DESCRIPTION

The M37271MF-XXXSP is a single-chip microcomputer designed with CMOS silicon gate technology. It is housed in a 52-pin shrink plastic molded DIP.
In addition to their simple instruction sets, the ROM, RAM and I/O addresses are placed on the same memory map to enable easy programming.
The M37271MF-XXXSP has a OSD function and a data slicer function, so it is useful for a channel selection system for TV with a closed caption decoder. The features of the M37271EF-XXXSP and the M37271EFSP are similar to those of the M37271MF-XXXSP except that these chips have a built-in PROM which can be written electrically.

FEATURES

- Number of basic instructions ... 71
- Memory size
ROM
60 K bytes

RAM.
1024 bytes
ROM for OSD 14464 bytes
RAM for OSD
1920 bytes

- The minimum instruction execution time
.. $0.5 \mu \mathrm{~s}$ (at 8 MHz oscillation frequency)
- Power source voltage
$5 \mathrm{~V} \pm 10 \%$
- Subroutine nesting ... 128 levels (Max.)
- Interrupts 18 types, 16 vectors
- 8-bit timers .6
- Programmable I/O ports (Ports P0, P1, P2, P30, P31) 26
- Input ports (Ports P40-P46, P63, P64) ... 9
- Output ports (Ports P52-P55) ... 4
- 12 V withstand ports ... 11
- LED drive ports ... 2
- Serial I/O ... 8-bit $\times 1$ channel
- Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface 1 (2 systems)
- A-D converter (8-bit resolution) 4 channels
- PWM output circuit 8 -bit $\times 7$
- Interrupt interval determination circuit .. 1
- Power dissipation

In high-speed mode ... 165mW
(at Vcc $=5.5 \mathrm{~V}, 8 \mathrm{MHz}$ oscillation frequency, CRT on, and Data slicer on)
In low-speed mode 0.33 mW (at Vcc $=5.5 \mathrm{~V}, 32 \mathrm{kHz}$ oscillation frequency)

- Data slicer
- OSD function

Display characters
40 characters $\times 16$ lines
Kinds of characters \qquad 320 kinds
(In EXOSD mode, they can be combined with 32 kinds of extra
fonts)
Dot structure .. CC mode : 16×26 dots
OSD mode : 16×20 dots
EXOSD mode : 16×26 dots
Kinds of character sizes \qquad . CC mode : 2 types OSD mode : 14 types EXOSD mode : 6 types
It can be specified by a character unit (maximum 7 kinds).
Character font coloring, character background coloring
It can be specified by a screen unit (maximum 7 kinds).
Extra font coloring, raster coloring, border coloring
Kinds of character colors . \qquad CC mode : 7 kinds ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) OSD mode : 15 kinds ($\mathrm{R}, \mathrm{G}, \mathrm{B}, \mathrm{I}$) EXOSD mode : 7 kinds (R, G, B, I1, I2)
Display position
Horizontal.
256 levels
Vertical ... 1024 levels
Attribute CC mode : smooth italic, underline, flash OSD mode : border EXOSD mode : border, extra font (32 kinds)
Automatic solid space function
Window function
Dual layer OSD function

APPLICATION

TV with a closed caption decoder

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

PIN CONFIGURATION (TOP VIEW)

Outline 52P4B

FUNCTIONS

Parameter			Functions
Number of basic instructions			71
Instruction execution time			$0.5 \mu \mathrm{~s}$ (the minimum instruction execution time, at 8 MHz oscillation frequency)
Clock frequency			8 MHz (maximum)
Memory size	ROM		60 K bytes
	RAM		1024 bytes
	OSD ROM		14464 bytes
	OSD RAM		1920 bytes
Input/Output ports	$\begin{aligned} & \mathrm{PO} 0-\mathrm{PO} 2, \\ & \mathrm{P} 04-\mathrm{PO} 07 \end{aligned}$	I/O	7-bit $\times 1$ (N -channel open-drain output structure, can be used as PWM output pins)
	P03	I/O	1-bit $\times 1$ (CMOS input/output structure)
	P10, P15-P17	I/O	4 -bit $\times 1$ (CMOS input/output structure, can be used as OSD output pin, INT input pin, serial input pin)
	P11-P14	I/O	4-bit $\times 1$ (N-channel open-drain output structure, can be used as multimaster $\mathrm{I}^{2} \mathrm{C}$-BUS interface)
	P2	I/O	8 -bit $\times 1$ (CMOS input/output structure, can be used as A-D input pins)
	P30, P31	I/O	2 -bit $\times 1$ (CMOS input/output structure)
	P40-P44	Input	5 -bit $\times 1$ (can be used as A-D input pins, INT input pins, external clock input pins)
	P45, P46	Input	2-bit $\times 1$ (N -channel open-drain output structure when serial I/O is used, can be used as serial I/O pins)
	P52-P55	Output	4-bit $\times 1$ (CMOS output structure, can be used as OSD output)
	P63	Input	1 -bit $\times 1$ (can be used as sub-clock input pin, OSD clock input pin)
	P64	Input	1 -bit $\times 1$ (CMOS output structure when LC is oscillating, can be used as sub-clock output pin, OSD clock output pin)
Serial I/O			8-bit $\times 1$
Multi-master ${ }^{2} \mathrm{C}$-BUS interface			1
A-D converter			4 channels (8-bit resolution)
PWM output circuit			8-bit $\times 7$
Timers			8-bit timer $\times 6$
Subroutine nesting			128 levels (maximum)
Interrupt interval determination circuit			1
Interrupt			External interrupt $\times 3$, Internal timer interrupt $\times 6$, Serial I/O interrupt $\times 1$, OSD interrupt $\times 1$, Multi-master $I^{2} \mathrm{C}$-BUS interface interrupt $\times 1$, Data slicer interrupt $\times 1, f($ XIN $) / 4092$ interrupt $\times 1$, VSYNC interrupt $\times 1$, AD conversion interrupt $\times 1$, BRK instruction interrupt $\times 1$
Clock generating circuit			2 built-in circuits (externally connected a ceramic resonator or a quartzcrystal oscillator)
Data slicer			Built in

FUNCTIONS (continued)

OSD function		Number of display characters		40 characters $\times 16$ lines
		Dot structure		CC mode: 16×26 dots (character part : 16×20 dots) OSD mode: 16×20 dots EXOSD mode: 16×26 dots
		Kinds of characters		320 kinds (In EXOSDmode, they can be combined with 32 kinds of extra fonts)
		Kinds of character sizes		CC mode: 2 kinds OSD mode: 14 kinds EXOSD mode: 6 kinds
		Kinds of character colors		CC mode: 7 kinds (R, G, B) OSD mode: 15 kinds ($\mathrm{R}, \mathrm{G}, \mathrm{B}, \mathrm{I}$) EXOSD mode: 7 kinds (R, G, B, I1, I2)
		Display position (horizontal, vertical)		256 levels (horizontal) $\times 1024$ levels (vertical)
Power source voltage				$5 \mathrm{~V} \pm 10$ \%
Power dissipation	In high-speed mode	d OSD ON	Data slicer ON	165 mW typ. (at oscillation frequency fCPU $=8 \mathrm{MHz}$, foSD $=13 \mathrm{MHz}$)
		OSD OFF	Data slicer OFF	82.5 mW typ. (at oscillation frequency fCPU $=8 \mathrm{MHz}$)
	In low-speed mode	O OSD OFF	Data slicer OFF	0.33 mW typ. (at oscillation frequency fcLk $=32 \mathrm{kHz}, \mathrm{f}(\mathrm{XIN})=$ stopped)
	In stop mode			0.055 mW (maximum)
Operating temperature range				$-10^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$
Device structure				CMOS silicon gate process
Package				52-pin shrink plastic molded DIP

PIN DESCRIPTION

Pin	Name	Input/ Output	Name
Vcc, AVcc, Vss.	Power source		Apply voltage of $5 \mathrm{~V} \pm 10 \%$ (typical) to Vcc and AVcc, and 0 V to Vss.
CNVss	CNVss		This is connected to Vss.
RESET	Reset input	Input	To enter the reset state, the reset input pin must be kept at a " L " for 2μ s or more (under normal Vcc conditions). If more time is needed for the quartz-crystal oscillator to stabilize, this " L " condition should be maintained for the required time.
XIN	Clock input	Input	This chip has an internal clock generating circuit. To control generating frequency, an external ceramic resonator or a quartz-crystal oscillator is connected between pins XIN and
XOUT	Clock output	Output	Xout. If an external clock is used, the clock source should be connected to the XIN pin and the Xout pin should be left open.
P00/PWM4PO2/PWM6, P03, P04/PWM0P07/PWM3	I/O port P0	I/O	Port P0 is an 8-bit I/O port with direction register allowing each I/O bit to be individually programmed as input or output. At reset, this port is set to input mode. The output structure of PO 3 is CMOS output, that of $\mathrm{P} 00-\mathrm{PO} 2$ and $\mathrm{P} 04-\mathrm{P} 07$ are N -channel open-drain output. The note out of this Table gives a full of port P0 function.
	PWM output	Output	Pins P00-P02 and P04-P07 are also used as PWM output pins PWM4-PWM6 and PWM0PWM3 respectively. The output structure is N -channel open-drain output.
$\begin{array}{\|l} \text { P10/OUT2, } \\ \text { P11/SCL1, } \\ \text { P12/SCL2, } \\ \text { P13/SDA1, } \\ \text { P14/SDA2, } \\ \text { P15/I1, } \\ \text { P16/I2/INT3, } \\ \text { P17/SIN } \end{array}$	I/O port P1	I/O	Port P1 is an 8-bit I/O port and has basically the same functions as port P0. The output structure of P 10 and $\mathrm{P} 15-\mathrm{P} 17$ is CMOS output, that of $\mathrm{P} 11-\mathrm{P} 14$ is N -channel open-drain output.
	OSD output	Output	Pins P10, P15, P16 are also used as OSD output pins OUT2, I1, I2 respectively. The output structure is CMOS output.
	Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface	Output	Pins P11-P14 are used as SCL1, SCL2, SDA1 and SDA2 respectively, when multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface is used. The output structure is N -channel open-drain output.
	Serial I/O data input	Input	P 17 pin is also used as serial I/O data input pin SIN.
$\begin{aligned} & \text { P20-P23 } \\ & \text { P24/AD3- } \\ & \text { P26/AD1, } \\ & \text { P27 } \end{aligned}$	I/O port P2	I/O	Port P2 is an 8-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output.
	Analog input	Input	Pins P24-P26 are also used as analog input pins AD3-AD1 respectively.
P30, P31	I/O port P3	I/O	Ports P30 and P31 are a 2-bit I/O port and has basically the same functions as port P0. The output structure is CMOS output.
$\begin{aligned} & \text { P4o/AD4, } \\ & \text { P41/INT2, } \\ & \text { P42/TIM2, } \\ & \text { P43/TIM3, } \\ & \text { P44/INT1, } \\ & \text { P45/Sout, } \\ & \text { P46/ScLK, } \end{aligned}$	Input port P4	Input	Ports P40-P46 are a 7-bit input port.
	Analog input	Input	P 40 pin is also used as analog input pin AD4.
	External interrupt input	Input	Pins P41, P44 are also used as external interrupt input INT2, INT1.
	External clock input	Input	Pins P42 and P43 are also used as external clock input pins TIM2, TIM3 respectively.
	Serial I/O data output	Output	P 45 pin is used as serial I/O data output pin Sout. The output structure is N -channel opendrain output.
	Serial I/O synchronizing clock input/output	I/O	P46 pin is used as serial I/O synchronizing clock input/output pin ScLK. The output structure is N -channel open-drain output.
P52/R,P53/G, P54/B, P55/OUT1	Output port P5	Output	Ports P52-P55 are a 4-bit output port. The output structure is CMOS output.
	OSD output	Output	Pins P52-P55 are also used as OSD output pins R, G, B, OUT1 respectively.

PIN DESCRIPTION (continued)

P63/OSC1/ Xcin, P64/OSC2/ Xcout	Input port	Input	Ports P63 and P64 are 2-bit input port.
	Clock input for OSD	Input	P63 pin is also used as OSD clock input pin OSC1.
	Clock output for OSD	Output	P64 pin is also used as OSD clock output pin OSC2. The output structure is CMOS output.
	Sub-clock output	Output	P64 pin is also used as sub-clock output pin Xcout. The output structure is CMOS output.
	Sub-clock input	Input	P63 pin is also used as sub-clock input pin XCIN.
CVIN	I/O for data slicer	Input	Input composite video signal through a capacitor.
Vhold		Input	Connect a capacitor between Vhold and Vss.
RVCO			Connect a resistor between RVCO and Vss.
HLF			Connect a filter using of a capacitor and a resistor between HLF and Vss.
Hsync	Hsync input	Input	This is a horizontal synchronizing signal input for OSD.
Vsync	Vsync input	Input	This is a vertical synchronizing signal input for OSD.

