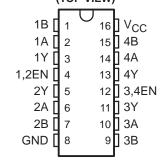
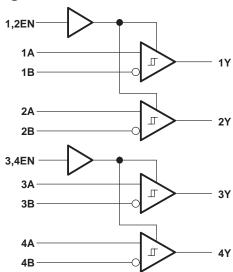
SN65LBC175A, SN75LBC175A QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

SLLS455C - NOVEMBER 2000 - REVISED MARCH 2009


- Designed for TIA/EIA-485, TIA/EIA-422, and ISO 8482 Applications
- Signaling Rate¹ Exceeding 50 Mbps
- Fail-Safe in Bus Short-Circuit, Open-Circuit, and Idle-Bus Conditions
- ESD Protection on Bus Inputs 6 kV
- Common-Mode Bus Input Range -7 V to 12 V
- Propagation Delay Times <16 ns
- Low Standby Power Consumption <20 μA
- Pin-Compatible Upgrade for MC3486. DS96F175, LTC489, and SN75175

description


The SN65LBC175A and SN75LBC175A are quadruple differential line receivers with 3-state outputs, designed for TIA/EIA-485 (RS-485), TIA/EIA-422 (RS-422), and ISO 8482 (Euro RS-485) applications.

These devices are optimized for balanced multipoint bus communication at data rates up to and exceeding 50 million bits per second. The transmission media may be twisted-pair cables, printed-circuit board traces, or backplanes. The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media and the noise coupling to the environment.

SN65LBC175A (Marked as 65LBC175A) SN75LBC175A (Marked as 75LBC175A) D or N PACKAGE (TOP VIEW)

logic diagram

Each receiver operates over a wide range of positive and negative common-mode input voltages, and features ESD protection to 6 kV, making it suitable for high-speed multipoint data transmission applications in harsh environments. These devices are designed using LinBiCMOS™, facilitating low power consumption and inherent robustness.

Two EN inputs provide pair-wise enable control, or these can be tied together externally to enable all four drivers with the same signal.

The SN75LBC175A is characterized for operation over the temperature range of 0°C to 70°C. The SN65LBC175A is characterized over the temperature range from -40°C to 85°C.

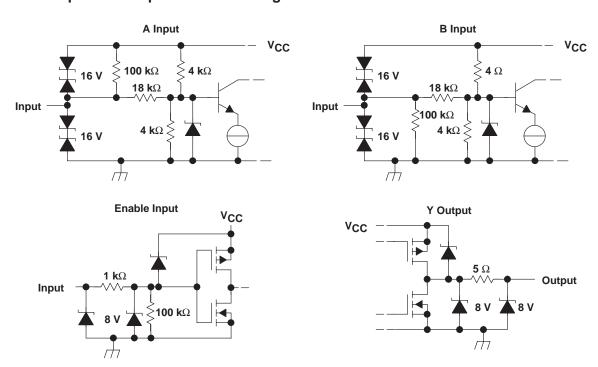
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments.

¹The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

FUNCTION TABLE (each receiver)

DIFFERENTIAL INPUTS A – B (V _{ID})	ENABLE EN	OUTPUT Y
V _{ID} ≤ -0.2 V	Н	L
-0.2 V < V _{ID} < -0.01 V	Н	?
-0.01 V ≤ V _{ID}	Н	Н
Х	L	Z
Х	OPEN	Z
Short circuit	Н	Н
Open circuit	Н	Н


H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate

AVAILABLE OPTIONS

	PACH	(AGE
TA	PLASTIC SMALL OUTLINE† (JEDEC MS-012)	PLASTIC DUAL-IN-LINE (JEDEC MS-001)
0°C to 70°C	SN75LBC175AD	SN75LBC175AN
-40°C to 85°C	SN65LBC175AD	SN65LBC175AN

[†] Add an R suffix for taped and reeled

equivalent input and output schematic diagrams

[†] For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

SN65LBC175A, SN75LBC175A QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

SLLS455C - NOVEMBER 2000 - REVISED MARCH 2009

absolute maximum ratings[†] over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC} (see Note 1) Voltage range at any bus input (steady sta	te), A and B	–10 V to 15 V
Voltage range at any bus input (transient p	oulse through 100 Ω , see Figu	re 5)
Voltage input range at 1,2EN and 3,4EN, \	/ _I	0.5 V to V _{CC} + 0.5 V
Receiver output current, I _O	·	±10 mA
Electrostatic discharge:		
Human body model (see Note 2):	A and B to GND	6 kV
	All pins	5 kV
Charged-device model (see Note 3):	All pins	
Continuous power dissipation		See Power Dissipation Rating Table

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to GND, and are steady-state (unless otherwise specified).

