LEAD-FREE / RoHS-COMPLIANT
 SURFACE-MOUNT BROADBAND BALUN

Features

- 500 kHz to 3 GHz 1:2 Balun (Balanced to Unbalanced Transformer)
- Transforms 50Ω Input to 100Ω Differential (50 Ohm Single) Output
- Tuned for Optimal Phase/Amplitude Balance
- Applications: Analog to Digital Converters, Balanced Receivers, Baseband Digital Modulation, Signal Integrity

- BAL-0003SMG.s3p

Electrical Specifications - Specifications guaranteed from -55 to $+100^{\circ} \mathrm{C}$, measured in a 50Ω system.

Parameter	Frequency Range	Min	Typ	Max
Insertion Loss as A mode converter (dB)	500 kHz to 3 GHz		3.8	5
Nominal Phase Shift (Degrees)			180	
Amplitude Balance (dB)			0.3	0.8
Phase Balance (Degrees)			3	8
Common Mode Rejection (dB)		25	35	
Isolation (dB)			9	
VSWR			1.5	
Input Power (W)				1
Risetime /Falltime (ps) ${ }^{1}$			17	

${ }^{1}$ Specified as $90 \% / 10 \%$. Calculated from $\tau_{\text {balun }}{ }^{2}=\left(\tau_{\text {out }}{ }^{2}-\tau_{\text {in }}{ }^{2}\right)$ with a $6 \mathrm{~Gb} / \mathrm{s}$ input pattern.

Model Number	Description
BAL-0003SMG	500 kHz to 3 GHz Balun, Surface Mount, LEAD-FREE/RoHS COMPLIANT
EVAL-BAL-0003	Connectorized Evaluation Fixture, LEAD-FREE/RoHS COMPLIANT

SURFACE-MOUNT BROADBAND BALUN

Page 2

Substrate material is 8 -mil thick Rogers 4003, 1 Oz Electrodeposited Cu. I/O Pads \& Ground Plane Finish is Gold Flash, 5 to 10μ inches, over Electroplated Nickel, 100-200 μ-inches, over Cu. See BALSMG-PCB for suggested PCB layout.

Evaluation Board outline

SURFACE-MOUNT BROADBAND BALUN
BAL-0003SMG

Page 3

Block Diagram

Single ended to differential
Differential to single ended

Fig. 1. Oscilloscope measurements of the BAL-0003SMG with a $3 \mathrm{~Gb} / \mathrm{s}$ PRBS pattern. Bit pattern is measured with a $2^{7}-1$ PRBS input demonstrating extremely good pulse fidelity for both inverted and non-inverted output. Eye diagrams are taken with a $2^{31}-1$ PRBS input demonstrating minimal eye distortion/closure afforded by the extremely low frequency operation of the balun (<500 kHz).

SURFACE-MOUNT BROADBAND BALUN

Page 4

Mixed Mode Scattering Parameters

Mixed mode scattering parameters are used to characterize differential circuits. For baluns, this means that the 0° and 180° ports become a single 100Ω differential port and the common port remains the same 50Ω common port. The two-port s-parameters of the balun are then characterized based on differential (d), common mode (c), or single-ended (s) signals. For example: Sds12 is the differential output response given a single ended input.

Fig. 2. Insertion loss as a mode converter

Fig. 4. Return loss of a common mode signal

Fig. 3. Insertion loss as a mode converter across 50 units

Fig. 5. Return loss of a differential signal

SURFACE-MOUNT BROADBAND BALUN
BAL-0003SMG

Page 5

Fig. 6. Reflection converted between differential and common modes

Fig. 8. Unbalanced port return loss

Fig. 7. Insertion loss of a common mode signal

Fig. 9. Low frequency Insertion loss as a mode converter across 10 units

SURFACE-MOUNT BROADBAND BALUN
BAL-0003SMG

Page 6

Typical Performance Scattering Parameters

Three port scattering parameters measured as three single-ended 50Ω ports showing relationship between any two ports. For example: S21 and S31, often referred to as insertion loss of a balun, is the output response on ports 2 and 3 with an input stimulus on port 1.

Fig. 10. Common to output port insertion loss and output to output port Isolation.

Fig. 12. Amplitude balance between output ports.

Fig. 11. Return loss for common port and output ports.

Fig. 13. Amplitude balance, 50 unit spread.

Page 7

Fig. 14. Phase balance between output ports

Fig. 16. Common mode rejection.

Fig. 18. Low Frequency Response

Fig. 15. Phase balance, 50 unit spread

Fig. 17. Common mode rejection, 50 unit spread.

SURFACE-MOUNT BROADBAND BALUN

Page 8

DC Interface

Port	Description	DC Interface Schematic
Common Port $/$ In (Unbalanced)	The common port is DC short to ground.	Common Port (Unbalanced)
Out $1 / 0^{\circ}$ Port (Balanced)	The 0° port is DC short to ground.	
Out $2 / 180^{\circ}$ Port (Balanced)	The 180° port is DC short to ground.	

Absolute Maximum Ratings	
Parameter	Maximum Rating
DC Current	TBD
RF Power Handling	33 dBm
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SURFACE-MOUNT BROADBAND BALUN

Page 9

DATASHEET NOTES:

1. Specified as $90 \% / 10 \%$. Calculated from $\tau_{\text {balun }}{ }^{2}=\left(\tau_{\text {out }}{ }^{2}-\tau_{\text {in }}{ }^{2}\right)$ with a $6 \mathrm{~Gb} / \mathrm{s}$ input pattern.
2. Sdd22: differential return loss of the differential port driven with a differential signal

Sdc22: differential return loss of the differential port driven with a common signal
Sds21: insertion loss from a single ended input to a differential output
Scc22: common mode return loss of the differential port driven with a common signal
Scd22: common mode return loss of the differential port driven with a differential signal
Scs21: insertion loss from a single ended input to a common output
Sss11: single ended return loss
Ssd12: insertion loss from a differential signal to single ended output
Ssc12: insertion loss from a common signal to single ended output

Revision History

Revision code	Revision Date	Comment
-	February 2013	Datasheet initial Release
A	March 2019	Evaluation board outline added
B	October 2019	Mixed Mode Scattering Parameters added
C	April 2020	Unit Spread Graphs Added
D	July 2020	Update Specs table \& low frequency Ssd21 plot added
E	October 2020	Update Specs table

