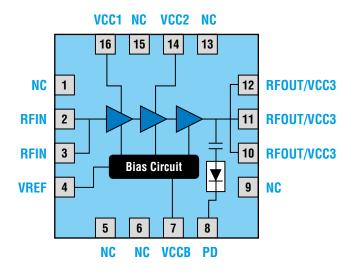
Data Sheet

RTC6659E

Power Amplifier for 802.11a

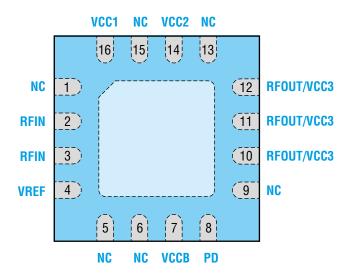
MAY 2018 - Ver. 1.2



Description

The RTC6659E is a power amplifier (PA) designed for $4.9 \sim 5.9~\text{GHz}$ frequency range, compatible with 802.11a wireless LAN system. The device is manufactured based on advanced InGaP/GaAs HBT (Heterojunction Bipolar Transistor) process. The amplifier consists of 3 gain stages with inter-stage matching, built-in input matching network, and a power detector for close loop power control operation. With single supply voltage 5V, it provides a low EVM (Error Vector magnitude) of 3% at +22 dBm linear output power In 802.11a mode (OFDM 64QAM, 54Mbps). The RTC6659E is packaged in a tiny industry-standard 16-lead surface mount package QFN 3mm x 3mm x 1mm (max) with lead-free RoHS compliant.

Functional Block Diagram


Features

- 4.9 ~ 5.9 GHz Frequency Range
- 5V Single Supply Voltage
- RTC6659 pin Compatible
- +22 dBm Linear Output Power for 3% EVM, 802.11a, 54Mbps 64 QAM
- Small Signal Gain: 32 dB
- On-chip Input Matching
- Packaged in 16L QFN-3mm x 3mm x 1mm (max)
- RoHS Compliant, Pb-free, Halogen Free
- Moisture Sensitivity Level: MSL 3

Applications

- High Power WLAN Applications
- IEEE 802.11a Wireless LAN System
- 5 GHz ISM Band Applications
- 5 GHz Cordless Phones

Pin Assignments

Top View Through Package

Pin No.	Pin Name	Description	
2	RFIN	RF input. Input matching network is built on chip	
3	RFIN	Same as pin 2	
4	VREF	Bias Control voltage of power stage-1,2,3. This pin can be used to control PA on/off	
7	VCCB	Power supply for bias circuit, typically 3.3 V	
8	PD	Detector output voltage for output power index	
10,11,12	RFOUT/VCC3	RF output and power supply for power stage-3	
14	VCC2	Power supply for power stage-2	
16	VCC1	Power supply for power stage-1	
1, 5, 6, 9, 13, 15	NC	Not connected inside the package	
Exposed Paddle		It must be connected to a ground through PCB via for best performance	

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply Voltage	VCC	5.5	V
Reference Voltage	VREF	3.0	V
Input RF Level	RF _{IN}	+5	dBm
Operating Ambient Temperature	T _A	-40 to +85	°C
Storage Temperature	T _{STG}	-40 to +150	°C

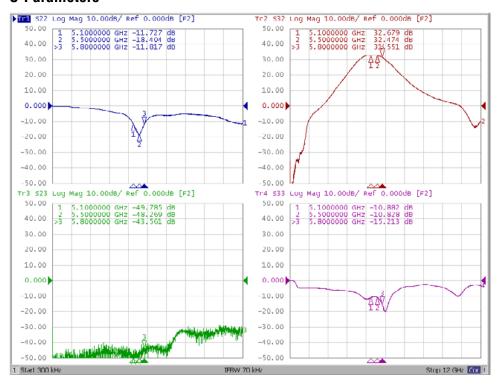
NOTE: Stresses above those conditions listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only. Functional operation of the device above those conditions indicated in the Absolute Maximum Ratings is not implied. The functional operation of the device at the conditions in between Recommended Operating Ranges and Absolute Maximum Ratings for extended periods may affect device reliability.