- 2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- 3. Tested in accordance with JEDEC Standard 22, Test Method C101.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR† ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	1080 mW	8.7 mW/°C	690 mW	560 mW	
N	1150 mW	9.2 mW/°C	736 mW	598 mW	

[†] This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
Voltage at any bus terminal	A, B	-7		12	V
High-level input voltage, VIH	EN			VCC	
Low-level input voltage, V _{IL}	EN	0		8.0	V
Output current	Υ	-8		8	mA
On another free containing T	SN75LBC175A	0		70	
Operating free-air temperature, T _A	SN65LBC175A	-40		85	°C

SN65LBC175A, SN75LBC175A QUADRUPLE RS-485 DIFFERENTIAL LINE RECEIVERS

SLLS455C - NOVEMBER 2000 - REVISED MARCH 2009

electrical characteristics over recommended operating conditions

	PARAMETE	R	TEST C	ONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{IT+}	Positive-going differential	input voltage threshold				-80	-10	
VIT-	Negative-going differentia threshold	l input voltage	$-7 \text{ V} \leq \text{V}_{CM} \leq 12 \text{ V}$ (-200	-120		mV	
V _{HYS}	Hysteresis voltage (V _{IT+}	– ∨ _{IT} _)				-40		mV
VIK	Input clamp voltage		I _I = -18 mA		-1.5	-0.8		V
VOH	High-level output voltage		V _{ID} = 200 mV, I _{OH} = -8 mA	0 5: 4	2.7	4.8		.,
VOL	Low-level output voltage		$V_{ID} = -200 \text{ mV},$ $I_{OL} = 8 \text{ mA}$	See Figure 1		0.2	0.4	V
loz	High-impedance-state ou	tput current	$V_O = 0 V \text{ to } V_{CC}$	-1		1	μΑ	
1 ₁	Line input current		Other input at 0 V, V _{CC} = 0 V or 5 V	V _I = 12 V V _I = -7 V	-0.7		0.9	mA
lн	High-level input current			•			100	μΑ
I _{IL}	Low-level input current	Enable inputs			-100			μΑ
R _I	Input resistance		A, B	A, B				kΩ
	0		V _{ID} = 5 V	1,2EN, 3,4EN at 0 V			20	mA
ICC	Supply current		No load	1,2EN, 3,4EN at V _{CC}		11	16	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C .

switching characteristics over recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
t _r	Output rise time			2	4	ns
t _f	Output fall time	V 0 0 V 0 0 V 5 0 V 0		2	4	ns
^t PLH	Propagation delay time, low-to-high level output	$V_{ID} = -3 \text{ V to } 3 \text{ V, See Figure } 2$	9	12	16	ns
^t PHL	Propagation delay time, high-to-low level output		9	12	16	ns
^t PZH	Propagation delay time, high-impedance to high-level output	0 5 0		27	38	ns
^t PHZ	Propagation delay time, high-level to high-impedance output	See Figure 3		7	16	ns
tPZL	Propagation delay time, high-impedance to low level output	One Figure 4		29	38	ns
^t PLZ	Propagation delay time, low-level to high-impedance output	See Figure 4		12	16	ns
tsk(p)	Pulse skew ((tpLH - tpHL))			0.2	1	ns
t _{sk(o)}	Output skew (see Note 4)				2	ns
tsk(pp)	Part-to-part skew (see Note 5)				2	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$ and 25°C.

NOTES: 4. Outputs skew $(t_{sk(0)})$ is the magnitude of the time delay difference between the outputs of a single device with all of the inputs

5. Part-to-part skew $(t_{Sk(pp)})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same input signals, the same supply voltages, at the same temperature, and have identical packages and test circuits.

