

RELIABILITY REPORT

FOR

MAX8796GTJ+

PLASTIC ENCAPSULATED DEVICES

March 18, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by					
Ken Wendel					
Quality Assurance					
Director, Reliability Engineering					

Conclusion

The MAX8796GTJ+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

- I.Device Description

 V.Quality Assurance Information

 II.Manufacturing Information

 VI.Reliability Evaluation

 IV.Die Information

 Attachments
- I. Device Description
 - A. General

na

II. Manufacturing Information

A. Description/Function: Single-Phase Quick-PWM Intel IMVP6/6+/GMCH Controller

B. Process: S4

C. Number of Device Transistors: 10146D. Fabrication Location: Texas

E. Assembly Location: UTL Thailand

F. Date of Initial Production: December 19, 2007

III. Packaging Information

A. Package Type: 32-pin TQFN 5x5

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-2634
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 47°C/W
K. Single Layer Theta Jc: 1.7°C/W
L. Multi Layer Theta Ja: 29°C/W
M. Multi Layer Theta Jc: 2.7°C/W

IV. Die Information

A. Dimensions: 77 X 73 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{MTTF}$$
 = $\frac{1.83}{192 \times 4340 \times 192 \times 2}$ (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$x = 5.6 \times 10^{-9}$$

% = 5.6 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maximic.com/. Current monitor data for the S4 Process results in a FIT Rate of 0.28 @ 25C and 4.85 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PE11 die type has been found to have all pins able to withstand a HBM transient pulse of \pm -300 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of \pm -250 mA.

Table 1Reliability Evaluation Test Results

MAX8796GTJ+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	Note 1)				
,	Ta = 135°C	DC Parameters	192	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing	(Note 2)				
85/85	$Ta = 85^{\circ}C$	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stress	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data