Recommended Operating Ranges

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	f	4.9		5.9	GHz
Supply Voltage	VCC1, VCC2, VCC3, VCCB	3	5	5.25	V
Reference Voltage	VREF	2.85	2.9	2.95	V

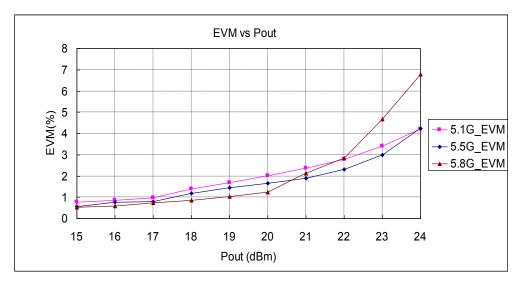
NOTE: Recommended Operating Ranges indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits.

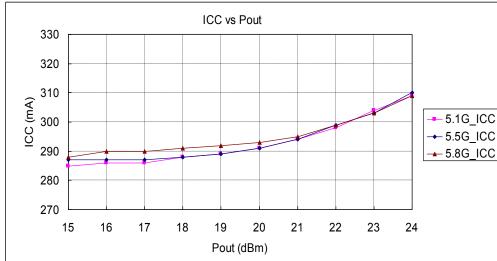
Electrical Specification

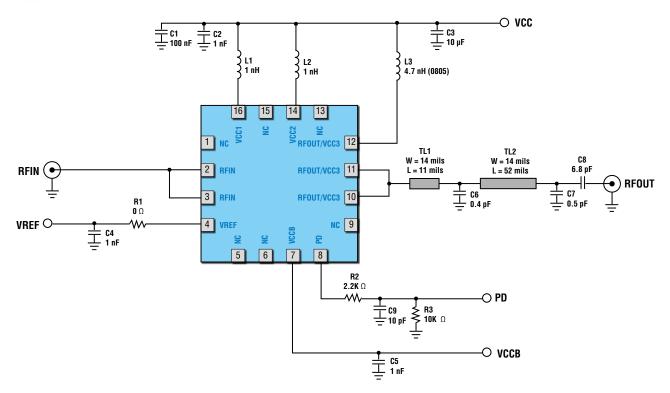

 $T_A = +25$ °C, VCC1/2/3 = VCCB = 5 V, Freq = 5.5 GHz, VREF = 2.9 V, unless otherwise noted

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Frequency	f		4.9		5.9	GHz
Output Power	Pout	802.11a, 64QAM/54Mbps, EVM = 3%	21.5	22	22.5	dBm
Output rowei		802.11a mask compliant power, OFDM 6Mbps		26		dBm
Small Signal Gain		Pin=-30dBm	31.5	32	32.5	dB
Gain Flatness	ΔG	within band (4.9 – 5.9 GHz)		0.5		dB
1 dB Output Compression Point	P1dB	1dB Gain compression		27		dBm
Input Return Loss	S11	-			10	dB
Output Return Loss	S22				10	dB
2nd/3rd Harmonics	2fo, 3fo	CW signal, Pout = 22 dBm		-40		dBc
Supply Current	Ica	Quiescent (no RF)		265		mA
oupply our tellt	I _{cc}	Pout = 22 dBm		300		mA
Reference Current	Iref	Quiescent (no RF)		4		μA
Neierence Garrent		Pout = 22 dBm		5		μA