PARAMETER MEASUREMENT INFORMATION

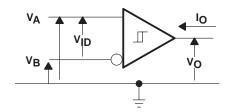


Figure 1. Voltage and Current Definitions

Figure 2. Switching Test Circuit and Waveforms

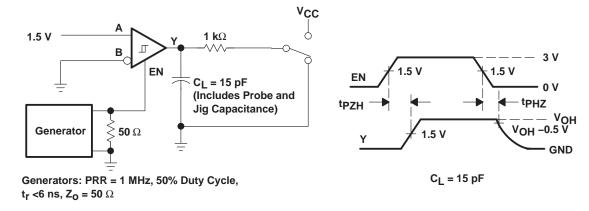
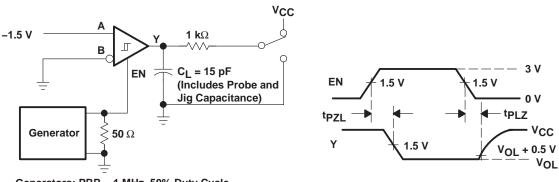
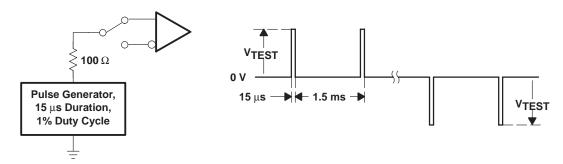
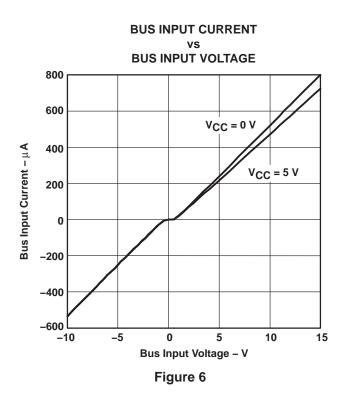
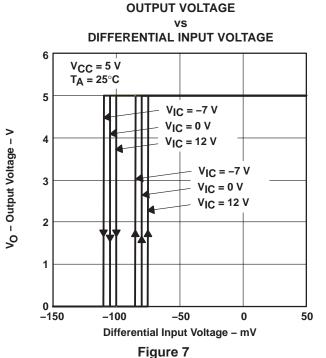
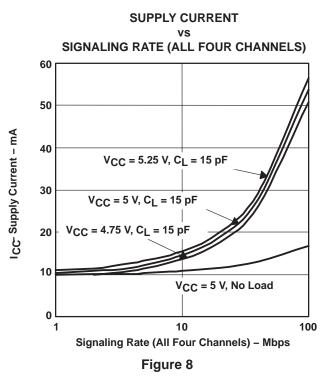



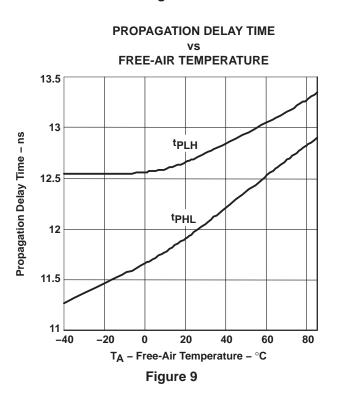
Figure 3. Test Circuit Waveforms, tPZH and tPHZ

PARAMETER MEASUREMENT INFORMATION

Generators: PRR = 1 MHz, 50% Duty Cycle, t_{r} <6 ns, $\rm Z_{O}$ = 50 $\rm \Omega$

