

DE275X2-102N06A RF Power MOSFET

- Common Source Push-Pull Pair
- N-Channel Enhancement Mode
- ◆ Low Q_q and R_q
- ♦ High dv/dt
- Nanosecond Switching

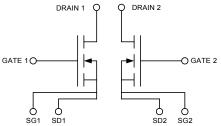
The DE275X2-102N06A is a matched pair of RF power MOSFET devices in a common source configuration. The device is optimized for push-pull or parallel operation in RF generators and amplifiers at frequencies to >65 MHz.

Unless noted, specifications are for each output device

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	1000	V	
\mathbf{V}_{DGR}	T_J = 25°C to 150°C; R_{GS} = 1 $M\Omega$	1000	V	
V _{GS}	Continuous	±20	V	
V_{GSM}	Transient	±30	V	
I _{D25}	$T_c = 25^{\circ}C$	6	Α	
I_{DM}	T_c = 25°C, pulse width limited by T_{JM}	48	Α	
I _{AR}	T _c = 25°C	6	Α	
E _{AR}	T _c = 25°C	20	mJ	
dv/dt	$I_{S} \leq I_{DM}, \ di/dt \leq 100 A/\mu s, \ V_{DD} \leq V_{DSS}, \ T_{j} \leq 150^{\circ} C, \ R_{G}$ = 0.2 Ω	5	V/ns	
	I _S = 0	>200	V/ns	
P _{DHS} (1)	T _c = 25°C, Derate 6.0W/°C above 25°C	750	W	
P _{DAMB} (1)	$T_c = 25^{\circ}C$	5.0	W	
$\mathbf{R}_{\text{thJHS}}$ (1)		0.17	K/W	
T _J		-55+150	°C	
T_JM		150	°C	
T_{stg}		-55+150	°C	
TL	1.6mm (0.063 in) from case for 10 s	300	°C	
Weight		4	g	

Symbol		Characteristic Values T _J = 25°C unless otherwise specified			
		min.	typ.	max.	
V _{DSS}	V_{GS} = 0 V, I_D = 3 ma	1000			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 4$ ma	2.5		5.5	V
I _{GSS}	$V_{GS} = \pm 20 \ V_{DC}, \ V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = 0.8 V_{DSS} T_J = 25^{\circ}C$ $V_{GS} = 0$ $T_J = 125^{\circ}C$			50 1	μA mA
R _{DS(on)}	V_{GS} = 15 V, I_D = 0.5 I_{D25} Pulse test, t ≤ 300 μ S, duty cycle d ≤	2%		2.5	Ω
g fs	V_{DS} = 15 V, I_D = 0.5 I_{D25} , pulse test	2	6		S

Preliminary Data Sheet


 $V_{DSS} = 1000 V$

 $I_{D25} = 6 A$

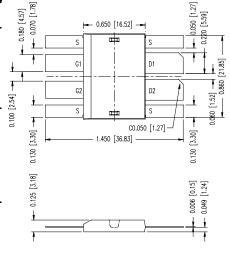
 $R_{DS(on)} = 2.0 \Omega$

 $P_{DHS} = 750 W$

Features

- Isolated Substrate
- high isolation voltage (>2500V)
- excellent thermal transfer
- Increased temperature and power cycling capability
- IXYS advanced low Q_g process
- Low gate charge and capacitances
- easier to drive
- faster switching
- Low R_{DS(on)}
- Very low insertion inductance (<2nH)
- No beryllium oxide (BeO) or other hazardous materials

Advantages


- High Performance Push-Pull RF Package
- Optimized for RF and high speed switching at frequencies to >100MHz
- Easy to mount—no insulators needed
- High power density

Note: All specifications are per each transistor, unless otherwise noted.