Note : As shown in the memory map (Figure 3), port P0 is accessed as a memory at address 00C016 of zero page. Port P0 has the port P0 direction register (address 00C116 of zero page) which can be used to program each bit as an input ("0") or an output ("1"). The pins programmed as " 1 " in the direction register are output pins. When pins are programmed as " 0 ," they are input pins. When pins are programmed as output pins, the output data are written into the port latch and then output. When data is read from the output pins, the output pin level is not read but the data of the port latch is read. This allows a previously-output value to be read correctly even if the output "L" voltage has risen, for example, because a light emitting diode was directly driven. The input pins are in the floating state, so the values of the pins can be read. When data is written into the input pin, it is written only into the port latch, while the pin remains in the floating state.

FUNCTIONAL DESCRIPTION

Central Processing Unit (CPU)

The M37271MF-XXXSP uses the standard 740 family instruction set. Refer to the table of 740 family addressing modes and machine instructions or the SERIES 740 < Software > User's Manual for details on the instruction set.
Machine-resident 740 family instructions are as follows:
The FST, SLW instruction cannot be used.
The MUL, DIV, WIT and STP instruction can be used.

CPU Mode Register

The CPU mode register contains the stack page selection bit and internal system clock selection bit. The CPU mode register is allocated at address 00FB16.

Note: Please beware of this bit when programming because it is set to " 1 " after the reset release.

Fig. 1. Structure of CPU mode register

MEMORY

Special Function Register (SFR) Area

The special function register (SFR) area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

ROM is used for storing user programs as well as the interrupt vector area.

RAM for OSD

RAM for display is used for specifying the character codes and colors to display.

ROM for OSD

ROM for display is used for storing character data.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

The 256 bytes from addresses 000016 to 00FF16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

Fig. 2. Memory map

SFR1 area (addresses CO_{16} to DF_{16})

: Nothing is allocated

: Fix this bit to " 0 " (do not write " 1 ")
0 : "0" immediately after reset
? : undefined immediately after reset

Address
 Register

C016 Port P0 (P0)
C1 ${ }_{16}$ Port P0 direction register (D0)
C216 Port P1 (P1)
C316 Port P1 direction register (D1)
C416 Port P2 (P2)
C516 Port P2 direction register (D2)
C616 Port P3 (P3)
C716 Port P3 direction register (D3)
C816 Port P4 (P4)
C916 Port P4 direction register (D4)
CA16 Port P5 (P5)
CB16 OSD port control register (PF)
CC16 Port P6 (P6)
CD16
CE16 OSD control register (OC)
CF16 Horizontal position register (HP)
D016 Block control register $1\left(\mathrm{BC}_{1}\right)$
D1 16 Block control register $2\left(\mathrm{BC}_{2}\right)$
D216 Block control register $3\left(\mathrm{BC}_{3}\right)$
D316 Block control register $4\left(\mathrm{BC}_{4}\right)$
D416 Block control register $5\left(\mathrm{BC}_{5}\right)$
D516 Block control register $6\left(\mathrm{BC}_{6}\right)$
D616 Block control register $7\left(\mathrm{BC}_{7}\right)$
D716 Block control register $8\left(\mathrm{BC}_{8}\right)$
D816 Block control register $9\left(\mathrm{BC}_{9}\right)$
D916 Block control register $10\left(\mathrm{BC}_{10}\right)$
DA16 Block control register $11\left(\mathrm{BC}_{11}\right)$
DB16 Block control register $12\left(\mathrm{BC}_{12}\right)$
DC16 Block control register $13\left(\mathrm{BC}_{13}\right)$
DD16 Block control register $14\left(\mathrm{BC}_{14}\right)$
DE16 Block control register $15\left(\mathrm{BC}_{15}\right)$
DF16 Block control register $16\left(\mathrm{BC}_{16}\right)$

Fig. 3. Memory map of special function register 1 (SFR1) (1)

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

-SFR1 area (addresses E016 to FF_{16})

: Fix this bit to " 0 " (do not write " 1 ")
: Fix this bit to " 1 " (do not write " 0 ")
0 : "0" immediately after reset
1 : "1" immediately after reset
? : undefined immediately after reset

Fig. 4. Memory map of special function register 1 (SFR2) (2)

SFR2 area (addresses 20016 to 21F16)

\square : Nothing is allocated
: Fix this bit to " 0 " (do not write " 1 ")
0 : "0" immediately after reset
: "1" immediately after reset
? : undefined immediately after reset

Fig. 5. Memory map of special function register 2 (SFR2) (1)

SFR2 area (addresses 22016 to $23 F_{16}$)

\square : Nothing is allocated: undefined immediately after reset

Address
 Register

22016 Vertical position register $1_{1}\left(\mathrm{VP1}_{1}\right)$
22116 Vertical position register $1_{2}\left(\mathrm{VP1}_{2}\right)$
22216 Vertical position register $1_{3}\left(\mathrm{VP1}_{3}\right)$
22316 Vertical position register $1_{4}\left(\mathrm{VP1}_{4}\right)$
22416 Vertical position register $1_{5}\left(\mathrm{VP1}_{5}\right)$
22516 Vertical position register $1_{6}\left(\mathrm{VP1}_{6}\right)$
22616 Vertical position register $1_{7}\left(\mathrm{VP1}_{7}\right)$
22716 Vertical position register $1_{8}\left(\mathrm{VP1}_{8}\right)$
22816 Vertical position register $1_{9}\left(\mathrm{VP}_{9}\right)$
22916 Vertical position register $1_{10}\left(\mathrm{VP1}_{10}\right)$
22A16 Vertical position register $1_{11}\left(\mathrm{VP1}_{11}\right)$
22B16 Vertical position register $1_{12}\left(\mathrm{VP1}_{12}\right)$
22C16 Vertical position register $1_{13}\left(\mathrm{VP1}_{13}\right)$
22D16 Vertical position register $1_{14}\left(\mathrm{VP1}_{14}\right)$
22E16 Vertical position register $1_{15}\left(\mathrm{VP1}_{15}\right)$
22F16 Vertical position register $1_{16}\left(\mathrm{VP1}_{16}\right)$
23016 Vertical position register 2 ${ }_{1}\left(\mathrm{VP2}_{1}\right)$
23116 Vertical position register $2_{2}\left(\mathrm{VP2}_{2}\right)$
23216 Vertical position register $2_{3}\left(\mathrm{VP2}_{3}\right)$
23316 Vertical position register $2_{4}\left(\mathrm{VP}_{4}\right)$
23416 Vertical position register $2_{5}\left(\mathrm{VP}_{5}\right)$
23516 Vertical position register $2_{6}\left(\mathrm{VP}_{6}\right)$
23616 Vertical position register $2_{7}\left(\mathrm{VP}_{7}\right)$
23716 Vertical position register $2_{8}\left(\mathrm{VP2}_{8}\right)$
23816 Vertical position register $2_{9}\left(\mathrm{VP}_{9}\right)$
23916 Vertical position register $2_{10}\left(\mathrm{VP}_{10}\right)$
23A16 Vertical position register $2_{11}\left(\mathrm{VP}_{11}\right)$
23B16 Vertical position register $2_{12}\left(\mathrm{VP2}_{12}\right)$
23C16 Vertical position register $2_{13}\left(\mathrm{VP2}_{13}\right)$
23D16 Vertical position register $2_{14}\left(\mathrm{VP2}_{14}\right)$
23E16 Vertical position register $2_{15}\left(\mathrm{VP}_{15}\right)$
23F16 Vertical position register $2_{16}\left(\mathrm{VP}_{16}\right)$

Bit allocation
b7

State immediately after reset
b7 ${ }^{\text {b0 }}$

VP1, 8	$\mathrm{VP}_{1} 7$	VP1, 6	VP1, 5	VP1, 4	VP1 ${ }_{1} 3$	VP1 1_{2} VP1, 1	?							
$\mathrm{VP1}_{2} 8$	$\mathrm{VP}_{2} 7$	$\mathrm{VP1}_{2} 6$	$V P 1_{2} 5$	$\mathrm{VP1}_{2} 4$	$\mathrm{VP1}_{2} 3$	 $\mathrm{VP}_{2} 2$ $\mathrm{PP}_{2} 1$?							
$\mathrm{VP1}_{3} 8$	$\mathrm{VP1}_{3} 7$	$\mathrm{VP1}_{3} 6$	$\mathrm{VP1}_{3} 5$	$\mathrm{VP1}_{3} 4$	$\mathrm{VP1}_{3} 3$	 $\mathrm{VP1}_{3} 2$ $\mathrm{VP1}_{3} 1$?							
$\mathrm{VP1}_{4} 8$	$\mathrm{VP1}_{4}{ }^{7}$	$\mathrm{VP1}_{4} 6$	$\mathrm{VP1}_{4} 5$	$\mathrm{VP1}_{4} 4$	$\mathrm{VP1}_{4} 3$	 $\mathrm{VP}_{4}{ }^{2}$ $\mathrm{VP1} 1_{4}$	$?$							
$\mathrm{VP1}_{5} 8$	$\mathrm{VP}_{5} 7$	$\mathrm{VP1}_{5} 6$	$\mathrm{VP}_{5} 5$	$\mathrm{VP1}_{5} 4$	$\mathrm{VP1}_{5} 3$	$\mathrm{VP1}_{5} 2 \mathrm{VP1}_{5}^{1} 1$	$?$							
$\mathrm{VP1}_{6} 8$	$\mathrm{VP1}_{6} 7$	$\mathrm{VP1}_{6} 6$	$\mathrm{VP1}_{6} 5$	$\mathrm{VP1}_{6} 4$	$\mathrm{VP1}_{6} 3$	 $\mathrm{VP1}_{6} 2$ $\mathrm{VP1}_{6} 1$?							
$\mathrm{VP1}_{7} 8$	$\mathrm{VP}_{7} 7$	$\mathrm{VP1}_{7} 6$	$\mathrm{VP1}_{7} 5$	$\mathrm{VP1}_{7} 4$	$\mathrm{VP1}_{7} 3$	 $\mathrm{VP}_{7} 2$ $\mathrm{VP1}_{7} 1$?							
$\mathrm{VP1}_{8} 8$	$\mathrm{VP}_{8} 7$	$\mathrm{VP1}_{8} 6$	$\mathrm{VP1}_{8} 5$	$\mathrm{VP1}_{8} 4$	$\mathrm{VP1}_{8} 3$	$\mathrm{VP1}_{8} \mathrm{VPP}_{81}^{1}$?							
VP198	$\mathrm{VP1}_{9} 7$	VP19 6	$\mathrm{VP1}_{9} 5$	$\mathrm{VP1}_{9} 4$	$\mathrm{VP1}_{9} 3$	VP192 ${ }^{2} \mathrm{VP1}_{9} 1$?							
$\mathrm{VP1}_{10}{ }^{8}$	$\mathrm{VP1}_{10}{ }^{7}$	$\mathrm{VP1}_{10}{ }^{6}$	$\mathrm{VP1}_{10} 5$	${\mathrm{VP} 11_{10} 4}^{4}$	$\mathrm{VP1}_{10} 3$	$\mathrm{VP1}_{10} \mathrm{I}^{2} \mathrm{VP1}_{10} 0^{1}$?							
$\mathrm{VP1}_{11} 8$	$\mathrm{VP1}_{11}{ }^{1}$	$\mathrm{VP1}_{11} 6$	$\mathrm{VP1}_{11} 5$	$\mathrm{VP}_{11}{ }^{4}$	$\mathrm{VP1}_{11}{ }^{3}$	$\mathrm{VP1}_{11} 2 \mathrm{VP1}_{11} 1$?							
$\mathrm{VP1}_{12}{ }^{8}$	$\mathrm{VP1}_{12} 7$	$\mathrm{VP1}_{12}{ }^{6}$	$\mathrm{VP1}_{12} 5$		$\mathrm{VP1}_{12} 3$	$\mathrm{VP1}_{12} \mathrm{~V}^{2}{\mathrm{VP} 1_{12}{ }^{1}}^{1}$?							
$\mathrm{VP1}_{13}{ }^{8}$	$\mathrm{VP1}_{13}{ }^{3}$	$\mathrm{VP1}_{13} 6$	$\mathrm{VP1}_{13} 5$	$\mathrm{VP1}_{13}{ }^{4}$	$\mathrm{VP1}_{13} 3$	$\mathrm{VP1}_{13} \mathrm{~V}^{2} \mathrm{VP1}_{13}{ }^{1}$?							
$\mathrm{VP1}_{14} 8$	$\mathrm{VP1}_{14}{ }^{4}$	$\mathrm{VP1}_{14} 6$	$\mathrm{VP1}_{14} 5$	$\mathrm{VP}_{14}{ }^{4}$	$\mathrm{VP1}_{14}{ }^{3}$	$\mathrm{VP1}_{14} \mathrm{I}^{2} \mathrm{VP1}_{14}{ }^{1}$?							
$\mathrm{VP1}_{15}{ }^{8}$	$\mathrm{VPP}_{15}{ }^{5}$	$\mathrm{VP1}_{15}{ }^{6}$	$\mathrm{VP1}_{15} 5$	$\mathrm{VP1}_{15}{ }^{4}$	$\mathrm{VP1}_{15}{ }^{3}$	$\mathrm{VP1}_{15}{ }^{2} \mathrm{VP1}_{15}{ }^{1}$?							
$\mathrm{VP1}_{16} 8^{8}$	$\mathrm{VP1}_{16}{ }^{6}$	$\mathrm{VP1}_{16} 6$	$\mathrm{VP1}_{16} 5$	${\mathrm{VP} 11_{16}{ }^{4} 1}$	$\mathrm{VP1}_{16}{ }^{3}$	$\mathrm{VP1}_{16}{ }^{2} \mathrm{VP1}_{161}{ }^{1}$?							
						$\mathrm{VP2}_{1} 2 \mathrm{VP2}_{1} 1$?	$?$?	?	?	?	?	?
						$\mathrm{VP2}_{2} 2 \mathrm{VP2}_{2} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{3} \mathrm{VPP}_{3}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{4} \mathrm{VPP}_{4} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{5} \mathrm{VPP2}_{5} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{6} \mathrm{VPP}_{6} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{7} \mathrm{VVP2}_{7} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{8} \mathrm{VPP2}_{8} 1$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{9} \mathrm{~V}^{\text {VP2 }} \mathrm{g}^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{10} \mathrm{I}^{2} \mathrm{VP2}_{10}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{112} \mathrm{VPP}_{111}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{12} \mathrm{~V}^{2} \mathrm{VP2}_{12}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{13} \mathrm{~V}^{2} \mathrm{VP2}_{13}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{14}{ }^{2} \mathrm{VP2}_{14}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{152} \mathrm{VP2}_{15}{ }^{1}$?	?	?	?	?	?	?	?
						$\mathrm{VP2}_{16} \mathrm{~V}^{2} \mid \mathrm{VP}_{16}{ }^{1}$?	?	?	?	?	?	?	?