Figure 4. Test Circuit Waveforms, tpzL and tpLZ


Figure 5. Test Circuit and Waveform, Transient Over-Voltage Test

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

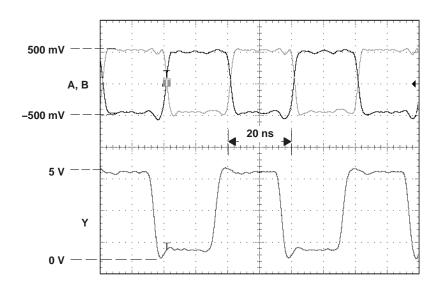


Figure 10. Receiver Inputs and Outputs, 50 Mbps Signaling Rate

APPLICATION INFORMATION

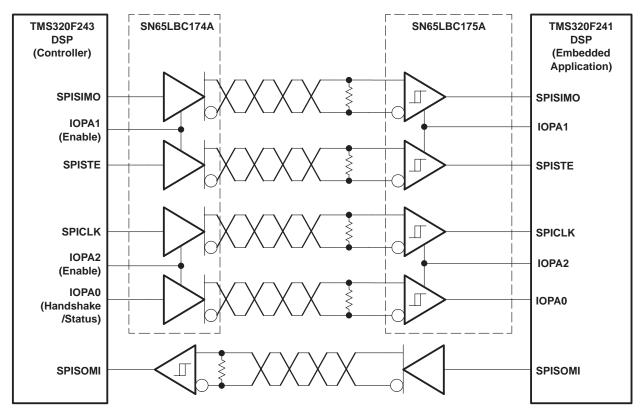


Figure 11. Typical Application Circuit, DSP-to-DSP Link via Serial Peripheral Interface

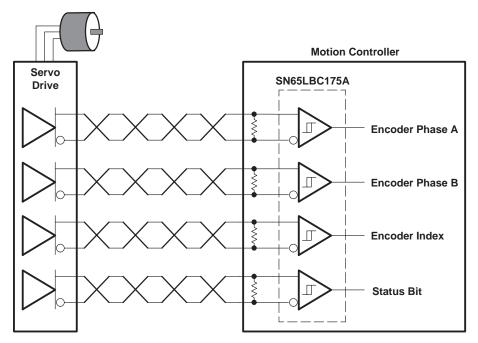


Figure 12. Typical Application Circuit, High-Speed Servomotor Encoder Interface

www.ti.com 13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN65LBC175AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175A	Samples
SN65LBC175ADG4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175A	Samples
SN65LBC175ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	65LBC175A	Samples
SN65LBC175AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 85	65LBC175A	Samples
SN75LBC175AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC175A	Samples
SN75LBC175ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LBC175A	Samples
SN75LBC175AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	75LBC175A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

www.ti.com 13-Aug-2021

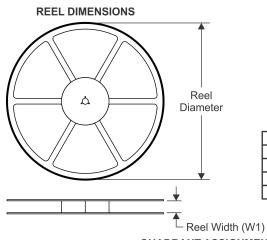
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

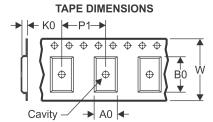
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN65LBC175A:

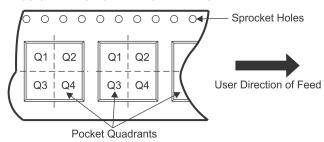
Enhanced Product: SN65LBC175A-EP


NOTE: Qualified Version Definitions:

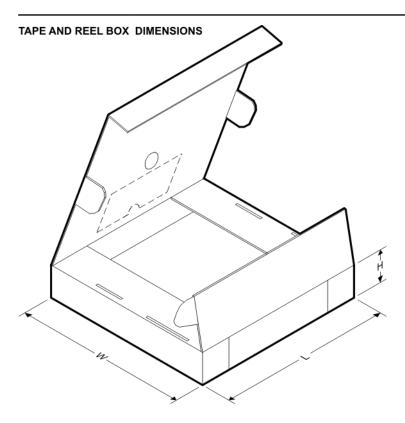

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

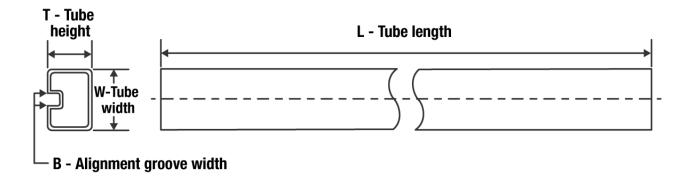
A0	
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LBC175ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN75LBC175ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 5-Jan-2022

