
Voltage Transducer LV 100-300

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 300 V$

Electrical data

V _{PN} V _P	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		300 0 ± 4 33.33	50	V V mA
I _{PN} R _M	Measuring resistance	anent	\mathbf{R}_{Mmin}	$\mathbf{R}_{\mathrm{Mmax}}$	
	with ± 15 V	@ $\pm 300 \text{ V}_{\text{max}}$ @ $\pm 450 \text{ V}_{\text{max}}$	0 0	170 90	Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		50 300 V /	50 mA	mΑ
V _C V _d	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	± 15 10 + I _s 6		V mA kV

Accuracy - Dynamic performance data

\mathbf{X}_{G} Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ ± 0.7 \mathbf{e}_{L} Linearity < 0.1	% %
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ax).2 mA).3 mA µs

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	3000 : 2000	
Р	Total primary power loss	10	W
$R_{_1}$	Primary resistance @ T _A = 25°C	9	$k\Omega$
R _s	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	850	g
	Standards 1)	EN 50178	

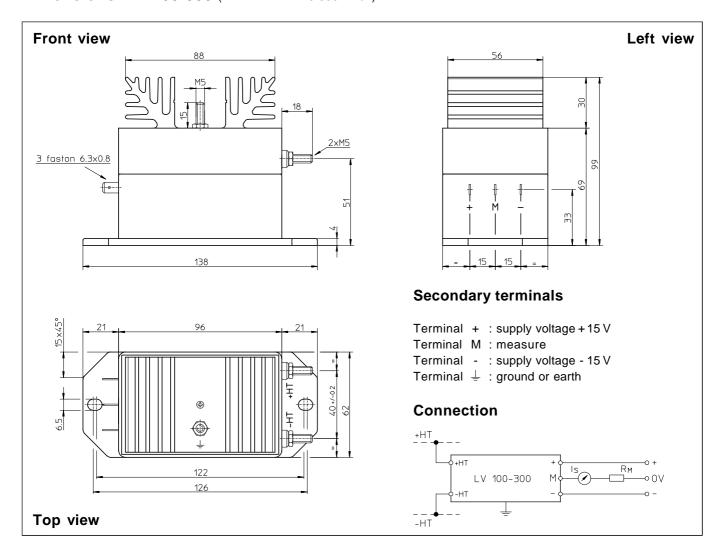
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note: 1) A list of corresponding tests is available

980709/2

Dimensions LV 100-300 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque
- ± 0.3 mm 2 holes Ø 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.