Fig. 6. Memory map of special function register 2 (SFR2) (2)

```
: Nothing is allocated
```

1
" 1 " immediately after reset
?
undefined immediately after reset

Register

Register	Bit allocation								${ }_{7}$ State immediately after reset							
Processor status register (PS)	N	V	T	B	D	1	Z	C	?	?	?	?	?	1	?	?
Program counter (PCH)										?	ts	f	dre	S	FF	
Program counter (PCL)										nte	ts	a	dre	F	F	

Fig. 7. Internal state of processor status register and program counter at reset

INTERRUPTS

Interrupts can be caused by 18 different sources consisting of 4 external, 12 internal, 1 software, and reset. Interrupts are vectored interrupts with priorities shown in Table 1. Reset is also included in the table because its operation is similar to an interrupt.
When an interrupt is accepted,
(1) The contents of the program counter and processor status register are automatically stored into the stack.
(2) The interrupt disable flag I is set to " 1 " and the corresponding interrupt request bit is set to " 0 ."
(3) The jump destination address stored in the vector address enters the program counter.
Other interrupts are disabled when the interrupt disable flag is set to "1."
All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit. The interrupt request bits are in interrupt request registers 1 and 2 and the interrupt enable bits are in interrupt control registers 1 and 2 . Figure 8 shows the structure of the interrupt-related registers.
Interrupts other than the BRK instruction interrupt and reset are accepted when the interrupt enable bit is " 1 ," interrupt request bit is " 1 ," and the interrupt disable flag is " 0 ." The interrupt request bit can be set to " 0 " by a program, but not set to " 1 ." The interrupt enable bit can be set to " 0 " and " 1 " by a program.
Reset is treated as a non-maskable interrupt with the highest priority. Figure 9 shows interrupt control.

Interrupt Causes

(1) VsYNC and OSD interrupts

The VSYNC interrupt is an interrupt request synchronized with the vertical sync signal.
The OSD interrupt occurs after character block display to the CRT is completed.
(2) INT1, INT2, INT3 interrupts

With an external interrupt input, the system detects that the level of a pin changes from " L " to " H " or from " H " to " L ," and generates an interrupt request. The input active edge can be selected by bits 3,4 and 6 of the interrupt interval determination control register (address 021216) : when this bit is " 0 ," a change from " L " to " H " is detected; when it is " 1 ," a change from " H " to " L " is detected. Note that all bits are cleared to " 0 " at reset.
(3) Timer 1, 2, 3 and 4 interrupts

An interrupt is generated by an overflow of timer 1, 2, 3 or 4.
(4) Serial I/O interrupt

This is an interrupt request from the clock synchronous serial I/O function.
(5) $f($ XIN $) / 4096$ interrupt

This interrupt occurs regularly with a $f($ XIN $) / 4096$ period. Set bit 0 of the PWM mode register 1 to " 0 ."
(6) Data slicer interrupt

An interrupt occurs when slicing data is completed.
(7) Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface interrupt

This is an interrupt request related to the multi-master $I^{2} \mathrm{C}$-BUS interface.
(8) A-D conversion interrupt

An interrupt occurs at the completion of A-D conversion. Since A-D conversion interrupt and the INT3 interrupt share the same vector, an interrupt source is selected by bit 7 of the interrupt interval determination control register (address 021216).

Table 1. Interrupt vector addresses and priority

Interrupt source	Priority	Vector addresses	Remarks
Reset	1	FFFF16, FFFE16	Non-maskable
OSD interrupt	2	FFFD16, FFFC16	
INT1 interrupt	3	FFFB16, FFFA16	Active edge selectable
Data slicer interrupt	4	FFF916, FFF816	
Serial I/O interrupt	5	FFF716, FFF616	
Timer 4 interrupt	6	FFF516, FFF416	
f(XIN)/4096 interrupt	7	FFF316, FFF216	
VsYNC interrupt	8	FFF116, FFF016	Active edge selectable
Timer 3 interrupt	9	FFEF16, FFEE16	
Timer 2 interrupt	10	FFED16, FFEC16	
Timer 1 interrupt	11	FFEB16, FFEA16	
A-D convertion • INT3 interrupt	12	FFE916, FFE816	Active edge selectable
INT2 interrupt	13	FFE716, FFE616	Active edge selectable
Multi-master IC-BUS interface interrupt	14	FFE516, FFE416	
Timer 5 • interrupt	15	FFE316, FFE216	
BRK instruction interrupt	16	FFDF16, FFDE16	Non-maskable (software interrupt)

(9)Timer $5 \cdot 6$ interrupt

An interrupt is generated by an overflow of timer 5 or 6 . Their priorities are same, and can be switched by software.
(10)BRK instruction interrupt

This software interrupt has the least significant priority. It does not have a corresponding interrupt enable bit, and it is not affected by the interrupt disable flag I (non-maskable).

Fig. 9. Interrupt control

Fig. 8. Structure of interrupt-related registers

TIMERS

The M37271MF-XXXSP has 6 timers: timer 1, timer 2, timer 3, timer 4, timer 5, and timer 6. All timers are 8 -bit timers with the 8 -bit timer latch. The timer block diagram is shown in Figure 11.
All of the timers count down and their divide ratio is $1 /(n+1)$, where n is the value of timer latch. The value is set to a timer at the same time by writing a count value to the corresponding timer latch (addresses 00F016 to 00F316 : timers 1 to 4, addresses 020C16 and 020D16 : timers 5 and 6).
The count value is decremented by 1 . The timer interrupt request bit is set to " 1 " by a timer overflow at the next count pulse after the count value reaches "0016".

(1) Timer 1

Timer 1 can select one of the following count sources:

- $f(X I N) / 16$ or $f(X C I N) / 16$
- $f(X I N) / 4096$ or $f(X C I N) / 4096$
- External clock from the P42/TIM2 pin

The count source of timer 1 is selected by setting bits 5 and 0 of the timer mode register 1 (address 00F416). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register.
Timer 1 interrupt request occurs at timer 1 overflow.

(2) Timer 2

Timer 2 can select one of the following count sources:

- $f(X I N) / 16$ or $f(X C I N) / 16$
- Timer 1 overflow signal
- External clock from the P42/TIM2 pin

The count source of timer 2 is selected by setting bits 4 and 1 of the timer mode register 1 (address 00F416). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. When timer 1 overflow signal is a count source for the timer 2 , the timer 1 functions as an 8bit prescaler.
Timer 2 interrupt request occurs at timer 2 overflow.

(3) Timer 3

Timer 3 can select one of the following count sources:

- $f($ XIN $) / 16$ or $f($ XCIN $) / 16$
- $f(X C I N)$
- External clock from the P43/TIM3 pin

The count source of timer 3 is selected by setting bit 0 of the timer mode register 2 (address 00F516) and bit 6 at address 00C716. Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. Timer 3 interrupt request occurs at timer 3 overflow.

(4) Timer 4

Timer 4 can select one of the following count sources:

- $f(X I N) / 16$ or $f(X C I N) / 16$
- $f(X i n) / 2$ or $f(X C I N) / 2$
- $f(X C I N)$

The count source of timer 3 is selected by setting bits 4 and 1 of the timer mode register 2 (address 00F516). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. When timer 3 overflow signal is a count source for the timer 4 , the timer 3 functions as an 8 bit prescaler.
Timer 4 interrupt request occurs at timer 4 overflow.

(5) Timer 5

Timer 5 can select one of the following count sources:

- $f(X I N) / 16$ or $f(X C I N) / 16$
- Timer 2 overflow signal
- Timer 4 overflow signal

The count source of timer 3 is selected by setting bit 6 of the timer mode register 1 (address 00F416) and bit 7 of the timer mode register 2 (address 00F516). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register.
Timer 5 interrupt request occurs at timer 5 overflow.

(6) Timer 6

Timer 6 can select one of the following count sources:

- $f(X I N) / 16$ or $f(X C I N) / 16$
- Timer 5 overflow signal

The count source of timer 6 is selected by setting bit 7 of the timer mode register 1 (address 00F416). Either $f(X I N)$ or $f(X C I N)$ is selected by bit 7 of the CPU mode register. When timer 5 overflow signal is a count source for the timer 6 , the timer 5 functions as an 8 -bit prescaler. Timer 6 interrupt request occurs at timer 6 overflow.

At reset, timers 3 and 4 are connected by hardware and " $F F 16$ " is automatically set in timer 3 ; " 0716 " in timer 4 . The $f(X I N) * / 16$ is selected as the timer 3 count source. The internal reset is released by timer 4 overflow at these state, the internal clock is connected.
At execution of the STP instruction, timers 3 and 4 are connected by hardware and "FF16" is automatically set in timer 3; " 0716 " in timer 4. However, the $f(\mathrm{XIN}) * / 16$ is not selected as the timer 3 count source. So set both bit 0 of the timer mode register 2 (address 00F516) and bit 6 at address 00C716 to " 0 " before the execution of the STP instruction ($\mathrm{f}(\mathrm{XIN}$) */16 is selected as the timer 3 count source). The internal STP state is released by timer 4 overflow at these state, the internal clock is connected.
Because of this, the program starts with the stable clock.

* : When bit 7 of the CPU mode register (CM7) is " 1, " $f(X i N)$ becomes f(XCIN).
The structure of timer-related registers is shown in Figure 10.

Note: Either $f\left(X_{I N}\right)$ or $f\left(X_{C I N}\right)$ is selected by bit 7 of the CPU mode register.

Fig. 10. Structure of timer-related registers

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

Notes 1: "H" pulse width of external clock inputs TIM2 and TIM3 needs 4 machine cycles or more.
2: When the external clock source is selected, timers 1, 2, and 3 are counted at a rising edge of input signal.
3: In the stop mode or the wait mode, external clock inputs TIM2 and TIM3 cannot be used.