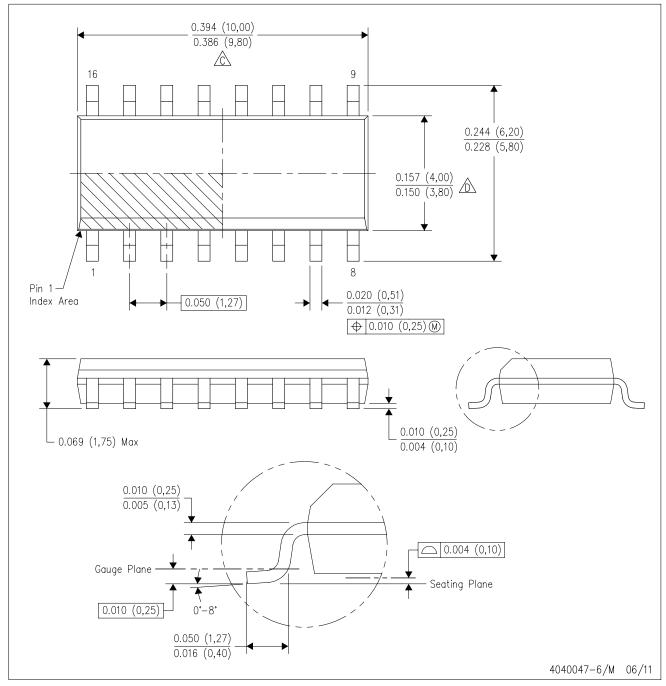

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LBC175ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN75LBC175ADR	SOIC	D	16	2500	340.5	336.1	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

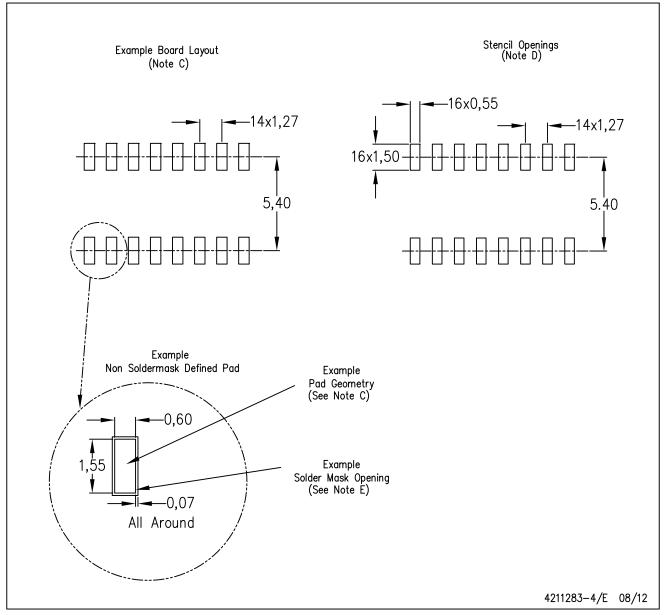


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN65LBC175AD	D	SOIC	16	40	507	8	3940	4.32
SN65LBC175ADG4	D	SOIC	16	40	507	8	3940	4.32
SN65LBC175AN	N	PDIP	16	25	506	13.97	11230	4.32
SN75LBC175AD	D	SOIC	16	40	507	8	3940	4.32
SN75LBC175AN	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

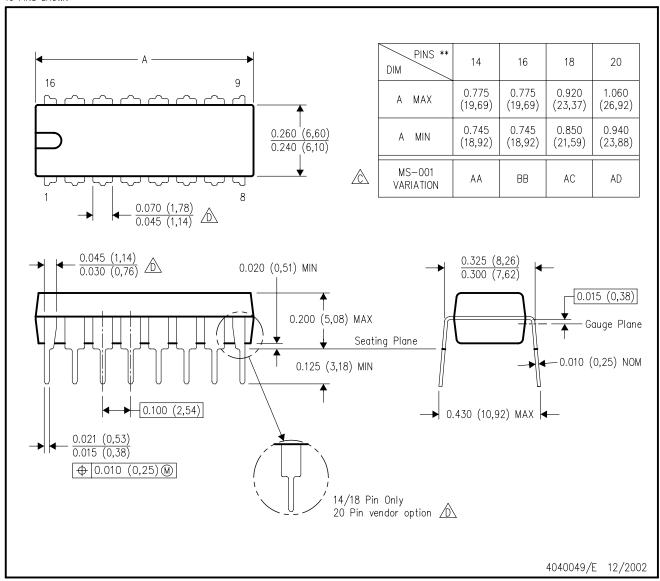

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated