

MC34063A/MC33063A SMPS Controller

DC-to-DC Converter Control Circuits

The MC34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.

- Operation from 3.0V to 40V input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5A
- Output Voltage Adjustable
- Frequency Operation to 100kHz
- Precision 2% Reference

DC-to-DC CONVERTER CONTROL CIRCUITS SEMICONDUCTOR TECHNICAL DATA

P, P₁ SUFFIX PLASTIC PACKAGE CASE 626

D SUFFIX PLASTIC PACKAGE CASE 751 (SO-8)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC33063AD	TA=-40° to +85°C	SO-8
MC33063AP1		Plastic DIP
MC34063AVD	TA=-40° to +125°C	SO-8
MC34603AVP		Plastic DIP
MC34063AD	$TA = 0^{\circ} t_{0} + 70^{\circ}C$	SO-8
MC34063APS	TA=0 10 +70 C	Plastic DIP

Representative Schematic Diagram

This device contains 51 active transistors.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	40	V dc
Comparator Input Voltage Range	V _{IR}	-0.3 to +40	V dc
Switch Collector Voltage	V _{C(switch)}	40	V dc
Switch Emitter Voltage (V _{Pin 1} =40V)	V _{E(switch)}	40	V dc
Switch Collector to Emitter Voltage	V _{CE(switch)}	40	V dc
Driver Collector Voltage	V _{C(driver)}	40	V dc
Driver Collector current (Note 1)	I _{C(driver)}	100	mA
Switch Current	l _{sw}	1.5	А
Power Dissipation and Thermal Characteristics			
Plastic Package, P,P1 Suffix			
TA=25	PD	1.25	W
Thermal Resistance	R _{ƏJA}	100	/w
SOIC Package, D Suffix			
TA=25	PD	625	w
Thermal Resistance	R _{ƏJA}	160	/w
Operating Junction Temperature	TJ	+150	
Operating Ambient Temperature Range	T _A		
MC34063A		0 to +70	
MC33063AV		-40 to +125	
MC33063A		-40 to +85	
Storage Temperature Range	T _{stg}	-65 to +150	

NOTES: 1. Maximum package power dissipation limits must be observed.

2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0V, T_A=T_{IOW} to T_{hiah} [Note 3], unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR					
Frequency (V _{Pin 5} =0 V, C _T =10nF, T _A =25)	F osc	24	33	42	kHz
Charge Current (V _{CC} =5.0V to 40V, T _A =25)	I _{chg}	24	35	42	μA
Discharge Current (V_{CC} =5.0V to 40V, T_A =25)	I dischg	140	220	260	μA
Discharge to Charge Current Ratio (Pin 7 to V_{CC} , T_A =25)	I dischg / I chg	5.2	6.5	7.5	-
Current Limit Sense Voltage ($I_{chg} = I_{dischg}, T_A = 25$)	V ipk(sense)	250	300	350	mV

OUTPUT SWITCH (Note 4)

Saturation Voltage, Darlington Connection (Note 5)	V _{CE(sat0}	_	1.0	1.3	V
(I _{SW} =1.0A, Pins 1,8 connected)					
Saturation Voltage, Darlington Connection	V _{CE(sat)}	_	0.45	0.7	V
$(I_{SW} = 1.0A, R_{Pin 8} = 82\Omega \text{ to } V_{CC}, \text{ Forced } \hat{S}$ 20)					
DC Current Gain (I_{SW} =1.0A, V_{CE} = 5.0V, T_A =25)	h _{FE}	50	75	—	—
Collector Off-State Current (V _{CE} = 40V)	I _{C(off)}		0.01	0.01	μA

NOTES: 3. T_{low} =0 for MC34063A, -40 for MC33063A, AV Thigh = +70 for MC34063A, +85 for MC33063A, +125 for MC33063V 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤300mA) and high driver currents(≥30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies≥30kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Forced ß of output switch:

$$\frac{|C \text{ output}|}{|C \text{ driver} - 7.0 \text{ mA}^*} \ge 1$$

*The 100Ω resistor in the emitter of the driver device requires about 7.0mA before the output switch conducts.

0

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATO					
Threshold Voltage	V th				V
T _A = 25		1.225	1.25	1.275	
$T_A = T_{low}$ to T_{high}		1.21	—	1.29	
Threshold Voltage Line Regulation (V _{CC} = 3.0 V to 40V)	Regline				mV
MC33063A, MC34063A		—	1.4	5.0	
MC33363V		—	1.4	6.0	
Input Bias Current (V _{in} = 0V)	I _{IB}	—	-20	-400	nA

ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = 5.0V, TA = T low to T_{high} [Note 3], unless otherwise specified.)

TOTAL DEVICE

V_{Pin} 5 > V_{th} . Pin 2 = Gnd, remaining pins open)	Supply Current (V _{CC} = 5.0V to 40V, C_T = 1.0nF, Pin 7 = V _{CC} ,	I _{CC}	_	_	4.0	mA
	V Pin 5 > V th, Pin 2 = Gnd, remaining pins open)					

NOTES: 3. Tlow =0 for MC34063A, -40 for MC33063A, AV T_{high} = +70 for MC34063A, +85 for MC33063A, +125 for MC33063AV 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤300mA) and high driver currents(≥30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies≥30kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Forced ß of output switch:

$$\frac{IC \text{ output}}{IC \text{ driver} - 7.0 \text{ mA}^*} \ge 10$$

*The 100Ω resistor in the emitter of the driver device requires about 7.0mA before the output switch conducts.