Fig. 11. Timer block diagram

SERIAL I/O

The M37271MF-XXXSP has a built-in serial I/O which can either transmit or receive 8-bit data in serial in the clock synchronous mode.
The serial I/O block diagram is shown in Figure 12. The synchronizing clock I/O pin (SCLK), and data output pin (SOUT) also function as port P4, data input pin (SIN) also functions as port P1.
Bit 2 of the serial I/O mode register (address 021316) selects whether the synchronizing clock is supplied internally or externally (from the P46/ScLK pin). When an internal clock is selected, bits 1 and 0 select whether $f\left(X_{I N}\right)$ is divided by $8,16,32$, or 64 . To use P45/Sout and P46/ScLK pins for serial I/O, set the corresponding bits of the port P4 direction register (address 00C916) to "0." To use P17/SIN pin for serial I/O, set the corresponding bit of the port P1 direction register (address 00C316) to "0."

The operation of the serial I/O function is described below. The function of the serial I/O differs depending on the clock source; external clock or internal clock.

Fig. 12. Serial I/O block diagram

Internal clock—the serial I/O counter is set to " 7 " during write cycle into the serial I/O register (address 021416), and transfer clock goes " H " forcibly. At each falling edge of the transfer clock after the write cycle, serial data is output from the Sout pin. Transfer direction can be selected by bit 5 of the serial I/O mode register. At each rising edge of the transfer clock, data is input from the SIN pin and data in the serial I/O register is shifted 1 bit.
After the transfer clock has counted 8 times, the serial I/O counter becomes " 0 " and the transfer clock stops at "H." At this time the interrupt request bit is set to " 1 ."
External clock-when an external clock is selected as the clock source, the interrupt request is set to " 1 " after the transfer clock has counted 8 times. However, transfer operation does not stop, so control the clock externally. Use the external clock of 500 kHz or less with a duty cycle of 50%.
The serial I/O timing is shown in Figure 13. When using an external clock for transfer, the external clock must be held at " H " for initializing the serial I/O counter. When switching between an internal clock and an external clock, do not switch during transfer. Also, be sure to initialize the serial I/O counter after switching.

Notes 1: On programming, note that the serial I/O counter is set by writing to the serial I/O register with the bit managing instructions as SEB and CLB instructions.
2: When an external clock is used as the synchronizing clock, write transmit data to the serial I/O register at " H " of the transfer clock input level.

Fig. 14. Structure of serial I/O mode register

Fig. 13. Serial I/O timing (for LSB first)

PWM OUTPUT FUNCTION

The M37271MF-XXXSP is equipped with seven 8-bit PWMs (PWM0PWM6). PWM0-PWM6 have the same circuit structure and an 8-bit resolution with minimum resolution bit width of $4 \mu \mathrm{~s}$ (for $f(X i N)=8$ MHz) and repeat period of $1024 \mu \mathrm{~s}$.
Figure 15 shows the PWM block diagram. The PWM timing generating circuit applies individual control signals to PWM0-PWM6 using $f($ XIN $)$ divided by 2 as a reference signal.
(1) Data Setting

When outputting PWM0-PWM6, set 8-bit output data in the PWMi register (i means 0 to 6 ; addresses 020016 to 020616).
(2) Transmitting Data from Register to PWM circuit Data transfer from the 8-bit PWM register to 8-bit PWM circuit is executed at writing data to the register.
The signal output from the 8 -bit PWM output pin corresponds to the contents of this register.

(3) Operating of 8-bit PWM

The following is the explanation about PWM operation. At first, set the bit 0 of PWM mode register 1 (address 020A16) to "0" (at reset, bit 0 is already set to " 0 " automatically), so that the PWM count source is supplied.
PWM0-PWM3 are also used as pins P04-P07, PWM4-PWM6 are also used as pins P00-P02, respectively. Set the corresponding bits of the port P0 direction register to "1" (output mode). And select each output polarity by bit 3 of the PWM mode register 1 (address 020A16). Then, set bits 7 to 0 of the PWM output control register 2 to " 1 " (PWM output).
The PWM waveform is output from the PWM output pins by setting these registers.
Figure 16 shows the 8 -bit PWM timing. One cycle (T) is composed of $256\left(2^{8}\right)$ segments. The 8 kinds of pulses relative to the weight of each bit (bits 0 to 7) are output inside the circuit during 1 cycle. Refer to Figure 16 (a). The 8-bit PWM outputs waveform which is the logical sum (OR) of pulses corresponding to the contents of bits 0 to 7 of the 8-bit PWM register. Several examples are shown in Figure 16 (b). 256 kinds of output ("H" level area: 0/256 to 255/256) are selected by changing the contents of the PWM register. A length of entirely "H" output cannot be output, i.e. 256/256.

(4) Output after Reset

At reset, the output of ports $\mathrm{P} 00-\mathrm{P} 02$ and $\mathrm{P} 04-\mathrm{P} 07$ is in the highimpedance state, port P50 outputs "L," and the contents of the PWM register and the PWM circuit are undefined. Note that after reset, the PWM output is undefined until setting the PWM register.

Fig. 15. PWM block diagram

Fig. 16. 8-bit PWM timing

Fig. 17. Structure of PWM-related registers

A-D CONVERTER

(1)A-D Conversion Register (AD)

A-D conversion reigister is a read-only register that stores the result of an A-D conversion. This register should not be read during A-D conversion.

(2)A-D Control Register (ADCON)

The A-D control register controls A-D conversion. Bits 1 and 0 of this register select analog input pins. When these pins are not used as anlog input pins, they are used as ordinary I/O pins. Bit 3 is the A-D conversion completion bit, A-D conversion is started by writing " 0 " to this bit. The value of this bit remains at "0" during an A-D conversion, then changes to " 1 " when the A-D conversion is completed.
Bit 4 controls connection between the resistor ladder and Vcc. When not using the A-D converter, the resistor ladder can be cut off from the internal Vcc by setting this bit to " 0 ." This can realize the lowpower dissipation.

(3)Comparison Voltage Generator (Resistor Ladder)

The voltage generator divides the voltage between Vss and Vcc by 256 , and outputs the divided voltages to the comparator as the reference voltage Vref.

(4)Channel Selector

The channel selector connects an analog input pin selected by bits 1 and 0 of the A-D control register to the comparator.

(5)Comparator and Control Circuit

The conversion result of the analog input voltage and the reference voltage "Vref" is stored in the A-D conversion register. The A-D conversion completion bit and A-D conversion interrupt request bit are set to " 1 " at the completion of A-D conversion.

Fig. 18. Structure of A-D control register

Fig. 19. A-D comparator block diagram

(6) Conversion Method

1 Set bit 7 of the interrupt interval determination control register (address 021216) to " 1 " to generate an interrupt request at completion of A-D conversion.
2 Set the A-D conversion • INT3 interrupt request bit to " 0 " (even when A-D conversion is started, the A-D conversion • INT3 interrupt bit is not set to "0" automatically).
3 When using A-D conversion interrupt, enable interrupts by setting A-D conversion • INT3 interrupt request bit to " 1 " and setting the interrupt disable flag to "0."
4 Set the Vcc connection selection bit to "1" to connect Vcc to the resistor ladder.
5 Select analog input pins by setting the analog input selection bit of the A-D control register.
6 Set the A-D conversion completion bit to " 0 ." This write operation starts the A-D conversion. Do not read the A-D conversion register during the A-D conversion.
7 Verify the completion of the conversion by the state (" 1 ") of the A-D conversion completion bit, that (" 1 ") of A-D conversion • INT3 interrupt bit, or the occurrence of an A-D conversion interrupt.
8 Read the A-D conversion register to obtain the conversion results.

Note : When the ladder resistor is disconnect from Vcc, set the Vcc connection selection bit to " 0 " between steps 7 and 8

(7) Internal Operation

At the time when the A-D conversion starts, the following operations are automatically performed.
1 The A-D conversion register is set to "0016."
2 The most significant bit of the A-D conversion register becomes "1," and the comparison voltage "Vref" is input to the comparator. At this point, Vref is compared with the analog input voltage "VIN ."
3 Bit 7 is determined by the comparison result as follows.
When Vref < VIN : bit 7 holds " 1 "
When Vref $>$ VIN : bit 7 becomes " 0 "
With the above operations, the analog value is converted into a digital value. The A-D conversion terminates in a maximum 50 machine cycles $(12.5 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz})$ after it starts, and the conversion result is stored in the A-D conversion register.
An A-D conversion interrupt request occurs at the same time of A-D conversion completion, the A-D conversion • INT3 interrupt request bit becomes "1." The A-D conversion completion bit also becomes "1."

Table 2. Expression for Vref and Vref

A-D conversion register contents " n " (decimal notation)	Vref (V)
0	$\frac{V_{\text {REF }}}{256} \times(n-0.5)$
1 to 255	0

Note: Vref indicates the voltage of internal Vcc.

m : Value determined by m th $(m=1$ to 8$)$ result

Fig. 20. Changes in A-D conversion register and comparison voltage during A-D conversion

(8) Definition of A-D Conversion Accuracy

The definition of A-D conversion accuracy is described below.
1 Relative accuracy

- Zero transition error (Vot)

The deviation of the input voltage at which A-D conversion output data changes from " 0 " to " 1 ," from the corresponding ideal A-D conversion characteristics between 0 and Vref.

$$
\begin{equation*}
\mathrm{V}_{0} \mathrm{~T}=\frac{\left(\mathrm{V}_{0}-1 / 2 \times \mathrm{VREF} / 256\right)}{1 \mathrm{LSB}} \tag{LSB}
\end{equation*}
$$

- Full-scale transition error (VFST)

The deviation of the input voltage at which A-D conversion output data changes from " 255 " to " 254 ," from the corresponding ideal AD conversion characteristics between 0 and Vref.

$$
\begin{equation*}
\mathrm{VFST}=\frac{(\mathrm{VREF}-3 / 2 \times \mathrm{VREF} / 256)-\mathrm{V} 254}{1 \mathrm{LSB}} \tag{LSB}
\end{equation*}
$$

Non-linearity error

The deviation of the actual A-D conversion characteristics, from the ideal A-D conversion characteristics between V_{0} and V 254 .

$$
\begin{equation*}
\text { Non-linearity error }=\frac{\mathrm{V} n-(1 \mathrm{LSB} \times \mathrm{n}+\mathrm{V} 0)}{1 \mathrm{LSB}} \tag{LSB}
\end{equation*}
$$

- Differential non-linearity error

The deviation of the input voltage required to change output data by "1," from the corresponding ideal A-D conversion characteristics between 0 and Vref.

$$
\text { Differential non-linearity error }=\frac{(\mathrm{V} n+1-\mathrm{V} n)-1 \mathrm{LSB}}{1 \mathrm{LSB}}[\mathrm{LSB}]
$$

2 Absolute accuracy

Absolute accuracy error

The deviation of the actual A-D conversion characteristics, from the ideal A-D conversion characteristics between 0 and VREF.

$$
\begin{equation*}
\text { Absolute accuracy error }=\frac{\mathrm{V} n-1 \mathrm{LSBA} \times(n+1 / 2)}{1 L S B A} \tag{LSB}
\end{equation*}
$$

Note: The analog input voltage "Vn" at which A-D conversion output data changes from " n " to " $n+1$ " ($n ; 0$ to 254) is as follows (refer to Figure 18).

Fig. 21. Definition of A-D conversion precision

DATA SLICER

The M37271MF-XXXSP includes the data slicer function for the closed caption decoder (referred to as the CCD). This function takes out the caption data superimposed in the vertical blanking interval of a composite video signal. A composite video signal which makes the sync chip's polarity negative is input to the CVIn pin.

When the data slicer function is not used, the data slicer circuit can be cut off by setting bit 0 of the data slicer control register 1 (address 00EA16) to " 0. ." Also, the timing signal generating circuit can be cut off by setting bit 0 of data slicer control register 2 (address 00EB16) to "0." These settings can realize the low-power dissipation

Fig. 22. Data slicer block diagram

Figure 23 shows the structure of the data slicer control registers.

Fig. 23. Structure of data slicer control registers

(1) Clamping Circuit and Low-pass Filter

This filter attenuates the noise of the composite video signal input from the CVIn pin. The CVin pin to which composite video signal is input requires a capacitor ($0.1 \mu \mathrm{~F}$) coupling outside. Pull down the CVin pin with a resistor of hundreds of kiloohms to 1 M . In addition, we recommend to install externally a simple low-pass filter using a resistor and a capacitor at the CVIN pin (refer to Figure 22).

(2) Sync Slice Circuit

This circuit takes out a composite sync signal from the output signal of the low-pass filter. Figure 24 shows the structure of the sync slice register.

