lighting applications : AC110V_{RMS}
- ■Output power range for LED lighting applications : 15 W to 50 W
- ■Package : SOP-14 (5.30 mm × 10.15 mm × 2.25 mm [Max])

Applications

- Phase dimmable (Leading/Trailing) LED lighting
- ■LED lighting

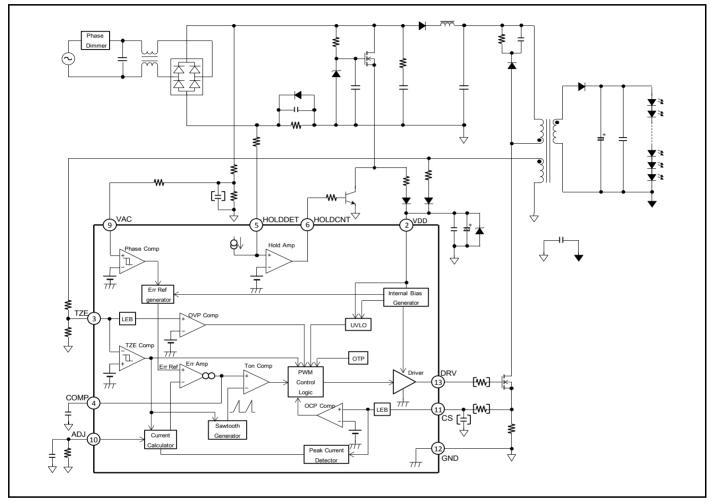

Contents

Descr	iption		1
Featu	res		1
Applie	cations		1
1.	Pin Assignr	nent	3
2.	Pin Descrip	tions	3
3.	•	am	
4.	Absolute Ma	aximum Ratings	5
5.	Recommen	ded Operating Conditions	6
6.	Electrical C	haracteristics	7
7.	Standard C	haracteristics	9
8.	Function Ex	cplanations1	0
8.1	LED Curren	t Control by PSR(Primary Side Regulation) 1	0
8.2	PFC (Power	r Factor Correction) Function 1	1
8.3	Phase Dimn	ning Function 1	1
8.4	HOLD Curre	ent Control Function 1	2
8.5	Power-On S	Sequence 1	3
8.6	Power-Off S	Sequence 1	4
8.7	IP_PEAK Dete	ction Function 1	4
8.8		e Switching Function 1	
8.9	Protection F	unctions1	5
9.	I/O Pin Equi	ivalent Circuit Diagram1	6
10.	Application	Examples1	8
10.1	17W Isolate	d and Phase Dimming Application 1	8
11.	Usage Prec	autions2	6
12.	RoHS Comp	pliance Information	6
13.	Ordering Int	formation	6
14.	Package Di	mensions 2	7
15.	Major Chan	ges 2	8
Docu	ment History	/	9
Sales	, Solutions, a	and Legal Information	0

1. Pin Assignment

Figure 1-1 Pin Assignment

2. Pin Descriptions


Table 2-1 Pin Descriptions

Pin No.	Pin Name	I/O	Description	
1	NC	-	Not used. Leave this pin open.	
2	VDD	-	Power supply pin.	
3	TZE	Ι	Transformer Zero Energy detecting pin.	
4	COMP	0	External Capacitor connection pin for the compensation.	
5	HOLDDET	I	Phase Dimmer current detecting pin.	
6	HOLDCNT	0	External BIP base current control pin.	
7	NC	-	Not used. Leave this pin open.	
8	NC	-	Not used. Leave this pin open.	
9	VAC	Ι	Phase Dimmer conduction angle detecting pin.	
10	ADJ	0	Pin for adjusting the switch-on timing.	
11	CS	I	Pin for detecting peak current of transformer primary winding.	
12	GND	-	Ground pin.	
13	DRV	0	External MOSFET gate connection pin.	
14	NC	-	Not used. Leave this pin open.	

3. Block Diagram

Figure 3-1 Block Diagram (Isolated Flyback Application)

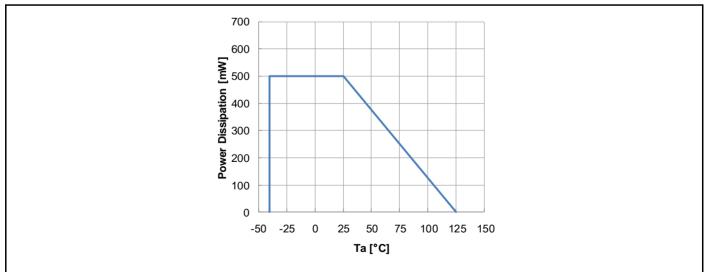

4. Absolute Maximum Ratings

Table 4-1 Absolute Maximum Ratings

Deveryor	Cumhal	Condition	Rat	ting	Unit
Parameter	Symbol	Condition	Min	Min Max	
Power Supply Voltage	V _{VDD}	VDD pin	-0.3	+25	V
	V _{CS}	CS pin	-0.3	+6.0	V
Innut Valtana	V _{TZE}	TZE pin	-0.3	+6.0	V
Input Voltage	VHOLDDET	HOLDDET pin	-0.3	+6.0	V
	Vvac	VAC pin	-0.3	+6.0	V
Output Maltage	V _{DRV}	DRV pin	-0.3	+25	V
Output Voltage	VHOLDCNT	HOLDCNT pin	-0.3	+6.0	V
	ladj	ADJ pin	-1	-	mA
Output Current	IDRV	DRV pin DC level	-50	+50	mA
	HOLDCNT	HOLDCNT pin	-400	-	μA
Power Dissipation	PD	Ta ≤ +25°C	-	500(*1)	mW
Storage Temperature	T _{STG}	-		+125	°C
ESD Voltage 1	Vesdh	Human Body Model		+2000	V
ESD Voltage 2	Vesdc	Charged Device Model	-1000	+1000	V

*1: The value when using two layers PCB. Reference: θja (wind speed 0m/s): 200°C/W

Figure 4-1 Power Dissipation

WARNING:

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

5. Recommended Operating Conditions

Table 5-1 Recommended Operating Conditions

Deremeter	Symbol	Condition		l lm it		
Parameter	Symbol	Condition	Min	Тур	Max	Unit
VDD pin Input Voltage	Vvdd	VDD pin	9	-	20	V
VAC pin Resistance	Rvac	VAC pin	-	510	-	kΩ
TZE pin Resistance	RTZE	TZE pin	50	-	200	kΩ
ADJ pin Resistance	Radj	ADJ pin	9.3	-	185.5	kΩ
COMP pin Capacitance	Ссомр	COMP pin	-	4.7	-	μF
VDD pin Capacitance	Свр	Set between VDD pin and GND pin	-	100	-	μF
Operating Junction Temperature	Tj	-	-40	-	+125	°C

WARNING:

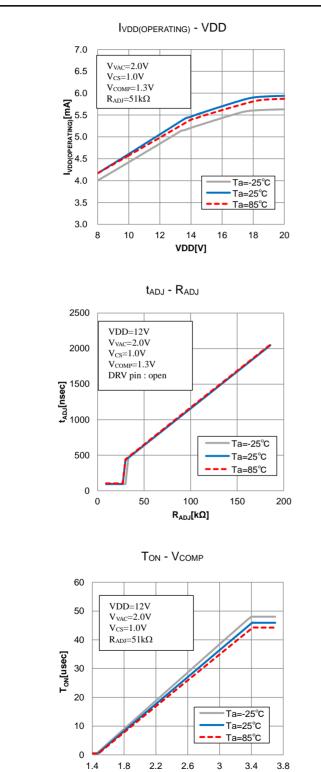
- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
- 2. Any use of semiconductor devices will be under their recommended operating condition.
- 3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
- 4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

6. Electrical Characteristics

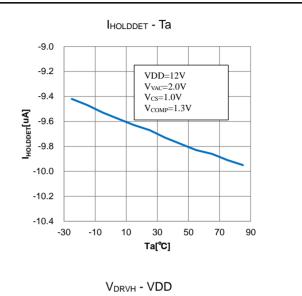
Table 6-1 Electrical Characteristics

(Ta = +25°C, V_{VDD} = 12V)

Parameter		Symbol	Din	Condition	Value			Unit
Para			Pin	Condition	Min	Тур	Max	Unit
	UVLO Turn-on threshold voltage	Vтн	VDD	-	9.6	10.2	10.8	V
UVLO	UVLO Turn-off threshold voltage	Vtl	VDD	-	7.55	8	8.5	V
	Startup current	Istart	VDD	V _{VDD} = 7V	-	65	160	μA
	Zero energy threshold voltage	Vtzetl	TZE	TZE = "H" to "L"	-	20	-	mV
	Zero energy threshold voltage	Vtzeth	TZE	TZE = "L" to "H"	0.6	0.7	0.8	V
TRANSFORMER ZERO ENERGY	TZE clamp voltage	VTZECLAMP	TZE	I _{TZE} = -10 μΑ	-200	-160	-100	mV
DETECTION	OVP threshold voltage	V _{TZEOVP}	TZE	-	4.15	4.3	4.45	V
	OVP blanking time	tovpblank	TZE	-	0.6	1	1.7	μs
	TZE input current	Itze	TZE	V _{TZE} = 5V	-1	-	+1	μA
COMPENSATION	Source current	lso	COM P	V _{COMP} = 2V, V _{CS} = 0V, Conduction Angle = 165deg	-	-27	-	μA
	Trans conductance	gm	COM P	$V_{COMP} = 2.5V, V_{CS} = 1V$	-	96	-	μΑ/ V
	ADJ voltage	V_{ADJ}	ADJ	-	1.81	1.85	1.89	V
ADJUSTMENT	ADJ source current	I _{ADJ}	ADJ	V _{ADJ} = 0V	-650	-450	-250	μA
ADJUSTMENT	ADJ time	tadj	TZE DRV	$ \begin{array}{l} t_{ADJ} \left(R_{ADJ} = 51 \ k\Omega \right) \\ t_{ADJ} \left(R_{ADJ} = 9.1 \ k\Omega \right) \end{array} $	490	550	610	ns
	Minimum switching period	Tsw	TZE DRV	-	6.75	7.5	8.25	μs
	OCP threshold voltage	Vocpth	CS	-	1.9	2	2.1	V
CURRENT SENSE	OCP delay time	tocpdly	CS	-	-	400	500	ns
	CS input current	Ics	CS	V _{CS} = 5V	-1	-	+1	μA


 $(Ta = +25^{\circ}C, V_{VDD} = 12V)$

					Value			
Par	rameter	Symbol	Pin	Condition	Min	Тур	Max	Unit
	DRV high voltage	Vdrvh	DRV	VDD = 18V, I _{DRV} = -30 mA	7.6	9.4	-	V
	DRV low voltage	Vdrvl	DRV	VDD = 18V, I _{DRV} = 30 mA	-	130	260	mV
	Rise time	trise	DRV	VDD = 18V, CLOAD = 1 nF	-	94	-	ns
DRV	Fall time	t FALL	DRV	VDD = 18V, CLOAD = 1 nF	-	16	-	ns
DRV	Minimum on time	tonmin	DRV	TZE trigger	300	500	700	ns
	Maximum on time	tonmax	DRV	-	27	44	60	μs
	Minimum off time	toffmin	DRV	-	1	1.5	1.93	μs
	Maximum off time	toffmax	DRV	TZE = GND	37	46	55	μs
OTP	OTP threshold	T _{OTP}	-	Tj, temperature rising	-	150	-	°C
OTF	OTP hysteresis	Totphys	-	Tj, temperature falling, degrees below Totp	-	25	-	°C
DIMMER	Phase Comp threshold voltage	Vphth1	VAC	VAC = "L" to "H"	0.9	1.0	1.1	V
CONDUCTION ANGLE	Phase Comp threshold voltage	Vphth2	VAC	VAC = "H" to "L"	0.45	0.5	0.55	V
DETECTION	Phase Comp hysteresis	VPHHYS	VAC	-	-	0.5	-	V
	HOLDDET input current	IHOLDDET	HOLD DET	-	- 10.09	-9.7	-9.32	μA
	Hold Amp threshold voltage	V _{HOLDTH}	HOLD CNT	-	375	400	425	mV
TRIAC HOLD CURRENT CONTROL	HOLDCNT Maximum output voltage	Vситон	HOLD CNT	$\label{eq:holddet} \begin{array}{l} V_{HOLDDET} = 0.6V,\\ R_{BASE} = 16\ k\Omega,\\ V_{BASE} = 0.7V \end{array}$	3.4	-	-	V
CONTROL	HOLDČNT Minimum output voltage	VCNTOL	HOLD CNT	$V_{\text{HOLDDET}} = 0.2V,$ $R_{\text{BASE}} = 16 \text{ k}\Omega,$ $V_{\text{BASE}} = 0.7V$			0.8	V
	HOLDCNT source current	I _{CNTSO}	HOLD CNT	$V_{\text{HOLDDET}} = 0.6V,$ $R_{\text{BASE}} = 16 \text{ k}\Omega,$ $V_{\text{BASE}} = 0.7V$	-250	-200	-167	μA
POWER	Power supply	IVDD(STATIC)	VDD	V _{VDD} = 20V, V _{TZE} = 1V	-	3.3	4	mA
SUPPLY CURRENT	current	IVDD(OPERATING)	VDD	V_{VDD} = 20V, Qg = 20 nC, f _{SW} = 133 kHz	-	5.9	-	mA



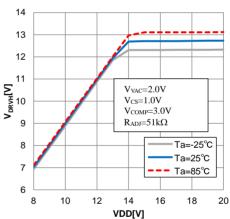

7. Standard Characteristics

Figure 7-1 Standard Characteristics

V_{COMP}[V]

8. Function Explanations

8.1 LED Current Control by PSR(Primary Side Regulation)

MB39C603 regulates the average LED current (I_{LED}) by feeding back the information based on Primary Winding peak current (I_{P_PEAK}), Secondary Winding energy discharge time (T_{DIS}) and switching period (T_{SW}). Figure 8-1 shows the operating waveform in steady state. I_P is Primary Winding current and I_S is Secondary Winding current. I_{LED} as an average current of the Secondary Winding is described by the following equation.

$$I_{LED} = \frac{1}{2} \times I_{S_PEAK} \times \frac{T_{DIS}}{T_{SW}}$$

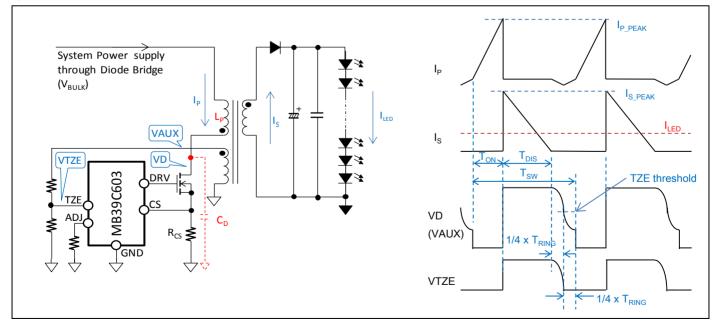
Using IP_PEAK and the transformer Secondary to Primary turns ratio (NP/Ns), Secondary Winding peak current (Is_PEAK) is described by the following equation.

$$I_{S_PEAK} = \frac{N_P}{N_S} \times I_{P_PEAK}$$

Therefore,

$$I_{LED} = \frac{1}{2} \times \frac{N_P}{N_S} \times I_{P_PEAK} \times \frac{T_{DIS}}{T_{SW}}$$

MB39C603 detects T_{DIS} by monitoring the TZE pin and I_{P_PEAK} by monitoring the CS pin and then controls I_{LED} . An internal Err Amp sinks gm current proportional to I_{P_PEAK} from the COMP pin during T_{DIS} period. In steady state, since the average of the gm current is equal to internal reference current (I_{SO}), the voltage on the COMP pin (V_{COMP}) is nearly constant.


$$I_{P_PEAK} \times R_{CS} \times gm \times T_{DIS} = I_{SO} \times T_{SW}$$

In above equation, gm is transconductance of the Err Amp and Rcs is a sense resistance.

Eventually, ILED can be calculated by the following equation.

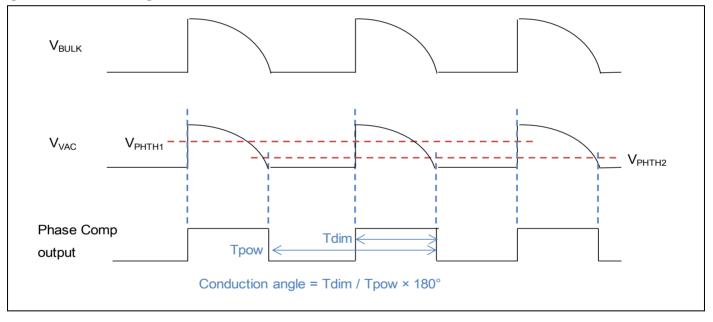
$$I_{LED} = \frac{1}{2} \times \frac{N_P}{N_S} \times \frac{I_{SO}}{gm} \times \frac{1}{R_{CS}}$$

Figure 8-1 LED Current Control Waveform

8.2 PFC (Power Factor Correction) Function

Switching on time (T_{ON}) is generated by comparing V_{COMP} with an internal sawtooth waveform (refer to Figure 3-1). Since V_{COMP} is slow varying with connecting an external capacitor (C_{COMP}) from the COMP pin to the GND pin, T_{ON} is nearly constant within an AC line cycle. In this state, $I_{P_{PEAK}}$ is nearly proportional to the AC line voltage (V_{BULK}). It can bring the phase differences between the input voltage and the input current close to zero, so that high Power Factor can be achieved.

8.3 Phase Dimming Function


MB39C603 is compatible with both leading-edge dimmers (TRIAC dimming) and trailing-edge dimmers.

To realize the phase dimming, this device has two functions, dimmer conduction angle detect function for LED current control and TRIAC dimmer hold current control function.

Figure 8-2 shows how MB39C603 detects the conduction angle. V_{BULK} is scaled via a resistor divider connected to the VAC pin. The conduction angle is detected by monitoring the voltage on the VAC pin (V_{VAC}).

MB39C603 measures a half of power cycle period (Tpow) as duration between negative crossings of V_{VAC} and a Phase Comp threshold voltage (V_{PHTH2}). Dimmer-ON period (Tdim) is measured as duration between a positive crossing of V_{VAC} and another Phase Comp threshold voltage (V_{PHTH1}) and the following negative crossing. Conduction angle is defined as Tdim/Tpow × 180°.

Figure 8-2 Conduction Angle Detection Waveform

MB39C603 regulates LED current by changing a reference of Err Amp as a function of the conduction angle. Table 8-1 shows I_{LED} dimming ratio based on the conduction angle.

In addition, the initial ILED ratio in Power–On state is 5%.

Conduction Angle	ILED Ratio [%]
θ < 45deg	5
45deg ≤ θ < 90deg	(25/45) × θ -20
90deg ≤ θ < 135deg	(70/45) × θ -110
135deg ≤ θ	100

8.4 HOLD Current Control Function

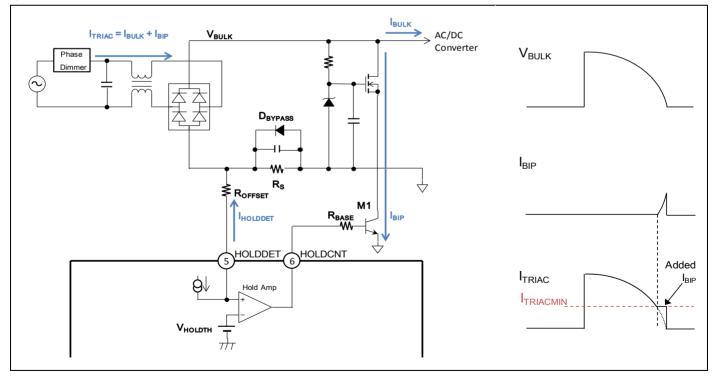
The hold current control function prevents LEDs from flickering caused by shortage of hold current. The hold current (I_{HOLD}) is the minimum current required to flow through TRIAC dimmer in order to keep the TRIAC on (refer to Figure 8-3). In small conduction angle, since I_{LED} can be low, AC/DC Converter current (I_{BULK}) and TRIAC dimmer current (I_{TRIAC}) are reduced. Once I_{TRIAC} falls below I_{HOLD} , TRIAC goes off and this results in LED flickering. MB39C603 controls I_{TRIAC} larger than I_{HOLD} by adding the current (I_{BIP}) via a BIP transistor (M1) with sensing I_{TRIAC} and keeps the TRIAC on.