(1) Thermal specifications are for the package, not per transistor

Symbol Test Conditions Characteristic Values (T_J = 25°C unless otherwise specified)

	min.	typ.	max.
\mathbf{R}_{G}		0.3	Ω
C _{iss}		1800	pF
Coss	V_{GS} = 0 V, V_{DS} = 0.8 $V_{DSS(max)}$, f = 1 MHz	100	pF
C _{rss}		30	pF
T _{d(on)}		3	ns
\mathbf{T}_{on}	V_{GS} = 15 V, V_{DS} = 0.8 V_{DSS} I_{D} = 0.5 I_{DM}	2	ns
$\textbf{T}_{\text{d(off)}}$	$R_G = 0.2 \Omega$ (External)	4	ns
\mathbf{T}_{off}		5	ns
Q _{g(on)}		50	nC
\mathbf{Q}_{gs}	V_{GS} = 10 V, V_{DS} = 0.5 V_{DSS} I_{D} = 0.5 I_{D25}	20	nC
Q gd		30	nC

Source-Drain Diode

Characteristic Values

 $(T_J = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Test Conditions	min.	typ.	max.	
Is	V _{GS} = 0 V			6	Α
I _{SM}	Repetitive; pulse width limited by T_{JM}			48	Α
V _{SD}	$I_F = I_S, V_{\rm GS} = 0 V,$ Pulse test, $t \leq 300 \mu s, duty cycle \leq 2\%$			1.5	V
T _{rr}			200		ns
\mathbf{Q}_{RM}	$I_F = I_S$, -di/dt = 100A/ μ s, $V_R = 100V$		0.6		μС
I _{RM}			4		Α

 $^{(1) \}quad \hbox{These parameters apply to the package, not individual MOSFET devices}.$

For detailed device mounting and installation instructions, see the "*DE-Series MOSFET Mounting Instructions*" technical note on DEI's web site at www.directedenergy.com/apptech.htm

Directed Energy, Inc. reserves the right to change limits, test conditions and dimensions. DEI MOSFETS are covered by one or more of the following U.S. patents:

 4,835,592
 4,850,072
 4,881,106
 4,891,686
 4,931,844
 5,017,508

 5,034,796
 5,049,961
 5,063,307
 5,187,117
 5,237,481
 5,486,715

 5,381,025
 5,640,045

102N06A DE-SERIES SPICE Model

The DE-SERIES SPICE Model is illustrated in Figure 1. The model is an expansion of the SPICE level 3 MOSFET model. It includes the stray inductive terms L_G , L_S and L_D . Rd is the $R_{DS(ON)}$ of the device, Rds is the resistive leakage term. The output capacitance, C_{OSS} , and reverse transfer capacitance, C_{RSS} are modeled with reversed biased diodes. This provides a varactor type response necessary for a high power device model. The turn on delay and the turn off delay are adjusted via Ron and Roff.

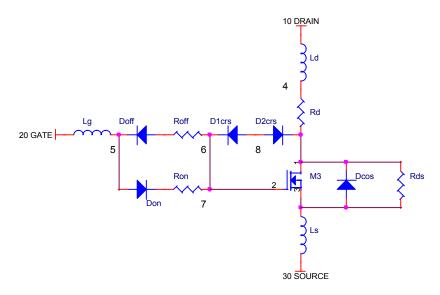


Figure 1 DE-SERIES SPICE Model

This SPICE model may be downloaded as a text file from the DEI web site at www.directedenergy.com/spice.htm

```
Net List:
*SYM=POWMOSN
.SUBCKT 102N06A 10 20 30
  TERMINALS: D G S
* 1000 Volt 6 Amp 2.0 Ohm N-Channel Power MOSFET
M1 1 2 3 3 DMOS L=1U W=1U
RON 56.5
DON 62 D1
ROF 57 1.0
DOF 27 D1
D1CRS 28 D2
D2CRS 1 8 D2
CGS 23 1.9N
RD 41 1.7
DCOS 3 1 D3
RDS 13 5.0MEG
LS 330.5N
LD 104 1N
LG 20 5 1N
.MODEL DMOS NMOS (LEVEL=3 VTO=4 KP=2.3)
.MODEL D1 D (IS=.5F CJO=10P BV=100 M=.5 VJ=.2 TT=1N)
.MODEL D2 D (IS=.5F CJO=400P BV=1000 M=.6 VJ=.6 TT=1N RS=10M)
```

.MODEL D3 D (IS=.5F CJO=400P BV=1000 M=.35 VJ=.6 TT=400N RS=10M)

.ENDS

Doc #9200-0224 Rev 2 © 2001 Directed Energy, Inc.

Email: deiinfo@directedenergy.com Web: http://www.directedenergy.com