(3) Synchronizing Signal Separation Circuit

This circuit separates a horizontal synchronizing signal and a vertical synchronizing signal from the composite sync signal taken out in the sync slice circuit.
1 Horizontal synchronizing signal (Hsep)
A one-shot horizontal synchronizing signal Hsep is generated at the falling edge of the composite sync signal.
2 Vertical synchronizing signal (Vsep)
As a $V_{\text {sep signal generating method, it is possible to select one of }}$ the following 2 methods by using bit 7 of the sync slice register (address 00E316).
-Method 1 The "L" level width of the composite sync signal is measured. If this width exceeds a certain time, a $V_{\text {sep }}$ signal is generated in synchronization with the rising of the timing signal immediately after this "L" level.
-Method 2 The "L" level width of the composite sync signal is measured. If this width exceeds a certain time, it is detected whether a falling of the composite sync signal exits or not in the " L " level period of the timing signal immediately after this " L " level. If a falling exists, a $V_{\text {sep signal }}$ is generated in synchronization with the rising of the timing signal (refer to Figure 25).
Figure 25 shows a V sep generating timing. The timing signal shown in the figure is generated from the reference clock which the timing generating circuit outputs.
Reading bit 5 of data slicer control register 2 permits determinating the shape of the V-pulse portion of the composite sync signal. As shown in Figure 26, when the A level matches the B level, this bit is " 0 ." In the case of a mismatch, the bit is " 1 ."
For the pins RVCO and the HLF, connect a resistor and a capacitor as shown in Figure 22. Make the length of wiring which is connected to these pins as short as possible so that a leakage current may not be generated.

Note: It takes a few tens of milliseconds until the reference clock becomes stable after the data slicer and the timing signal generating circuit are started. In this period, various timing signals, Hsep signals and Vsep signals become unstable. For this reason, take stabilization time into consideration when programming.

Fig. 24. Structure of sync slice register

Fig. 25. Vsep generating timing (method 2)

(4) Timing Signal Generating Circuit

This circuit generates a reference clock which is 832 times as large as the horizontal synchronizing signal frequency. It also generates various timing signals on the basis of the reference clock, horizontal synchronizing signal and vertical synchronizing signal. The circuit operates by setting bit 0 of data slicer control register 2 (address 00EB16) to "1."
The reference clock can be used as a display clock for OSD function in addition to the data slicer. The Hsync signal can be used as a count source instead of the composite sync signal. However, when the Hsync signal is selected, the data slicer cannot be used. A count source of the reference clock can be selected by bit 1 of data slicer control register 2 (address 00EB16).

Fig. 26. Determination of V-pulse waveform

(5) Data Slice Line Specification Circuit

1 Specification of data slice line
M37271MF-XXXSP has 2 data slice line specification circuits for slicing arbitrary 2 Hsep in 1 field. The following 2 data slice lines are specified.
<Main data slice line>
This line is specified by the caption position register (address 00E016).
<Sub-data slice line>
This line is specified by the data slicer control register 3 (address 00EB16).
The counter is reset at the falling edge of V sep and is incremented by 1 every Hsep pulse. When the counter value matched the value specified by bits 4 to 0 of the caption position register (in case of the sub-data slice line, by bits 3 to 7 of the data slicer control register $3)$, this Hsep is sliced.
The values of " 0016 " to " 1 F16" can be set in the caption position register. Bit 7 to bit 5 are used for testing. Set "1002." Figure 27 shows the signals in the vertical blanking interval. Figure 28 shows the structure of the caption position register.

2 Selection of field to be sliced data
In the case of the main data slice line, the field to be sliced data is selected by bits 2 and 1 of the data slicer control register 1 (address 00EA16). In the case of the sub-data slice line, the field is selected by bits 2 and 1 of the data slicer control register 3 . When bit 2 of the data slicer control register 1 is set to " 1 ," it is possible to slice data of both fields (refer to Figure 23).
3 Specification of line to set slice voltage
The reference voltage for slicing (slice voltage) is generated by integrating the amplitude of the clock run-in pulse in the particular line (refer to Table 3).
4 Field determination
The field determination flag can be read out by bit 5 of the data slicer control register 1 . This flag charge at the falling edge of Vsep.

Table 3. Specifying of field whose sets reference voltage

Bit 0 of DSC3	Field		Line	
0	Field specified by bit 1 of DSC1	$0:$ F2	1: F1	Line specified by bits 4 to 0 of CP (Main data slice line)
1	Field specified by bit 1 of DSC3	$0:$ F2	1: F1	Line specified by bits 7 to 3 of DSC3 (Sub-data slice line)

DSC1 : Data slice control register 1
DSC3 : Data slice control register 3
CP : Caption position register

Fig. 27. Signals in vertical blanking interval

(6) Reference Voltage Generating Circuit and Comparator

The composite video signal clamped by the clamping circuit is input to the reference voltage generating circuit and the comparator.
1 Reference voltage generating circuit
This circuit generates a reference voltage (slice voltage) by using the amplitude of the clock run-in pulse in line specified by the data slice line specification circuit. Connect a capacitor between the Vhold pin and the Vss pin, and make the length of wiring as short as possible so that a leakage current may not be generated.
2 Comparator
The comparator compares the voltage of the composite video signal with the voltage (reference voltage) generated in the reference voltage generating circuit, and converts the composite video signal into a digital value.

(7) Start Bit Detecting Circuit

This circuit detects a start bit at line decided in the data slice line specification circuit. For start bit detection, it is possible to select one of the following two types by using bit 1 of the clock run-in register 2 (address 00E716).
1 After the lapse of the time corresponding to the set value of the start bit position register (address 00E116), the first rising of the composite video signal is detected as a start bit.
The time is set in bits 0 to 6 of the start bit position register (address 00E116) (refer to Figure 26). Set a value fit for the following conditions.
Figure 29 shows the structure of the start bit position register.

Fig. 28. Structure of caption position register

Fig. 29. Structure of start bit position register
$\left[\begin{array}{l}\text { Time from the falling of the horizontal } \\ \text { synchronizing signal to the last rising } \\ \text { of the clock run-in }\end{array}\right]<\left[\begin{array}{l}4 \times \text { set value of the start bit position } \\ \text { register } \times \text { reference clock period }\end{array}\right]<\left[\begin{array}{l}\text { Time from the falling of the horizontal } \\ \text { synchronizing signal to occurrence of } \\ \text { the start bit }\end{array}\right]$

2 After a falling of the clock run-in pulse set in bits 2 to 0 of clock runin detect register 2 (address 00E916) is detected, a start bit is detected by sampling a comparator output. A sampling clock for sampling is obtained by dividing the reference clock generated in the timing signal generating circuit by 13.
Figure 31 shows the structure of clock run-in detect register 2.
The contents of bits 2 to 0 of clock run-in detect register 2 and bit 1 of clock run-in register 2 are written at a falling of the horizontal synchronizing signal. For this reason, even if an instruction for setting is executed, the contents of the register cannot be rewritten until a falling of the horizontal synchronizing signal.

Fig. 30. Structure of clock run-in register 2

(8) Clock run-in determination circuit

This circuit sets a window in the clock run-in portion in the composite video signal, and then determinates clock run-in by counting the number of pulses in this window. Set the time from a falling of the horizontal synchronizing signal to a start of the window by bits 0 to 5 of the window register (address 00E216; refer to Figure 32). The window ends according to the contents of the setting of the start bit position register (refer to Figure 29).

Fig. 31. Structure of clock run-in detect register 2

Fig. 32. Structure of window register

For the main data slice line, the count value of pulses in the window is stored in clock run-in register 1 (address 00E616; refer to Figure 33). For the sub-data slice line, the count value of pulses in the window is stored in clock run-in register 3 (address 020916; refer to Figure 34). When this count value is 4 to 6 , it is determined as a clock run-in. Accordingly, set the count value so that the window may start after the first pulse of the clock run-in (refer to Figure 35).
The contents to be set in the window register are written at a falling of the horizontal synchronizing signal. For this reason, even if an instruction for setting is executed, the contents of the register cannot be rewritten until a falling of the horizontal synchronizing signal.
For the main data slice line, reference clock is counted in the period from a falling of the clock pulse set in bits 0 to 2 of the clock run-in detect register 2 (address 00E916) to the next falling. The count value is stored in bits 3 to 7 of the clock run-in detect register 1 (address 00E816) (When the count value exceeds "1F16," "1F16" is held). For the sub-data slice line, the count value is stored in bits 3 to 7 of the clock run-in detect register 3 (address 020816). Read out these bits after the occurence of a data slicer interrupt (refer to (11) Interrupt Request Generating Circuit).
Figure 36 shows the structure of clock run-in detect registers 1 and 3.

Fig. 33. Structure of clock run-in register 1

Fig. 34. Structure of clock run-in register 3

Fig. 35. Window setting

Fig. 36. Structure of clock run-in detect registers 1and 3

(9) Data clock generating circuit

This circuit generates a data clock phase-synchronized with the start bit detected in the start bit detecting circuit.
Set the time from detection of the start bit to occurrence of the data clock in bits 3 to 7 of the clock run-in detect register 2 (address 00E916). The time to be set is represented by the following expression:

Time $=(13+$ set value $) \times$ reference clock period

For a data clock, 16 pulses are generated. When just 16 pulses have been generated, bit 7 of the data slicer control register is set to " 1 " (refer to Figure 23). When method 1 is already selected as a start bit detecting method, this bit becomes a logical product (AND) value with a clock run-in determination result by setting bit 7 of the start bit position register to "1."
When method 2 is already selected as a start bit detecting method and 16 pulses are generated of a data clock regardless of bit 7 of the start bit position register, this bit is set to "1." The contents of this bit are reset at a falling of the vertical synchronizing signal ($\mathrm{V}_{\text {sep }}$).

Table 4. Setting conditions for caption data latch completion flag

Bit 7 of SP	Conditions for setting bit 7 of DSC1 to "1"	Conditions for setting bit 4 of DSC3 to "1"
0	Data clock of 16 pulses has occured in main data slaice line	Data clock of 16 pulses has occured in sub-data slaice line
1	Data clock of 16 pulses has occured in main data slaice line	Data clock of 16 pulses has occured in sub-data slaice line
	AND	AND
	Clock run-in pulse are detected 4 to 6 times	Clock run-in pulse are detected 4 to 6 times

(10) 16-bit Shift Register

The caption data converted into a digital value by the comparator is stored into the 16-bit shift register in synchronization with the data clock. For the main data slice line, the contents of the high-order 8 bits of the stored caption data and the contents of the low-order 8 bits of the same data can be obtained by reading out the data register 2 (address 00E516) and data register 1 (address 00E416), respectively. For the sub-data slice line, the contents of the high-order 8 bits and the contents of the low-order 8 bits can be obtained by reading out the data register 4 (address 00ED16) and the data register 3 (address 00EC16), respectively. These registers are reset to " 0 " at a falling of Vsep. Read out data registers 1 and 2 after the occurence of a data slicer interrupt (refer to (11) Interrupt Request Generating Circuit).

(11) Interrupt Request Generating Circuit

The occurence sources of interrupt request are selected by combination of the following bits; bits 5 and 6 of the clock run-in register 3 (address 020916), bit 1 of the clock run-in register 2 (address 00E716) (refer to Table 6). Read out the contents of data registers 1 to 4 and the contents of bits 3 to 7 of the clock run-in detect registers 1 and 3 after the occurence of a data slicer interrupt request.

Table 5. Occurence sources of interrupt request

CR3		CR2	Occurence souces of interrupt request	
b5	b6	b1	Slice line	Sources
0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Main data slice line	At end of data slice line
	1	0		Data clock of 16 pulses has occured AND Clock run-in pulse are detected 4 to 6 times
		1		Data clock of 16 pulses has occured
1	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Sub-data slice line	At end of data slice line
	1	0		Data clock of 16 pulses has occured AND Clock run-in pulse are detected 4 to 6 times
		1		Data clock of 16 pulses has occured

(12) Synchronizing Signal Counter

The synchronizing signal counter counts the composite sync signal taken out from a video signal in the data slicer circuit or the vertical synchronizing signal $V_{\text {sep }}$ as a count source.
The count value in a certain time (T time) generated by $f(X I N) / 2^{13}$ or $f\left(X_{\text {IN }}\right) / 2^{13}$ is stored into the 5 -bit latch. Accordingly, the latch value changes in the cycle of T time. When the count value exceeds " $1 \mathrm{~F}_{16}$," " $1 \mathrm{~F}_{16}$ " is stored into the latch.
The latch value can be obtained by reading out the sync pulse counter register (address 020F16). A count source is selected by bit 5 of the sync pulse counter register.
The synchronizing signal counter is used when bit 0 of the PWM mode register 1 (address 02EA16).
Figure 37 shows the structure of the sync pulse counter and Figure 38 shows the synchronizing signal counter block diagram.

