

LEAD-FREE / RoHS-COMPLIANT

SURFACE-MOUNT BROADBAND BALUN

BAL-0003SMG

Features

- 500 kHz to 3 GHz 1:2 Balun (Balanced to Unbalanced Transformer)
- Transforms 50 Ω Input to 100 Ω Differential (50 Ohm Single) Output
- Tuned for Optimal Phase/Amplitude Balance
- Applications: Analog to Digital Converters, Balanced Receivers, Baseband Digital Modulation, Signal Integrity
- BAL-0003SMG.s3p

Electrical Specifications - Specifications guaranteed from -55 to +100 $^{\circ}$ C, measured in a 50 Ω system.

Parameter	Frequency Range	Min	Тур	Max
Insertion Loss as A mode converter (dB)			3.8	5
Nominal Phase Shift (Degrees)			180	
Amplitude Balance (dB)			0.3	0.8
Phase Balance (Degrees)			3	8
Common Mode Rejection (dB)	500 kHz to 3 GHz	25	35	
Isolation (dB)			9	
VSWR			1.5	
Input Power (W)				1
Risetime /Falltime (ps) ¹			17	

¹Specified as 90%/10%. Calculated from $\tau_{balun}^2 = (\tau_{out}^2 - \tau_{in}^2)$ with a 6 Gb/s input pattern.

Model Number	Description	
BAL-0003SMG	500 kHz to 3 GHz Balun, Surface Mount, LEAD-FREE/RoHS COMPLIANT	
EVAL-BAL-0003	Connectorized Evaluation Fixture, LEAD-FREE/RoHS COMPLIANT	

BAL-0003SMG

Page 2

Substrate material is 8-mil thick Rogers 4003, 1 Oz Electrodeposited Cu. I/O Pads & Ground Plane Finish is Gold Flash, 5 to 10 μ -inches, over Electroplated Nickel, 100-200 μ -inches, over Cu. See <u>BALSMG-PCB</u> for suggested PCB layout.

Evaluation Board outline

BAL-0003SMG

Page 3

Block Diagram

Single ended to differential

Differential to single ended

Fig. 1. Oscilloscope measurements of the BAL-0003SMG with a 3 Gb/s PRBS pattern. Bit pattern is measured with a 2^7 -1 PRBS input demonstrating extremely good pulse fidelity for both inverted and non-inverted output. Eye diagrams are taken with a 2^{31} -1 PRBS input demonstrating minimal eye distortion/closure afforded by the extremely low frequency operation of the balun (<500 kHz).

BAL-0003SMG

Page 4

Mixed Mode Scattering Parameters

Mixed mode scattering parameters are used to characterize differential circuits. For baluns, this means that the 0° and 180° ports become a single 100Ω differential port and the common port remains the same 50Ω common port. The two-port s-parameters of the balun are then characterized based on differential (d), common mode (c), or single-ended (s) signals. For example: Sds12 is the differential output response given a single ended input.

Fig. 2. Insertion loss as a mode converter

Fig. 3. Insertion loss as a mode converter across 50 units

Fig. 4. Return loss of a common mode signal

Fig. 5. Return loss of a differential signal

BAL-0003SMG

Page 5

Fig. 6. Reflection converted between differential and common modes

Fig. 8. Unbalanced port return loss

Fig. 7. Insertion loss of a common mode signal

Fig. 9. Low frequency Insertion loss as a mode converter across 10 units

BAL-0003SMG

Page 6

Typical Performance Scattering Parameters

Three port scattering parameters measured as three single-ended 50Ω ports showing relationship between any two ports. For example: S21 and S31, often referred to as insertion loss of a balun, is the output response on ports 2 and 3 with an input stimulus on port 1.

Fig. 10. Common to output port insertion loss and output to output port Isolation.

Fig. 12. Amplitude balance between output ports.

Fig. 11. Return loss for common port and output ports.

Fig. 13. Amplitude balance, 50 unit spread.

BAL-0003SMG

Page 7

Fig. 14. Phase balance between output ports

Fig. 16. Common mode rejection.

Fig. 18. Low Frequency Response

Fig. 15. Phase balance, 50 unit spread

Fig. 17. Common mode rejection, 50 unit spread.

BAL-0003SMG

Page 8

DC Interface

Port	Description	DC Interface Schematic	
Common Port / In (Unbalanced)	The common port is DC short to ground.	Common D	
Out 1 / 0° Port (Balanced)	The 0° port is DC short to ground.	0° Port (Balanced)	
Out 2 / 180° Port (Balanced)			

Absolute Maximum Ratings				
Parameter	Maximum Rating			
DC Current	TBD			
RF Power Handling	33 dBm			
Operating Temperature	-55°C to +100°C			
Storage Temperature	-65°C to +125°C			

BAL-0003SMG

Page 9

DATASHEET NOTES:

- 1. Specified as 90%/10%. Calculated from $\tau_{balun}^2 = (\tau_{out}^2 \tau_{in}^2)$ with a 6 Gb/s input pattern.
- 2. Sdd22: differential return loss of the differential port driven with a differential signal
 - Sdc22: differential return loss of the differential port driven with a common signal
 - Sds21: insertion loss from a single ended input to a differential output
 - Scc22: common mode return loss of the differential port driven with a common signal
 - Scd22: common mode return loss of the differential port driven with a differential signal
 - Scs21: insertion loss from a single ended input to a common output
 - Sss11: single ended return loss
 - Ssd12: insertion loss from a differential signal to single ended output
 - Ssc12: insertion loss from a common signal to single ended output

Revision History

evision rustory				
Revision code	Revision Date	Comment		
-	February 2013	Datasheet initial Release		
А	March 2019	Evaluation board outline added		
В	October 2019	Mixed Mode Scattering Parameters added		
С	April 2020	Unit Spread Graphs Added		
D	July 2020	Update Specs table & low frequency Ssd21 plot added		
E	October 2020	Update Specs table		

Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice. Marki Microwave makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use of or application of any product.