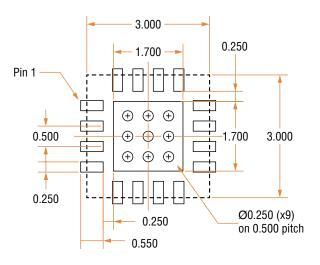
Typical Performance Characteristics


 $T_A = +25$ °C, VCC1/2/3 = VCCB = 5 V, VREF = 2.9 V

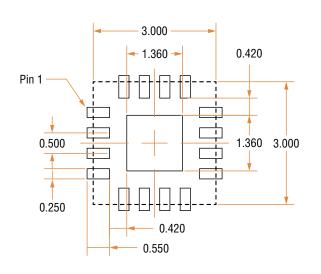

S-Parameters

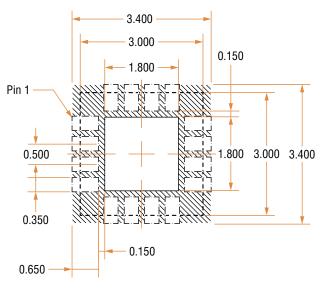

EVM and ICC at 802.11a 64QAM 54Mbps

Application Circuits


NOTE: Information in the above application is for reference only, and does not guarantee the mass production design of the device.

Evaluation Board Bill of Material

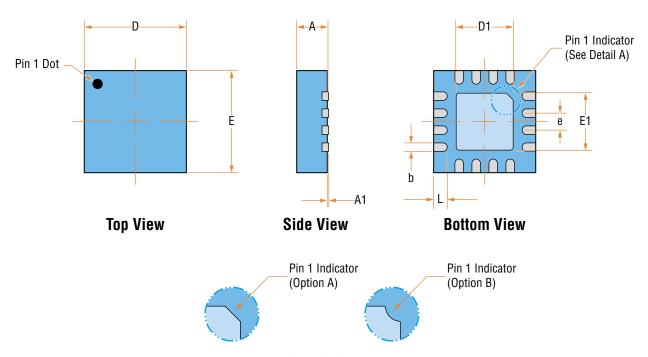

Component	Value	Description	Supplier	Part Number
IC		RTC6659E	RichWave	
C1	100 pF	De-coupling capacitor	Walsin	0402N101J500LT
C2, C4, C5	1nF	De-coupling capacitor	Walsin	0402B102K500CT
C9	10 pF	De-coupling capacitor	Walsin	0402N100J500LT
C6	0.4 pF	Matching capacitor	Walsin	RF15N0R4B500LT
C7	0.5 pF	Matching capacitor	Walsin	RF15N0R5C500LT
C8	6.8 pF	DC block capacitor	Walsin	0402N6R8D500LT
C3	10 μF	De-coupling capacitor	Walsin	0402X106K6R3CT
R1	0 Ω		Walsin	WR04X00R0PTL
R2	2.2 Ω		Walsin	WR04X02R2PTL
R3	10Κ Ω		Walsin	WR04X1002FTL
L1, L2	1 nH	RF choke inductor	ACX	HI1005-1C1N0SMT
L3	4.7 nH	RF choke inductor, 0805	ACX	HI2012-1_4N7_N_



Recommended Footprint Patterns

PCB Board Metal & Via Pattern
Top View

PCB Stencil Pattern Top View 64% Solder Coverage on Pad


PCB Solder Mask Pattern
Top View

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.

Package Dimensions

Detail A

16L QFN 3 X 3 X 1 - C					
SYMBOL	MIN	MAX			
A	0.800	1.000			
A1	0.000	0.050			
b	0.180	0.320			
D	2.900	3.100			
D1	1.550	1.850			
е	0.500 BSC				
E	2.900	3.100			
E1	1.550	1.850			
L	0.300	0.500			

NOTE:

- 1. All dimensions are measured in millimeters.
- 2. Drawing is not to scale.
- 3. The shape of the Pin 1 Indicator can be either Option A or Option B, but it must be located within the zone indicated.

Customer Service

RichWave Technology Corp.

3F, No.1, Alley 20, Lane 407. Sec.2, Tiding Bvd., Neihu Dist., Taipei City 114, Taiwan, R.O.C. TEL +886-2-87511358 FAX +886-2-66006887 www.richwave.com.tw

Disclaimers

RichWave reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. RichWave does not assume any liability arising out of the application or use of information or product described in this document. Neither does RichWave convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. It is the user's responsibility to ensure that equipment using this product is compliant to all relevant standards. RichWave's products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright © RichWave Technology Corp. All rights reserved.