Fig. 37. Sync pulse counter register

Fig. 38. Synchronizing signal counter block diagram

MULTI-MASTER I²C-BUS INTERFACE

The multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface is a circuit for serial communications conformed with the Philips $\mathrm{I}^{2} \mathrm{C}$-BUS data transfer format. This interface, having an arbitration lost detection function and a synchronous function, is useful for serial communications of the multi-master.
Figure 39 shows a block diagram of the multi-master ${ }^{2} \mathrm{C}$-BUS interface and Table 6 shows multi-master ${ }^{2} \mathrm{C}$-BUS interface functions. This multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface consists of the $\mathrm{I}^{2} \mathrm{C}$ address register, the $I^{2} \mathrm{C}$ data shift register, the $\angle^{2} \mathrm{C}$ clock control register, the $\angle^{2} \mathrm{C}$ control register, the $\mathrm{I}^{2} \mathrm{C}$ status register and other control circuits.

Table 6. Multi-master $I^{2} \mathrm{C}$-BUS interface functions

Item	Function
Format	In conformity with Philips ${ }^{2} \mathrm{C}$-BUS standard: 10-bit addressing format 7-bit addressing format High-speed clock mode Standard clock mode
Communication mode	In conformity with Philips $1^{2} \mathrm{C}$-BUS standard: Master transmission Master reception Slave transmission Slave reception
SCL clock frequency	16.1 kHz to 400 kHz (at $\phi=4 \mathrm{MHz}$)

ϕ : System clock $=f($ XIN $) / 2$
Note: We are not responsible for any third party's infringement of patent rights or other rights attributable to the use of the control function (bits 6 and 7 of the $\mathrm{I}^{2} \mathrm{C}$ control register at address 00F916) for connections between the $I^{2} \mathrm{C}$-BUS interface and ports (SCL1, SCL2, SDA1, SDA2).

Fig. 39. Block diagram of multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface

(1) $I^{2} C$ Data Shift Register

The $I^{2} \mathrm{C}$ data shift register (S0 : address 00F616) is an 8-bit shift register to store receive data and write transmit data.
When transmit data is written into this register, it is transferred to the outside from bit 7 in synchronization with the SCL clock, and each time one-bit data is output, the data of this register are shifted one bit to the left. When data is received, it is input to this register from bit 0 in synchronization with the SCL clock, and each time one-bit data is input, the data of this register are shifted one bit to the left.
The $I^{2} \mathrm{C}$ data shift register is in a write enable status only when the ES0 bit of the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) is " 1 ." The bit counter is reset by a write instruction to the $I^{2} \mathrm{C}$ data shift register. When both the ESO bit and the MST bit of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) are " 1 ," the SCL is output by a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register. Reading data from the $\mathrm{I}^{2} \mathrm{C}$ data shift register is always enabled regardless of the ESO bit value.

Note: To write data into the $1^{2} \mathrm{C}$ data shift register after setting the MST bit to " 0 " (slave mode), keep an interval of 8 machine cycles or more.

(2) $I^{2} C$ Address Register

The $I^{2} \mathrm{C}$ address register (address 00F716) consists of a 7-bit slave address and a $\overline{\mathrm{read}} /$ write bit. In the addressing mode, the slave address written in this register is compared with the address data to be received immediately after the START condition are detected.
■ Bit 0: $\overline{\text { Read } / w r i t e ~ b i t ~(R B W) ~}$
Not used in the 7-bit addressing mode. In the 10-bit addressing mode, the first address data to be received is compared with the contents (SAD6 to SAD0 + RBW) of the $\mathrm{I}^{2} \mathrm{C}$ address register.
The RBW bit is cleared to " 0 " automatically when the stop condition is detected.

- Bits 1 to 7: Slave address (SAD0-SAD6)

These bits store slave addresses. Regardless of the 7-bit addressing mode and the 10-bit addressing mode, the address data transmitted from the master is compared with the contents of these bits.

Fig. 40. Structure of $\mathrm{I}^{2} \mathrm{C}$ address register

(3) $I^{2} C$ Clock Control Register

The $\mathrm{I}^{2} \mathrm{C}$ clock control register (address 00FA16) is used to set ACK control, SCL mode and SCL frequency.
■ Bits 0 to 4: SCL frequency control bits (CCR0-CCR4)
These bits control the SCL frequency. Refer to Table 7.
\square Bit 5: SCL mode specification bit (FAST MODE)
This bit specifies the SCL mode. When this bit is set to " 0 ," the standard clock mode is set. When the bit is set to " 1 ," the high-speed clock mode is set.
■ Bit 6: ACK bit (ACK BIT)
This bit sets the SDA status when an ACK clock* is generated. When this bit is set to " 0 ," the ACK return mode is set and make SDA " L " at the occurrence of an ACK clock. When the bit is set to " 1 ," the ACK non-return mode is set. The SDA is held in the " H " status at the occurrence of an ACK clock.
However, when the slave address matches the address data in the reception of address data at ACK BIT $=$ " 0 ," the SDA is automatically made " L " (ACK is returned). If there is a mismatch between the slave address and the address data, the SDA is automatically made " H "(ACK is not returned).
*ACK clock: Clock for acknowledgement
Bit 7: ACK clock bit (ACK)
This bit specifies a mode of acknowledgment which is an acknowledgment response of data transmission. When this bit is set to " 0 ," the no ACK clock mode is set. In this case, no ACK clock occurs after data transmission. When the bit is set to " 1 ," the ACK clock mode is set and the master generates an ACK clock upon completion of each 1-byte data transmission. The device for transmitting address data and control data releases the SDA at the occurrence of an ACK clock (make SDA "H") and receives the ACK bit generated by the data receiving device.

Note: Do not write data into the $\mathrm{I}^{2} \mathrm{C}$ clock control register during transmitting. If data is written during transmitting, the $\mathrm{I}^{2} \mathrm{C}$ clock generator is reset, so that data cannot be transmitted normally.

Fig. 41. Structure of $\mathrm{I}^{2} \mathrm{C}$ clock control register

Table 7. Set values of $\mathrm{I}^{2} \mathrm{C}$ clock control register and SCL frequency

Setting value of CCR4-CCR0					SCL frequency (at $\phi=4 M H z$, unit $: \mathrm{kHz})$	
CCR4	CCR3	CCR2	CCR1	CCR0	Standard clock mode	High-speed clock mode
0	0	0	0	0	Setting disabled	Setting disabled
0	0	0	0	1	Setting disabled	Setting disabled
0	0	0	1	0	Setting disabled	Setting disabled
0	0	0	1	1	Setting disabled	333
0	0	1	0	0	Setting disabled	250
0	0	1	0	1	100	$400($ Note $)$
0	0	1	1	0	83.3	166
\vdots	\vdots	\vdots	\vdots	\vdots	$500 /$ CCR value	$1000 /$ CCR value
1	1	1	0	1	17.2	34.5
1	1	1	1	0	16.6	33.3
1	1	1	1	1	16.1	32.3

Note: At 400 kHz in the high-speed clock mode, the duty is 40%. In the other cases, the duty is 50%.

(4) $I^{2} C$ Control Register

The $1^{2} \mathrm{C}$ control register (address 00F916) controls data communication format.

- Bits 0 to 2: Bit counter (BC0-BC2)

These bits decide the number of bits for the next 1-byte data to be transmitted. An interrupt request signal occurs immediately after the number of bits specified with these bits are transmitted.
When a START condition is received, these bits become "0002" and the address data is always transmitted and received in 8 bits.
\square Bit 3: $\mathrm{I}^{2} \mathrm{C}$ interface use enable bit (ESO)
This bit enables to use the multimaster $\mathrm{I}^{2} \mathrm{C}$ BUS interface. When this bit is set to " 0 ," the use disable status is provided, so the SDA and the SCL become high-impedance. When the bit is set to "1," use of the interface is enabled.
When ESO = " 0 ," the following is performed.

- PIN = " 1 ," BB = " 0 " and $\mathrm{AL}=" 0$ " are set (they are bits of the $\mathrm{I}^{2} \mathrm{C}$ status register at address 00F816).
- Writing data to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616) is disabled.
■ Bit 4: Data format selection bit (ALS)
This bit decides whether or not to recognize slave addresses. When this bit is set to " 0 ," the addressing format is selected, so that address data is recognized. When a match is found between a slave address and address data as a result of comparison or when a general call (refer to "(5) $I^{2} C$ Status Register," bit 1) is received, transmission processing can be performed. When this bit is set to " 1 ," the free data format is selected, so that slave addresses are not recognized.
■ Bit 5: Addressing format selection bit (10BIT SAD)
This bit selects a slave address specification format. When this bit is set to " 0 ," the 7 -bit addressing format is selected. In this case, only the high-order 7 bits (slave address) of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) are compared with address data. When this bit is set to "1," the 10-bit addressing format is selected, all the bits of the $\mathrm{I}^{2} \mathrm{C}$ address register are compared with address data.
■ Bits 6 and 7: Connection control bits between $\mathrm{I}^{2} \mathrm{C}$-BUS interface and ports (BSELO, BSEL1)
These bits controls the connection between SCL and ports or SDA and ports (refer to Figure 42).

Note: When using multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface, set bits 3 and 4 of the serial I/O mode register (address 021316) to "1."

Fig. 42. Connection port control by BSEL0 and BSEL1

(5) ${ }^{12} \mathrm{C}$ Status Register

The $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) controls the $\mathrm{I}^{2} \mathrm{C}$-BUS interface status. The low-order 4 bits are read-only bits and the highorder 4 bits can be read out and written to.
■ Bit 0: Last receive bit (LRB)
This bit stores the last bit value of received data and can also be used for ACK receive confirmation. If ACK is returned when an ACK clock occurs, the LRB bit is set to " 0 ." If ACK is not returned, this bit is set to "1." Except in the ACK mode, the last bit value of received data is input. The state of this bit is changed from " 1 " to " 0 " by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).
\square Bit 1: General call detecting flag (ADO)
This bit is set to " 1 " when a general call* whose address data is all " 0 " is received in the slave mode. By a general call of the master device, every slave device receives control data after the general call. The ADO bit is set to " 0 " by detecting the STOP condition or START condition.
*General call: The master transmits the general call address "0016" to all slaves.

- Bit 2: Slave address comparison flag (AAS)

This flag indicates a comparison result of address data.
1 In the slave receive mode, when the 7-bit addressing format is selected, this bit is set to " 1 " in one of the following conditions.

- The address data immediately after occurrence of a START condition agrees with the slave address stored in the high-order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716).
- A general call is received.

2 In the slave reception mode, when the 10-bit addressing format is selected, this bit is set to " 1 " with the following condition.

- When the address data is compared with the $I^{2} \mathrm{C}$ address register (8 bits consisted of slave address and RBW), the first bytes agree.
3 The state of this bit is changed from " 1 " to " 0 " by executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).

Fig. 43. Structure of $\mathrm{I}^{2} \mathrm{C}$ control register

- Bit 3: Arbitration lost* detecting flag (AL)

In the master transmission mode, when the SDA is made " L " by any other device, arbitration is judged to have been lost, so that this bit is set to " 1 ." At the same time, the TRX bit is set to " 0 ," so that immediately after transmission of the byte whose arbitration was lost is completed, the MST bit is set to " 0 ." In the case arbitration is lost during slave address transmission, the TRX bit is set to " 0 " and the reception mode is set. Consequently, it becomes possible to receive and recognize its own slave address transmitted by another master device.
*Arbitration lost: The status in which communication as a master is disabled.
■ Bit 4: $\mathrm{I}^{2} \mathrm{C}$-BUS interface interrupt request bit (PIN)
This bit generates an interrupt request signal. Each time 1-byte data is transmitted, the state of the PIN bit changes from "1" to "0." At the same time, an interrupt request signal occurs to the CPU. The PIN bit is set to " 0 " in synchronization with a falling of the last clock (including the ACK clock) of an internal clock and an interrupt request signal occurs in synchronization with a falling of the PIN bit. When the PIN bit is " 0 ," the SCL is kept in the " 0 " state and clock generation is disabled. Figure 45 shows an interrupt request signal generating timing chart.
The PIN bit is set to " 1 " in one of the following conditions.