NOTE: 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Figure 7. Step-Up Converter

Test	Conditions	Results
Line Regulation	V _{in} =8.0V to 16 V, I _O = 175mA	30mV = ±0.05%
Load Regulation	V _{in} =12V, I _O = 75mA to 175mA	10mV =±0.017%
Output Ripple	V _{in} =12V, I _O = 175mA	400mVpp
Efficiency	V _{in} =12V, I _O = 175mA	87.7%
Output Ripple With Optional Filter	V _{in} =12V, I _O = 175mA	40mVpp

Figure 8. External Current Boost Connections for I_C Peak Greater than 1.5A

NOTE: 5. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (<300mA) and high driver currents(<30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies<30kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

Figure 9. Step-Down Converter

Test	Conditions	Results
Line Regulation	V _{in} =15V to 25 V, I_{O} = 500mA	12mV = ±0.12%
Load Regulation	V _{in} =25V, I_O = 50mA to 500mA	3.0mV =±0.03%
Output Ripple	V _{in} =25V, I _O = 500mA	120mVpp
Short Circuit Current	V _{in} =25V, R _L = 0.1Ω	1.1A
Efficiency	V _{in} =25V, I _O = 500mA	83.7%
Output Ripple With Optional Filter	V _{in} =25V, I _O = 500mA	40mVpp

Figure 11.Voltage Inverting Converter

Figure 12. External Current Boost Connections for I_C Peak Greater than 1.5A

12a. External NPN Switch

12b. External PNP Saturated Switch

Figure 13. Printed Circuit Board and Component Layout (Circuits of Figures 7,9,11)

(Top view, copper foil as seen through the board from the component side)

(Top View, Component Side)

*Optional Filter.

INDUCTOR DATA

Converter	Inductance (µH)	Turns/Wire
Step-Up	170	38 Turns of #22 AWG
Step-Down	220	48 Turns of #22 AWG
Voltage-Inverting	88	28 Turns of #22 AWG

All inductors are wound on Magnetics Inc. 55117 toroidal core.

Calculation	Step–Up	Step-Down	Voltage–Inverting
t _{on} /t _{off}	$\frac{V_{out} + V_{F} - V_{in(min)}}{V_{in(min)} - V_{sat}}$	V _{out} + V _F V _{in(min)} - V _{sat} - V _{out}	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
(t _{on} + t _{off})	<u>1</u> f	$\frac{1}{f}$	$\frac{1}{f}$
toff	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$	$\frac{t_{on} + t_{off}}{\frac{t_{on}}{t_{off}} + 1}$
ton	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$	$(t_{on} + t_{off}) - t_{off}$
CT	4.0 x 10 ^{–5} t _{on}	4.0 x 10 ^{−5} t _{on}	4.0 x 10 ⁻⁵ t _{on}
^I pk(switch)	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$	^{2I} out(max)	$2I_{out(max)}\left(\frac{t_{on}}{t_{off}} + 1\right)$
R _{sc}	0.3/lpk(switch)	0.3/lpk(switch)	0.3/lpk(switch)
L(min)	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right) t_{on(max)}$	$\left(\frac{(V_{in(min)} - V_{sat} - V_{out})}{I_{pk(switch)}}\right) t_{on(max)}$	$\left(\frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}}\right) t_{on(max)}$
CO	9 Vripple(pp)	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{^{8V}ripple(pp)}$	9 Vripple(pp)

Figure 14. Design Formula Table

V sat=Saturation voltage of the output switch.

 V_F = Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

V in - Nominal input voltage.

V out - Desired output voltage, | V out | = 1.25 (1 + R2/R1)

I out – Desired output current.

 f_{min} – Minimum desired output switching frequency at the selected values of V $_{in}$ and $I_{O}.$

 $V_{ripple (pp)}$ – Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increase due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

NOTE: For further information refer to Application Note AN920A/D and AN954/D.

OUTLINE DIMENSIONS

Note:

- 1. DIMENSIONL TO CENTER OF LEAD WHEN FORMED PARALLEL
- 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M,1982.

	MILLIMETERS		MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX		
Α	9.40	10.16	0.370	0.400		
В	6.10	6.60	0.240	0.260		
С	3.94	4.45	0.155	0.175		
D	0.38	0.51	0.015	0.020		
F	1.02	1.78	0.040	0.070		
G	2.54 BSC		0.100 BSC			
Н	0.76	1.27	0.030	0.050		
J	0.20	0.30	0.008	0.012		
K	2.92	3.43	0.115	0.135		
L	7.62	BSC	0.300	BSC		
M	—	10°	_	10°		
N	0.76	1.01	0.030	0.040		

D SUFFIX PLASTIC PACKAGE CASE 751-05 (SO-8) ISSUE P

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETER.

3. DIMENSIONS A AND B DO NOTINCLUDE MOLD PROTRUSION

4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALLBE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.196
В	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.18	0.25	0.007	0.009
K	0.10	0.25	0.004	0.009
M	00	70	0 •	70
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019