ITRIAC is sensed with a resistor (R_s). A bypass diode (D_{BYPASS}) is used to clamp the voltage between R_s terminals (V_{RS}) and prevent the voltage on the HOLDDET pin ($V_{HOLDDET}$) from exceeding absolute maximum ratings. An offset resistor (R_{OFFSET}) is used to add an offset voltage to $V_{HOLDDET}$ and prevent $V_{HOLDDET}$ from the above ratings.

Rs is set as the following equation.

$$R_{S} = \frac{R_{OFFSET} \times I_{HOLDDET} - V_{HOLDTH}}{I_{TRIACMIN}}$$

where IHOLDDET is the current of the HOLDDET pin, VHOLDTH is Hold Amp threshold voltage, and ITRIACMIN is minimum TRIAC current chosen by designers.

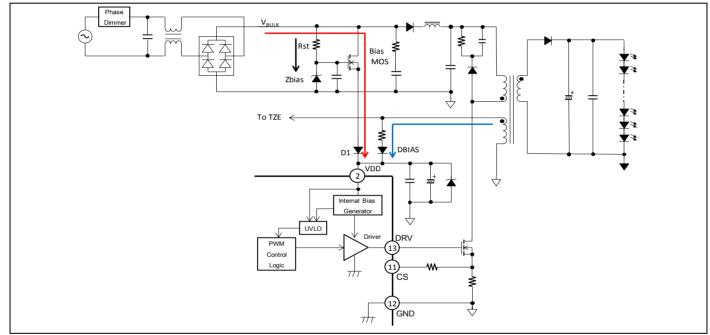

ROFFSET is set as the following equation.

$$R_{OFFSET} > \frac{V_{BYPASSMAX} - 0.3V}{I_{HOLDDET}}$$

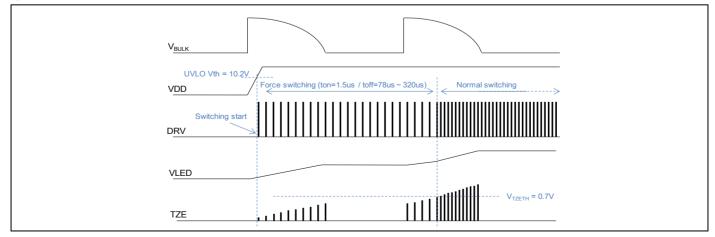
where VBYPASSMAX is the maximum forward voltage of DBYPASS.

Hold Amp is designed only for driving BIP transistors. Connecting a resistor (R_{BASE}) between the HOLDCNT pin and M1 base terminal limits the maximum I_{BIP} value and clamp the rush current at TRIAC dimmer-on timing.

Figure 8-3 HOLD Current Control Waveform

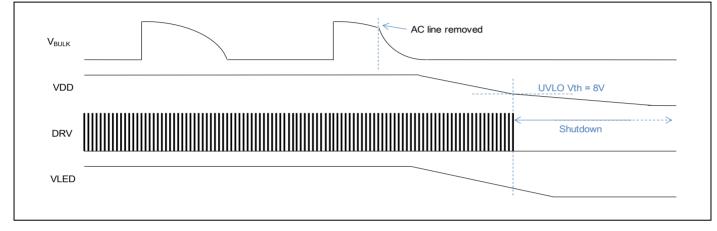

8.5 Power-On Sequence

When the AC line voltage is supplied, V_{BULK} is powered from the AC line through a diode bridge, and the VDD pin is charged from V_{BULK} through an external source-follower BiasMOS.(Figure 8-4 red path)


When the VDD pin is charged up and the voltage on the VDD pin (V_{VDD}) rises above the UVLO threshold voltage, an internal Bias circuit starts operating, and MB39C603 starts the conduction angle detection (refer to 8.3). After the UVLO is released, this device enables switching and is operating in a forced switching mode ($T_{ON} = 1.5 \mu s$, $T_{OFF} = 78 \mu s$ to 320 μs). When the voltage on the TZE pin reaches the Zero energy threshold voltage ($V_{TZETH} = 0.7V$), MB39C603 enters normal operation mode. After the switching begins, the VDD pin is also charged from Auxiliary Winding through an external diode (DBIAS).(Figure 8-4 blue path)

During non-conduction period V_{VDD} is not supplied from V_{BULK} or Auxiliary Winding. It is necessary to set an appropriate capacitor of the VDD pin in order to keep V_{VDD} above the UVLO threshold voltage in this period. An external diode (D1) between BiasMOS and the VDD pin is used to prevent discharge from the VDD pin to V_{BULK} at zero cross points of the AC line voltage.

Figure 8-5 Power-On Waveform



8.6 Power-Off Sequence

After the AC line voltage is removed, V_{BULK} is discharged by switching operation and the Hold current circuit. Since any Secondary Winding current does not flow, I_{LED} is supplied only from output capacitors and decreases gradually. V_{VDD} also decreases because there is no current supply from both Auxiliary Winding and V_{BULK} . When V_{VDD} falls below the UVLO threshold voltage, MB39C603 shuts down.

Figure 8-6 Power-Off Waveform

8.7 IP_PEAK Detection Function

MB39C603 detects Primary Winding peak current (I_{P_PEAK}) of Transformer. I_{LED} is set by connecting a sense resistance (Rcs) between the CS pin and the GND pin. Maximum I_{P_PEAK} ($I_{P_PEAKMAX}$) limited by Over Current Protection (OCP) can also be set with the resistance.

Using the Secondary to Primary turns ratio (N_P/N_S) and I_{LED}, R_{CS} is set as the following equation (refer to 8.1).

$$R_{CS} = \frac{N_P}{N_S} \times \frac{0.132}{I_{LED}}$$

In addition, using the OCP threshold voltage (V_{OCPTH}) and R_{CS}, I_{P_PEAKMAX} is calculated with the following equation.

$$I_{P_PEAKMAX} = \frac{V_{OCPTH}}{R_{CS}}$$

8.8 Zero Voltage Switching Function

MB39C603 has built-in zero voltage switching function to minimize switching loss of the external switching MOSFET. This device detects a zero crossing point through a resistor divider connected from the TZE pin to Auxiliary Winding. A zero energy detection circuit detects a negative crossing point of the voltage on the TZE pin to Zero energy threshold voltage (V_{TZETL}). On-timing of switching MOSFET is decided with waiting an adjustment time (t_{ADJ}) after the negative crossing occurs.

 t_{ADJ} is set by connecting an external resistance (R_{ADJ}) between the ADJ pin and the GND pin. Using Primary Winding inductance (L_P) and the parasitic drain capacitor of switching MOSFET (C_D), t_{ADJ} is calculated with the following equation.

$$t_{ADJ} = \frac{\pi \sqrt{L_P \times C_D}}{2}$$

Using t_{ADJ} , R_{ADJ} is set as the following equation.

$$R_{ADJ}[k\Omega] = 0.0927 \times t_{ADJ}[ns]$$

8.9 Protection Functions

Under Voltage Lockout Protection (UVLO)

The under voltage lockout protection (UVLO) prevents IC from a malfunction in the transient state during V_{VDD} startup and a malfunction caused by a momentary drop of V_{VDD} , and protects the system from destruction/deterioration. An UVLO comparator detects the voltage decrease below the UVLO threshold voltage on the VDD pin, and then the DRV pin is turned to "L" and the switching stops. MB39C603 automatically returns to normal operation mode when V_{VDD} increases above the UVLO threshold voltage.

Over Voltage Protection (OVP)

The over voltage protection (OVP) protects Secondary side components from an excessive stress voltage. If the LED is disconnected, the output voltage of Secondary Winding rises up. The output overvoltage can be detected by monitoring the TZE pin. During Secondary Winding energy discharge time, V_{TZE} is proportional to V_{AUX} and the voltage of Secondary Winding (refer to 8.1). When V_{TZE} rises higher than the OVP threshold voltage for 3 continues switching cycles, the DRV pin is turned to "L", and the switching stops (latch off). When V_{VDD} drops below the UVLO threshold voltage, the latch is removed.

Over Current Protection (OCP)

The over current protection (OCP) prevents inductor or transformer from saturation. The drain current of the external switching MOSFET is limited by OCP. When the voltage on the CS pin reaches the OCP threshold voltage, the DRV pin is turned to "L" and the switching cycle ends. After zero crossing is detected on the TZE pin again, the DRV pin is turned to "H" and the next switching cycle begins.

Over Temperature Protection (OTP)

The over temperature protection (OTP) protects IC from thermal destruction. When the junction temperature reaches +150°C, the DRV pin is turned to "L", and the switching stops. It automatically returns to normal operation mode if the junction temperature falls back below +125°C.

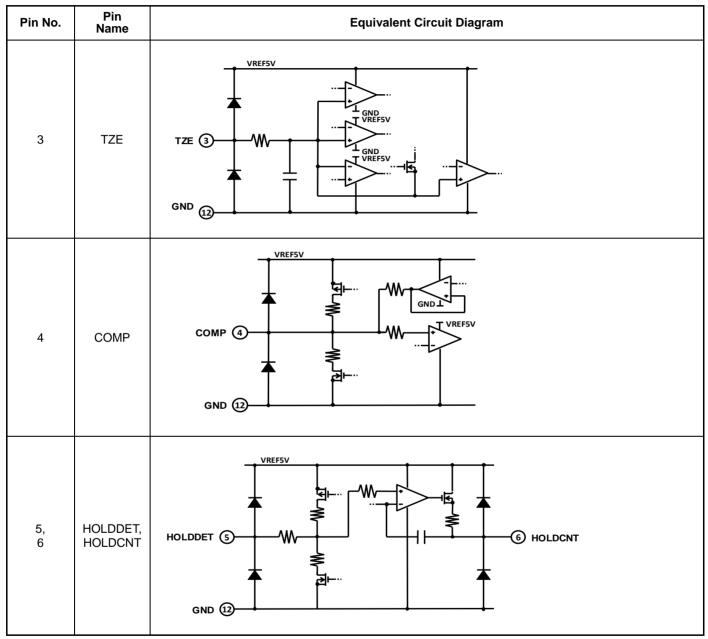
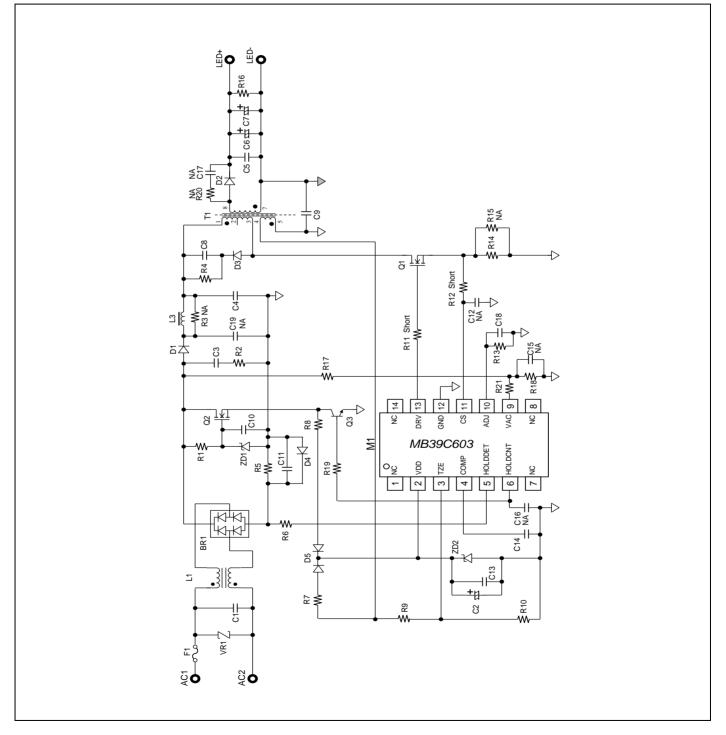

Function		PIN Op	peration		Detection	Return	Demerke
Function	DRV	HOLD CNT	СОМР	ADJ	Condition	Condition	Remarks
Normal Operation	Active	Active	Active	Active	-	-	-
Under Voltage Lockout Protection (UVLO)	L	L	L	L	VDD < 8V	VDD > 10.2V	Auto Restart
Over Voltage Protection (OVP)	L	L	1.5V fixed	Active	TZE > 4.3V	VDD < 8V $\rightarrow VDD > 10.2V$	Latch off
Over Current Protection (OCP)	L	Active	Active	Active	CS > 2V	Cycle by cycle	Auto Restart
Over Temperature Protection (OTP)	L	L	1.5V fixed	Active	Tj > +150°C	Tj < +125°C	Auto Restart

Table 8-2 Protection Functions Table

9. I/O Pin Equivalent Circuit Diagram

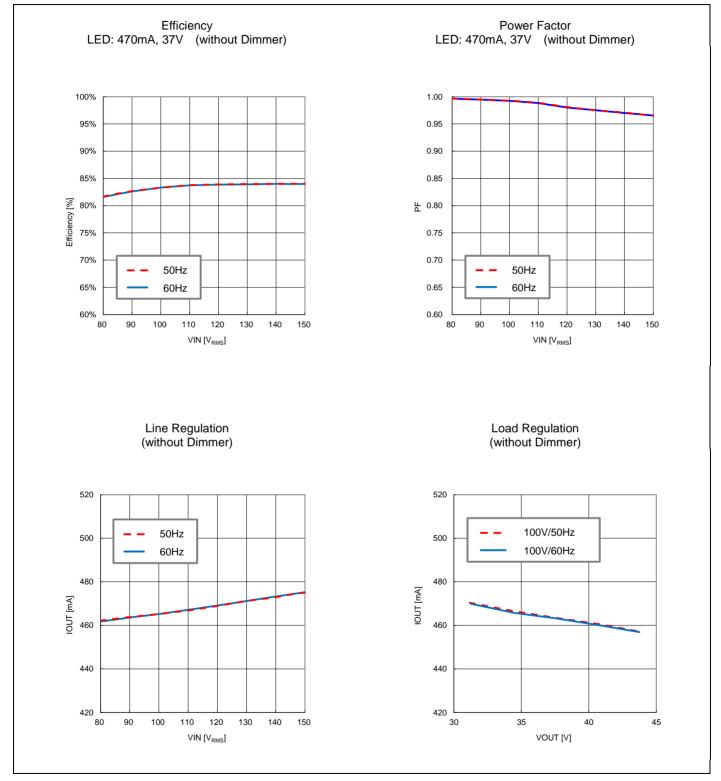
Figure 9-1 I/O Pin Equivalent Circuit Diagram


Pin No.	Pin Name	Equivalent Circuit Diagram
9	VAC	VAC (9) UREF5V VAC (9) UREF5V
10	ADJ	ADJ 10 GND 12
11	CS	CS (1) VREF5V GND (12
13	DRV	VDD (2

10. Application Examples

10.1 17W Isolated and Phase Dimming Application Input: AC85V_{RMS} to $145V_{RMS}$, Output: 470mA/32V to 42V, Ta = +25°C

Figure 10-1 17W EVB Schematic


Table 10-1 17W BOM List

No.	Component	Description	Part No.	Vendor
1	M1	LED driver IC, SOP-14	MB39C603	Cypress
2	Q1	MOSFET, N-channel, 800V, 5.5A, TO-220F	FQPF8N80C	Fairchild
3	Q2	MOSFET, N-channel, 650V, 7.3A, TO-220	FDPF10N60NZ	Fairchild
4	Q3	Bipolar transistor, NPN, 60V, 3A, hfe = 250min, SOT-223	NZT560A	Fairchild
5	BR1	Bridge rectifier, 1A, 600V, Micro-DIP	MDB6S	Fairchild
6	D1	Diode, ultra fast rectifier, 1A, 600V, SMA	ES1J	Fairchild
7	D2	Diode, ultra fast rectifier, 3A, 200V, SMC	ES3D	Fairchild
8	D3	Diode, fast rectifier, 1A, 800V, SMA	RS1K	Fairchild
9	D4	Diode, ultra fast rectifier, 1A, 200V, SMA	ES1D	Fairchild
10	D5	Diode, 200 mA, 200V, SOT-23	MMBD1404	Fairchild
11	ZD1, ZD2	Diode, Zener, 18V, 500 mW, SOD-123	MMSZ18T1G	ON Semi
12	T1	Transformer, 600 µH	EI-2520	-
13	L1	Common mode inductor, 20 mH, 0.5A	744821120	Wurth Electronic
14	L3	Inductor, 3.3 mH, 0.27A, 5.0Ω, φ10×14.4	RCH114NP-332KB	Sumida
15	C1	Capacitor, X2, 305VAC, 0.1 µF	B32921C3104M	EPCOS
16	C2	Capacitor, aluminum electrolytic, 100 µF, 25V, ¢6.3×11	EKMG250ELL101MF11D	NIPPON-CHEMI- CON
17	C3	Capacitor, polyester film, 220 nF, 400V, 18.5×5.9	ECQ-E4224KF	Panasonic
18	C4	Capacitor, polyester film, 100 nF, 400V, 12×6.3	ECQ-E4104KF	Panasonic
19	C5	Capacitor, ceramic, 10 µF, 50V, X7S, 1210	-	-
20	C6, C7	Capacitor, aluminum electrolytic, 470 µF 50V, ¢10.0×20	EKMG500ELL471MJ20S	NIPPON-CHEMI- CON
21	C8	Capacitor, ceramic, 15 nF, 250V, X7R, 1206	-	-
22	C9	Capacitor, ceramic, 2.2 nF, X1/Y1 radial	DE1E3KX222M	muRata
23	C10, C11	Capacitor, ceramic, 0.1 µF, 50V, X5R, 0603	-	-
24	C12, C15, C16	NA (Open), 0603	-	-
25	C13	Capacitor, ceramic, 10 µF, 35V, X5R, 0805	-	-
26	C14	Capacitor, ceramic, 4.7 µF, 16V, JB, 0805	-	-
27	C17	NA (Open), 1206	-	-
28	C18	Capacitor, ceramic, 100 pF, 50V, CH, 0603	-	-
29	C19	NA (Open)	-	-
30	R1, R17	Resistor, chip, 1 MΩ, 1/4W, 1206	-	-
31	R2	Resistor, metal film, 510Ω, 2W,	-	-
32	R3	NA (Open), 1206	-	-
33	R4	Resistor, metal oxide film, 68 k Ω , 3W	-	-
34	R5	Resistor, chip, 5.1Ω, 1W, 2512	-	-
35	R6	Resistor, chip, 62 kΩ, 1/10W, 0603	_	-
36	R7	Resistor, chip, 10Ω , $1/8W$, 0805	-	-
37	R8	Resistor, chip, 22Ω , 1/10W, 0603	-	-
38	R9	Resistor, chip, 91 kΩ, 1/10W, 0603	-	-
39	R10	Resistor, chip, 24 kΩ, 1/10W, 0603	-	-
40	R11, R12	NA (Short), 0603	-	-
41	R13	Resistor, chip, 39 k Ω , 1/10W, 0603	-	-
42 43	R14 R16	Resistor, chip, 1.1Ω, 1/4W, 1206 Resistor, chip, 51 kΩ, 1/10W, 0603		
43	R16	Resistor, chip, 33 k Ω , 1/10W, 0603	-	
44	R19	Resistor, chip, 12 k Ω , 1/10W, 0603		-
46	R20, R15	NA (Open), 1206	-	-
47	R21	Resistor, chip, 510 kΩ, 1/10W, 0603	-	-
48	VR1	Varistor, 275VAC, 7 mm DISK	ERZ-V07D431	Panasonic
49	F1	Fuse, 1A, 300VAC	3691100000	Littelfuse

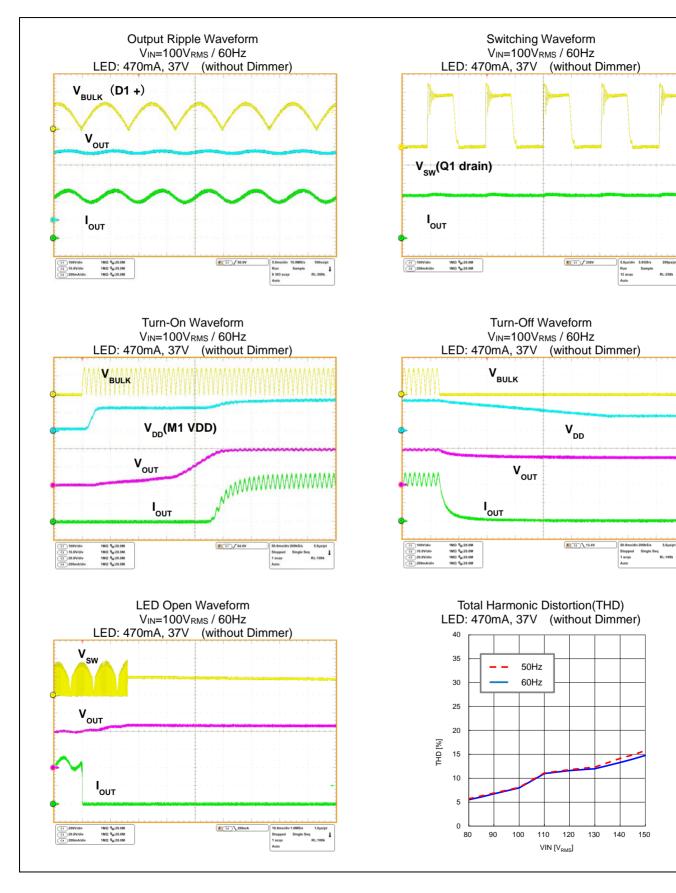
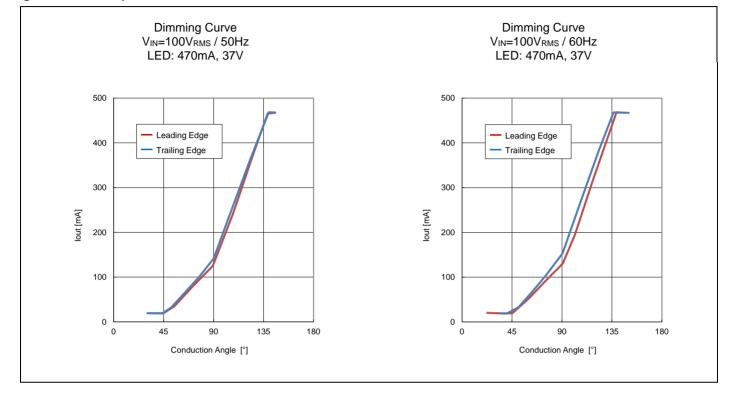


Figure 10-2 17W Reference Data



MB39C603

Figure 10-3 17W Japan Dimmer Performance Data

Dimmer		Input Trans	Minimum	Minimum	Maximu	Maximu		
Vendor	Parts Name	Condition			lout (mA)	m Angle (°)	т І _{оυт} (тА)	
LUTRON	DVCL-123P-JA		Leading Edge	31.9	19.2	141.8	468.4	
	WTC57521			38.0	19.2	145.6	467.6	
Panasonic	WN575280K			27.7	19.8	147.2	467.0	
	NQ20203T	VIN=100V _{RMS}		31.0	19.4	146.7	466.9	
DAIKO	DP-37154	50Hz		32.4	19.1	142.9	466.9	
Mitsubishi	DEM1003B	(Japan Dimmer)		28.3	19.7	147.8	466.9	
	DG9022H			46.4	19.4	151.9	467.2	
TOSHIBA	DG9048N			34.0	19.2	155.3	466.6	
	WDG9001		Trailing Edge	30.4	18.8	145.4	468.4	
LUTRON	DVCL-123P-JA		Leading Edge	22.7	19.1	138.5	468.7	
	WTC57521	VIN=100V _{RMS} 60Hz (Japan Dimmer)		38.9	19.1	146.7	468.4	
Panasonic	WN575280K			27.4	19.6	146.2	466.8	
	NQ20203T			27.6	19.6	144.3	467.3	
DAIKO	DP-37154			33.0	19.1	144.3	467.0	
Mitsubishi	DEM1003B			25.9	19.9	145.2	467.2	
	DG9022H			22.0	18.8	150.8	467.0	
TOSHIBA	DG9048N			22.7	19.6	153.6	466.5	
	WDG9001		Trailing Edge	35.9	18.7	150.1	468.3	

Figure 10-4 17W USA Dimmer Performance Data

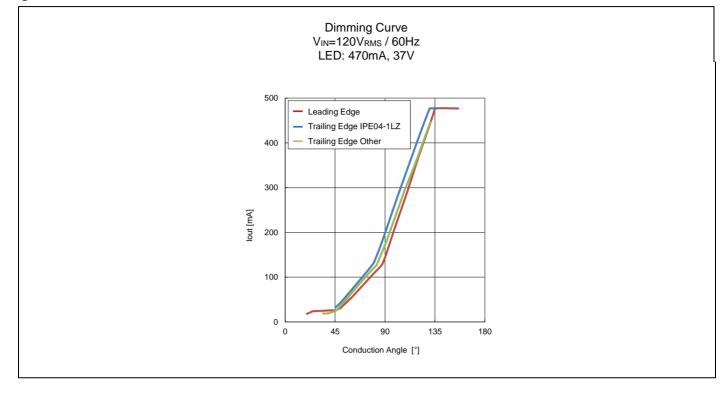
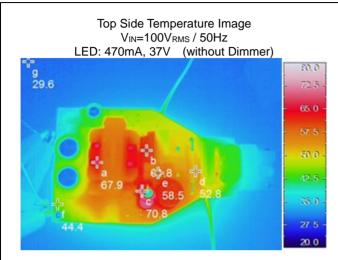



Table 10-3 17W USA Dimmer Performance Data

Dimmer		Input	Input Time		Minimum	Maximu	Maximu	
Vendor	Parts Name	Condition	Туре	Minimum Angle (°)	louт (mA)	m Angle (°)	т І _{оυт} (mA)	
	IPI06-1LZ			42.3	25.3	156.0	477.5	
LEVITON	6631-LW			21.8	20.1	144.1	470.2	
LEVITON	6641-W			39.1	19.5	147.7	471.5	
	6683			35.2	19.5	155.5	468.9	
	SLV-600-WH		Leading Edge	19.7	18.0	135.4	454.2	
	S-600P-WH			35.0	19.5	137.6	470.6	
	TG-600PH-WH			45.4	19.8	140.4	470.5	
	AY-600P-WH	VIN=120V _{RMS} 60Hz (USA Dimmer)		40.2	19.5	143.6	470.6	
	GL-600H-DK			25.1	20.0	135.9	457.3	
	TG-600PNLH-WH			34.1	19.5	141.0	470.8	
LUTRON	TGCL-153PH-WH			33.3	19.4	135.0	455.4	
LUTKON	TT-300NLH-WH			41.7	19.5	143.2	470.5	
	DV-603PG-WH			35.6	19.4	116.4	316.5	
	DVCL-153-WH			38.0	19.4	133.9	445.7	
	DV603PH-WH			33.0	19.5	136.9	471.2	
	LGCL-153PLH-WH			39.3	19.2	133.9	444.4	
	D-603PH			24.2	20.0	133.5	439.1	
	DV-600PH-WH			32.8	19.3	139.3	470.7	
GE	52129			23.8	20.2	157.0	469.8	
GE	18023			36.9	19.4	158.5	469.5	
LEVITON	IPE04-1LZ		Trailing Edge	45.6	33.1	136.9	477.3	
LUTRON	SELV-300P-WH			34.1	19.1	130.9	447.2	
LUTKON	DVELV-300P-WH			34.1	19.0	131.8	455.2	

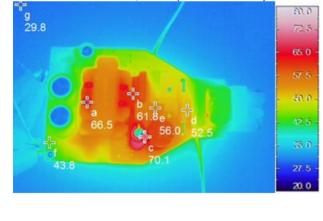
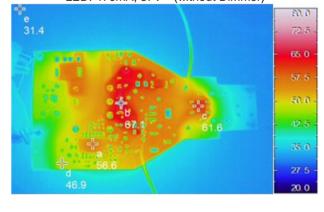


Figure 10-5 17W Parts Surface Temperature

Bottom Side Temperature Image VIN=100VRMS / 50Hz LED: 470mA, 37V (without Dimmer)


Top Side Temperature Image V_{IN}=100V_{RMS} / 60Hz LED: 470mA, 37V (without Dimmer)

Side	Cursor Point		Surface Temperature [°C]		ΔTemperature [Δ°C]	
Olde			50Hz	60Hz	50Hz	60Hz
	а	T2	68.0	66.5	38.3	36.8
	b	Q1	61.8	61.8	32.2	32.0
	С	R4	70.8	70.1	41.2	40.3
Тор	d	R2	52.8	52.5	23.1	22.8
-	е	Q2	58.5	56.0	28.9	26.2
	f	PCB	44.5	43.8	14.8	14.0
	g	Out of PCB	29.6	29.8	-	-
	a	M1	55.1	56.6	26.8	25.2
	b	Back side of R4	63.5	67.1	35.2	35.8
Bottom	С	BR1	58.0	61.6	29.7	30.2
	d	PCB	45.1	46.9	16.7	15.5
	е	Out of PCB	28.3	31.4	-	-

 $\begin{array}{l} \mbox{Bottom Side Temperature Image} \\ V_{\text{IN}}\mbox{=}100V_{\text{RMS}}\,/\,60\text{Hz} \\ \mbox{LED: 470mA, 37V} \quad (\mbox{without Dimmer}) \end{array}$

11. Usage Precautions

Do not configure the IC over the maximum ratings.

If the IC is used over the maximum ratings, the LSI may be permanently damaged.

It is preferable for the device to normally operate within the recommended usage conditions. Usage outside of these conditions can have an adverse effect on the reliability of the LSI.

Use the device within the recommended operating conditions.

The recommended values guarantee the normal LSI operation under the recommended operating conditions.

The electrical ratings are guaranteed when the device is used within the recommended operating conditions and under the conditions stated for each item.

Take appropriate measures against static electricity.

Containers for semiconductor materials should have anti-static protection or be made of conductive material.

- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- **\blacksquare** Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω in serial between body and ground.

Do not apply negative voltages.

The use of negative voltages below - 0.3 V may make the parasitic transistor activated to the LSI, and can cause malfunctions.

12. RoHS Compliance Information

This product has observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB), and polybrominated diphenyl ethers (PBDE).

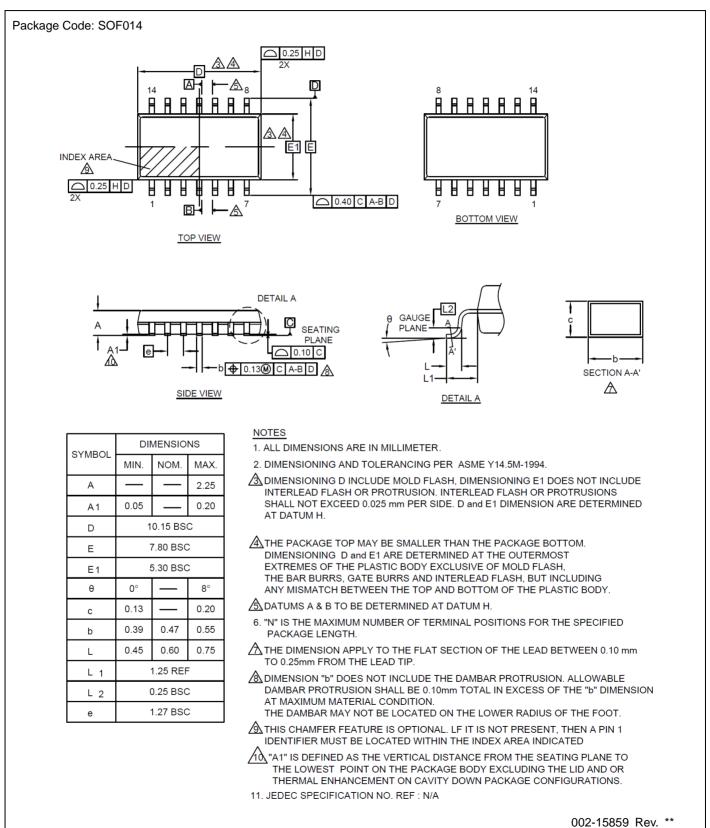

13. Ordering Information

Table 13-1 Ordering Information

Part Number	Package	Shipping Form
MB39C603PF-G-JNEFE1	14-pin plastic SOP	Emboss
MB39C603PF-G-JNE1	(SOF014)	Tube

14. Package Dimensions

15. Major Changes

Spansion Publication Number: MB39C603_DS405-00021

Page	Section	Descriptions			
Revision1.0	Revision1.0				
-	-	Initial release			
Revision2.0					
7	7. Absolute Maximum Ratings	Removed ESD Voltage (Machine Model) from Table 7-1			

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB39C603 Phase Dimmable PSR LED Driver IC for LED Lighting

Document Number: 002-08450

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	ΤΟΥΟ	02/20/2015	Migrated to Cypress and assigned document number 002-08450. No change to document contents or format.
*A	5211117	ΤΟΥΟ	04/07/2016	Updated to Cypress format.
*B	5742340	HIXT	05/22/2017	Updated Pin Assignment: Change the package name from FPT-14P-M04 to SOF014 Added RoHS Compliance Information Updated Ordering Information: Change the package name from FPT-14P-M04 to SOF014 Deleted "Marking Format" Deleted "Marking Format" Deleted "Recommended Mounting Condition [JEDEC Level3] Lead Free" Updated Package Dimensions: Updated to Cypress format

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®] Solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries

© Cypress Semiconductor Corporation, 2014-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties on the software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.