- Executing a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).
- When the ESO bit is " 0 "
- At reset

The conditions in which the PIN bit is set to " 0 " are shown below:

- Immediately after completion of 1-byte data transmission (including when arbitration lost is detected)
- Immediately after completion of 1-byte data reception
- In the slave reception mode, with ALS = "0" and immediately after completion of slave address or general call address reception
- In the slave reception mode, with ALS = " 1 " and immediately after completion of address data reception
■ Bit 5: Bus busy flag (BB)
This bit indicates the status of use of the bus system. When this bit is set to " 0 ," this bus system is not busy and a START condition can be generated. When this bit is set to " 1 ," this bus system is busy and the occurrence of a START condition is disabled by the START condition duplication prevention function (Note).
This flag can be written by software only in the master transmission mode. In the other modes, this bit is set to " 1 " by detecting a START condition and set to " 0 " by detecting a STOP condition. When the ES0 bit of the $I^{2} \mathrm{C}$ control register (address 00F916) is " 0 " and at reset, the BB flag is kept in the " 0 " state.
\square Bit 6: Communication mode specification bit (transfer direction specification bit: TRX)
This bit decides a direction of transfer for data communication. When this bit is " 0 ," the reception mode is selected and the data of a transmitting device is received. When the bit is " 1 ," the transmission mode is selected and address data and control data are output onto the SDA in synchronization with the clock generated on the SCL.
When the ALS bit of the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) is " 0 " in the slave reception mode is selected, the TRX bit is set to " 1 " (transmit) if the least significant bit (R/W bit) of the address data trans-
mitted by the master is " 1 ." When the ALS bit is " 0 " and the R / \bar{W} bit is " 0 ," the TRX bit is cleared to " 0 " (receive).
The TRX bit is cleared to " 0 " in one of the following conditions.
- When arbitration lost is detected.
- When a STOP condition is detected.
- When occurence of a START condition is disabled by the START condition duplication preventing function (Note).
- With MST = " 0 " and when a START condition is detected.
- With MST = "0" and when ACK non-return is detected.
- At reset
- Bit 7: Communication mode specification bit (master/slave specification bit: MST)
This bit is used for master/slave specification for data communication. When this bit is " 0 ," the slave is specified, so that a START condition and a STOP condition generated by the master are received, and data communication is performed in synchronization with the clock generated by the master. When this bit is " 1 ," the master is specified and a START condition and a STOP condition are generated, and also the clocks required for data communication are generated on the SCL.
The MST bit is cleared to " 0 " in one of the following conditions.
- Immediately after completion of 1-byte data transmission when arbitration lost is detected
- When a STOP condition is detected.
- When occurence of a START condition is disabled by the START condition duplication preventing function (Note).
- At reset

Note: The START condition duplication prevention function disables the occurence of a START condition, reset of bit counter and SCL output when the following condition is satisfied: - a START condition is set by another master device.

Note: These bit and flags can be read out but cannot be written.

Fig. 44. Structure of $\mathrm{I}^{2} \mathrm{C}$ status register

Fig. 45. Interrupt request signal generating timing

(6) START Condition Generating Method

When the ES0 bit of the $I^{2} \mathrm{C}$ control register (address 00F916) is " 1, ," execute a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) for setting the MST, TRX and BB bits to "1." Then a START condition occurs. After that, the bit counter becomes "0002" and an SCL for 1 byte is output. The START condition generating timing and BB bit set timing are different in the standard clock mode and the highspeed clock mode. Refer to Figure 46, the START condition generating timing diagram, and Table 8, the START condition/STOP condition generating timing table.

Fig. 46. START condition generating timing diagram

(7) STOP Condition Generating Method

When the ES0 bit of the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) is " 1 ," execute a write instruction to the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) for setting the MST bit and the TRX bit to " 1 " and the BB bit to " 0 ". Then a STOP condition occurs. The STOP condition generating timing and the BB flag reset timing are different in the standard clock mode and the high-speed clock mode. Refer to Figure 47, the STOP condition generating timing diagram, and Table 8, the START condition/STOP condition generating timing table.

Fig. 47. STOP condition generating timing diagram

Table 8. START condition/STOP condition generating timing table

Item	Standard clock mode	High-speed clock mode
Setup time	$5.0 \mu \mathrm{~s}(20$ cycles $)$	$2.5 \mu \mathrm{~s}(10$ cycles $)$
Hold time	$5.0 \mu \mathrm{~s}(20$ cycles $)$	$2.5 \mu \mathrm{~s}(10$ cycles $)$
Set/reset time for BB flag	$3.0 \mu \mathrm{~s}$ (12 cycles $)$	$1.5 \mu \mathrm{~s}(6$ cycles $)$

Note: Absolute time at $\phi=4 \mathrm{MHz}$. The value in parentheses denotes the number of ϕ cycles.

(8) START/STOP Condition Detecting Conditions

The START/STOP condition detecting conditions are shown in Figure 48 and Table 9 . Only when the 3 conditions of Table 9 are satisfied, a START/STOP condition can be detected.

Note: When a STOP condition is detected in the slave mode ($\mathrm{MST}=0$), an interrupt request signal "IICIRQ" occurs to the CPU.

Fig. 48. START condition/STOP condition detecting timing diagram

Table 9. START condition/STOP condition detecting conditions

$\left.$| Standard clock mode | High-speed clock mode |
| :--- | :---: |
| $6.5 \mu \mathrm{~s}$ (26 cycles) < SCL | |
| release time | | | $1.0 \mu \mathrm{~s}(4$ cycles $)<$ SCL |
| :---: |
| release time | \right\rvert\,

Note: Absolute time at $\phi=4 \mathrm{MHz}$. The value in parentheses denotes the number of ϕ cycles.

(9) Address Data Communication

There are two address data communication formats, namely, 7-bit addressing format and 10-bit addressing format. The respective address communication formats is described below.
1 7-bit addressing format
To meet the 7-bit addressing format, set the 10BIT SAD bit of the $1^{2} \mathrm{C}$ control register (address 00F916) to " 0 ." The first 7 -bit address data transmitted from the master is compared with the high-order 7 -bit slave address stored in the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). At the time of this comparison, address comparison of the RBW bit of the $I^{2} \mathrm{C}$ address register (address 00F716) is not made. For the data transmission format when the 7-bit addressing format is selected, refer to Figure 49, (1) and (2).
2 10-bit addressing format
To meet the 10-bit addressing format, set the 10BIT SAD bit of the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916) to "1." An address comparison is made between the first-byte address data transmitted from the master and the 7 -bit slave address stored in the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). At the time of this comparison, an address comparison between the RBW bit of the ${ }^{2} \mathrm{C}$ address register (address 00F716) and the R/W bit which is the last bit of the address data transmitted from the master is made. In the 10-bit addressing mode, the R/W bit which is the last bit of the address data not only specifies the direction of communication for control data but also is processed as an address data bit.

(1) A master-transmitter transmits data to a slave-receiver

(2) A master-receiver receives data from a slave-transmitter

S	Slave address 1st 7 bits	R / W	A	Slave address 2nd byte	A	Data	A	Data	A/A	P
7 bits		"0"		8 bits	1 to 8 bits			1 to 8 bits		

(3) A master-transmitter transmits data to a slave-receiver with a 10-bit address

(4) A master-receiver receives data from a slave-transmitter with a 10-bit address
S : START condition
P: STOP condition R/W : Read/Write bitFrom master to slave
\square From slave to master
A : ACK bit
Sr : Restart condition

Fig. 49. Address data communication format

When the first-byte address data matches the slave address, the AAS bit of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) is set to "1." After the second-byte address data is stored into the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616), make an address comparison between the sec-ond-byte data and the slave address by software. When the address data of the 2 bytes matches the slave address, set the RBW bit of the $I^{2} \mathrm{C}$ address register (address 00F716) to " 1 " by software. This processing can match the 7 -bit slave address and R / \bar{W} data, which are received after a RESTART condition is detected, with the value of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716). For the data transmission format when the 10-bit addressing format is selected, refer to Figure 49, (3) and (4).

(10) Example of Master Transmission

An example of master transmission in the standard clock mode, at the SCL frequency of 100 kHz and in the ACK return mode is shown below.
1 Set a slave address in the high-order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) and " 0 " in the RBW bit.
2 Set the ACK return mode and SCL $=100 \mathrm{kHz}$ by setting " 8516 " in the $\mathrm{I}^{2} \mathrm{C}$ clock control register (address 00FA16).
3 Set " 1016 " in the $I^{2} \mathrm{C}$ status register (address 00F816) and hold the SCL at the "H" level.
4 Set a communication enable status by setting " 4816 " in the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916).
5 Set the address data of the destination of transmission in the highorder 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616) and set " 0 " in the least significant bit.
6 Set "F016" in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) to generate a START condition. At this time, an SCL for 1 byte and an ACK clock automatically occurs.
7 Set transmit data in the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616). At this time, an SCL and an ACK clock automatically occurs.
8 When transmitting control data of more than 1 byte, repeat step 7.

9 Set "D016" in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816). After this, if ACK is not returned or transmission ends, a STOP condition occurs.

(11) Example of Slave Reception

An example of slave reception in the high-speed clock mode, at the SCL frequency of 400 kHz , in the ACK non-return mode and using the addressing format is shown below.
1 Set a slave address in the high-order 7 bits of the $\mathrm{I}^{2} \mathrm{C}$ address register (address 00F716) and " 0 " in the RBW bit.
2 Set the no ACK clock mode and SCL $=400 \mathrm{kHz}$ by setting " 2516 " in the $\mathrm{I}^{2} \mathrm{C}$ clock control register (address 00FA16).
3 Set "1016" in the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) and hold the SCL at the "H" level.
4 Set a communication enable status by setting " 4816 " in the $\mathrm{I}^{2} \mathrm{C}$ control register (address 00F916).
5 When a START condition is received, an address comparison is made.

6 •When all transmitted addresses are " 0 " (general call)
ADO of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) is set to " 1 " and an interrupt request signal occurs.
-When the transmitted addresses match the address set in 1
ASS of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) is set to " 1 " and an interrupt request signal occurs.

- In the cases other than the above

ADO and AAS of the $\mathrm{I}^{2} \mathrm{C}$ status register (address 00F816) are set to " 0 " and no interrupt request signal occurs.
7 Set dummy data in the $\mathrm{I}^{2} \mathrm{C}$ data shift register (address 00F616).
8 When receiving control data of more than 1 byte, repeat step 7 .
9 When a STOP condition is detected, the communication ends.

OSD FUNCTIONS

Table 10 outlines the OSD functions of the M37271MF-XXXSP.
The M37271MF-XXXSP incorporates an OSD control circuit of 40 characters $\times 16$ lines. OSD is controlled by the OSD control register. There are 3 display modes and they are selected by a block unit. The display modes are selected by the block control register $i(i=1$ to 6).
The features of each mode are described below.

Table 10. Features of each display mode

Parameter	Display mode		
	CC mode (Closed caption mode)	OSD mode (On-screen display mode)	EXOSD mode (Extra on-screen display mode)
Number of display characters	40 characters $\times 16$ lines	40 characters $\times 16$ lines	40 characters $\times 16$ lines
Dot structure	$\begin{array}{\|l\|} \hline 16 \times 26 \text { dots } \\ \text { (Character }: 20 \times 16 \text { dots) } \end{array}$	16×20 dots	16×26 dots
Kinds of characters	320 kinds (In EXOSD mode, they can be combined with 32 kinds of extra fonts)		
Kinds of character sizes	2 kinds	14 kinds	6 kinds
Pre-divide ratio (Note)	$\times 1, \times 2$	$\times 1, \times 2, \times 3$	$\times 1, \times 2, \times 3$
Dot size	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	$\begin{array}{\|l\|} \hline 1 \mathrm{Tc} \times 1 / 2 \mathrm{H}, 1 \mathrm{Tc} \times 1 \mathrm{H}, 1.5 \mathrm{Tc} \times 1 / 2 \mathrm{H}, \\ 1.5 \mathrm{Tc} \times 1 \mathrm{H}, 2 \mathrm{Tc} \times 2 \mathrm{H}, 3 \mathrm{Tc} \times 3 \mathrm{H} \\ \hline \end{array}$	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}, 1 \mathrm{Tc} \times 1 \mathrm{H}$
Attribute	Smooth italic, under line, flash	Border	Border, extra font (32 kinds)
Character font coloring	1 screen : 7 kinds, Max. 7 kinds (a character unit)	1 screen : 7 kinds, Max. 15 kinds (a character unit)	1 screen : 7 kinds, Max. 7 kinds (a character unit)
Raster coloring	Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)	Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)	Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)
Character background coloring	Possible (a character unit, 1 screen : 7 kinds, max. 7 kinds)	Possible (a character unit, 1 screen : 7 kinds, max. 7 kinds)	Possible (a character unit, 1 screen : 7 kinds, max. 7 kinds)
Border coloring		Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)	Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)
Extra font coloring			Possible (a screen unit, 1 screen : 7 kinds, max. 7 kinds)
OSD output	R, G, B, OUT1, OUT2	R, G, B, I1, OUT1, OUT2	R, G, B, I1, I2, OUT1, OUT2
Function	Auto solid space function Window function Dual layer OSD function (layer 1)	Dual layer OSD function (layer 2)	$\underline{\square}$
Display expansion (multiline display)	Possible	Possible	Possible

Notes 1: The divide ratio of the frequency divider (the pre-divide circuit) is referred as "pre-divide ratio" hereafter.
2: The character size is specified with dot size and pre-divide ratio (refer to (3) Dote size).

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

The OSD circuit has an extended display mode. This mode allows multiple lines (16 lines or more) to be displayed on the screen by interrupting the display each time one line is displayed and rewriting data in the block for which display is terminated by software.
Figure 50 shows the configuration of OSD character. Figure 51 shows the block diagram of the OSD control circuit. Figure 52 shows the structure of the OSD control register. Figure 53 shows the structure of the block control register.

Fig. 50. Configuration of OSD character

Fig. 51. Block diagram of OSD control circuit

Fig. 52. Structure of OSD control register

Fig. 53. Structure of block control registers

Table 11. Setting value of block control registers

b6	b5	b4	b3	CS6	Pre-divide ratio	Dot size	Display layer
0	0	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	-	$\times 1$	$\begin{aligned} & 1 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1 \mathrm{Tc} \times 1 \mathrm{H} \\ & 2 \mathrm{Tc} \times 2 \mathrm{H} \\ & 3 \mathrm{Tc} \times 3 \mathrm{H} \end{aligned}$	
0	1	0 0 1 1 1	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	-	$\times 2$	$\begin{aligned} & 1 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1 \mathrm{Tc} \times 1 \mathrm{H} \\ & 2 \mathrm{Tc} \times 2 \mathrm{H} \\ & 3 \mathrm{Tc} \times 3 \mathrm{H} \end{aligned}$	Layer 1
1	0	0 0 1 1	0 1 0 1	-	$\times 3$	$\begin{aligned} & 1 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1 \mathrm{Tc} \times 1 \mathrm{H} \\ & 2 \mathrm{Tc} \times 2 \mathrm{H} \\ & 3 \mathrm{Tc} \times 3 \mathrm{H} \end{aligned}$	
1	1	-	0 1	0	$\times 1$	$\begin{aligned} & 1 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1 \mathrm{Tc} \times 1 \mathrm{H} \\ & \hline \end{aligned}$	
1	1	0 0 1 1	0 1 0 1	1	$\times 2$	$\begin{aligned} & 1 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1 \mathrm{Tc} \times 1 \mathrm{H} \\ & 1.5 \mathrm{Tc} \times 1 / 2 \mathrm{H} \\ & 1.5 \mathrm{Tc} \times 1 \mathrm{H} \end{aligned}$	Layer 2

Notes 1: CS6 : Bit 6 of clock control register (Address 021616)
2: Tc : OSD clock cycle divided in the pre-divide circuit
3: H : Hsync

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

(1) Dual Layer OSD

M37271MF-XXXSP has 2 layers; layer 1 and layer 2. These layers display the OSD for controlling TV and the closed caption display at the same time and overlayed on each other.
Each block can be assigned to either layer by bits 6 and 5 of the block control register (refer to Figure 53). For example, only when both bits 5 and 6 are " 1 ," the block is assigned to layer 2. Other bit combinations assign the block to layer 1.
When a block of layer 1 is overlapped with that of layer 2, a screen is combined (refer to Figure 55) by bits 7 and 6 of the OSD control register (refer to Figure 52).

Note: When using the dual layer OSD, note Table 12.

Fig. 54. Image of dual layer OSD

Table 12. Conditions of dual layer

Block	Block in layer 1	Block in layer 2	
Display mode	CC mode	OSD mode	
OSD Clock source	Data slicer clock or OSC1	Same as layer 1	
Pre-divide ratio	$\times 1$ or $\times 2$ (all blocks)	Same as layer 1 (Note)	
Dot size	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	Pre-divide ratio $=1$	Pre-divide ratio $=2$
		$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}, 1.5 \mathrm{Tc} \times 1 / 2 \mathrm{H}$
	Arbitrary	$1 \mathrm{Tc} \times 1 \mathrm{H}$	$1 \mathrm{Tc} \times 1 \mathrm{H}, 1.5 \mathrm{Tc} \times 1 \mathrm{H}$

Note: For the pre-divide ratio of the layer 2, select the same as the layer 1's ratio by bit 6 of the clock control register.

Display example of layer 1 = "HELLO," layer 2 = "CH5"

Logical sum (OR) of layer 1's color and layer 2's color
Bit $7=" 0$," bit $6=" 0 "$

Fig. 55. Display example of dual layer OSD

(2) Display Position

The display positions of characters are specified in units called a "block." There are 16 blocks, blocks 1 to 16. Up to 40 characters can be displayed in each block (refer to (6) Memory for OSD).
The display position of each block can be set in both horizontal and vertical directions by software.
The display position in the horizontal direction can be selected for all blocks in common from 256-step display positions in units of 4 Tosc (Tosc = oscillating cycle for OSD).
The display position in the vertical direction for each block can be selected from 1024-step display positions in units of 1 TH (TH = Hsync cycle).

Blocks are displayed in conformance with the following rules:
1 When the display position is overlapped with another block (Figure 56, (b)), a lower block number (1 to 16) is displayed on the front.
2 When another block display position appears while one block is displayed (Figure 56 (c)), the block with a larger set value as the vertical display start position is displayed. However, do not display block with the dot size of $2 \mathrm{Tc} \times 2 \mathrm{H}$ or $3 \mathrm{Tc} \times 3 \mathrm{H}$ during display period ($*$) of another block.

* In the case of OSD mode block: 20 dots in vertical from the vertical display start position.
* In the case of CCD or EXOSD mode block: 26 dots in vertical from the vertical display start position.

(a) Example when each block is separated

(b) Example when block 3 overlaps with block 1

(c) Example when block 3 overlaps in process of block 1

Note: VP1i or VP2i (i : 1 to 6) indicates the contents of vertical position registers 1 i or 2 i .

Fig. 56. Display position

The display position in the vertical direction is determined by counting the horizontal sync signal (HSYNC). At this time, it starts to count the rising edge (falling edge) of HSYNC signal from after about 1 machine cycle of rising edge (falling edge) of VsYNC signal. So interval from rising edge (falling edge) of VSYNC signal to rising edge (falling edge) of HSYNC signal needs enough time (2 machine cycles or more) for avoiding jitter. The polarity of HSYNC and VsYNC signals can select with the I/O polarity control register (address 021716). For details, refer to (15) OSD Output Pin Control.

Note: When bits 0 and 1 of the I/O polarity control register (address 021716) are set to " 1 " (negative polarity), the vertical position is determined by counting falling edge of HSYNC signal after rising edge of VSYNC control signal in the microcomputer (refer to Figure 57).

Fig. 57. Supplement explanation for display position

The vertical position for each block can be set in 1024 steps (where each step is 1 T н (Tн: Hsync cycle)) as values " 0016 " to "FF16" in vertical position register $1 \mathrm{i}(\mathrm{i}=1$ to 16) (addresses 022016 to 022 F 16) and values "0016" to "FF16" in the vertical position register $2 i(i=1$ to 16) (addresses 023016 to 023F16). The structure of the vertical position registers is shown in Figure 58.

Fig. 58. Structure of vertical position registers

The horizontal position is common to all blocks, and can be set in 256 steps (where 1 step is 4Tc, Tc being the oscillating cycle for display) as values " 0016 " to "FF16" in bits 0 to 7 of the horizontal position register (address 00CF16). The structure of the horizontal position register is shown in Figure 59.

Fig. 59. Structure of horizontal position register

Notes 1 : 1Tc (TC : OSD clock cycle divided by prescaler) gap occurs between the horizontal display start position set by the horizontal position register and the most left dot of the 1 st block. Accordingly, when 2 blocks have different predivide ratios, their horizontal display start position will not match.

2 : The horizontal start position is based on the OSD clock source cycle selected for each block. Accordingly, when 2 blocks have different OSD clock source cycles, their horizontal display start position will not match.

Fig. 60. Notes on horizontal display start position

(3) Dot Size

The dot size can be selected by a block unit. The dot size in vertical direction is determined by dividing HsYNc in the vertical dot size control circuit. The dot size in horizontal is determined by dividing the following clock in the horizontal dot size control circuit : the clock gained by dividing the OSD clock source (data slicer clock, OSC1) in the pre-divide circuit. The clock cycle divided in the pre-divide circuit is defined as 1Tc.
The dot size of the layer 1 is specified by bits 6 to 3 of the block control register.
The dot size of the layer 2 is specified by the following bits: bits 3 and 4 of the block control register, bit 6 of the clock source control register. Refer to Figure 53 (the structure of the block control regis-
ter), refer to Figure 62 (the structure of the clock source control register).
The block diagram of dot size control circuit is shown in Figure 61.
Notes 1 : The pre-divide ratio = 3 cannot be used in the CC mode.
2 : The pre-divide ratio of the OSD mode block on the layer 2 must be same as that of the CC mode block on the layer 1 by bit 6 of the clock source control register.
3 : In the bi-scan mode, the dot size in the vertical direction is 2 times as compared with the normal mode. Refer to "(13) Scan Mode" about the scan mode.

Fig. 61. Block diagram of dot size control circuit

(4) Clock for OSD

As a clock for display to be used for OSD, it is possible to select one of the following 3 types.

- Data slicer clock output from the data slicer (approximately 26 MHz)
- Clock from the LC oscillator supplied from the pins OSC1 and OSC2
- Clock from the ceramic resonator or the quartz-crystal oscillator from the pins OSC1 and OSC2
This OSD clock for each block can be selected by the following bits : bit 7 of the port P3 direction register, bits 5 and 4 of the clock source control register (addresses 021616). A variety of character sizes can be obtained by combining dot sizes with OSD clocks. When not using the pins OSC1 and OSC2 for the OSD clock I/O pins, the pins can be used as sub-clock I/O pins or port P6.

Table 13. Setting for P63/OSC1/Xcin, P64/OSC2/Xcout

Function						OSD clock I/O pin
Register Port P3 direction register	0			Sub-clock I/O pin	Input port	
Clock source control register	b5	0	1	1	0	1
	b4	1	0	1	0	0

Fig. 62. Structure of clock control register

Fig. 63. Block diagram of OSD selection circuit

(5) Field Determination Display

To display the block with vertical dot size of $1 / 2 \mathrm{H}$, whether an even field or an odd field is determined through differences in a synchronizing signal waveform of interlacing system. The dot line 0 or 1 (refer to Figure 65) corresponding to the field is displayed alternately. In the following, the field determination standard for the case where both the horizontal sync signal and the vertical sync signal are nega-tive-polarity inputs will be explained. A field determination is determined by detecting the time from a falling edge of the horizontal sync signal until a falling edge of the VSYNC control signal (refer to Figure 57) in the microcomputer and then comparing this time with the time of the previous field. When the time is longer than the comparing time, it is regarded as even field. When the time is shorter, it is regarded as odd field
The contents of this field can be read out by the field determination flag (bit 7 of the I/O polarity control register at address 021716). A dot line is specified by bit 6 of the I/O polarity control register (refer to Figure 65).
However, the field determination flag read out from the CPU is fixed to " 0 " at even field or " 1 " at odd field, regardless of bit 6.

Note: Refer to Figure 65.
Fig. 64. Structure of I/O polarity control register

MITSUBISHI MICROCOMPUTERS
 M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER

Both Hsync signal and VsYnc signal are negative-polarity input

Hsync		Field	Field determination flag(Note)	Display dot line selection bit	Display dot line
Vsync and Vsync control signal		Odd			
puter Upper : Vsync signal		Even	$0(\mathrm{~T} 2>\mathrm{T} 1)$	0 1	Dot line $1 \quad \square$ Dot line $0 \square \Delta$
Lower: Vsync control signal in microcomputer		Odd	$1(\mathrm{~T} 3<\mathrm{T} 2)$	0 1	Dot line $0 \square \triangle \triangle$ Dot line $1 \square$

When using the field determination flag, be sure to set bit 0 of the PWM mode register 1 (address 020 A 16) to " 0. ."

When the display dot line selection bit is " 0 ,"
the " \square " font is displayed at even field, the
" $\Delta \Delta$ " font is displayed at odd field. Bit 7 of the I/O polarity control register can be read as the field determination flag : " 1 " is read at odd field, " 0 " is read at even field.

Character ROM font configuration diagram

Note : The field determination flag changes at a rising edge of the V SYNC control signal (negative-polarity input) in the microcomputer.

Fig. 65. Relation between field determination flag and display font

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

(6) Memory for OSD

There are 2 types of memory for OSD : ROM for OSD (addresses 1080016 to 1567F16, 1800016 to 1E43F16) used to store character dot data (masked) and RAM for OSD (addresses 080016 to 0FFF16) used to specify the characters and colors to be displayed. The following describes each type of memory.

1 ROM for OSD (addresses 1080016 to $1567 F_{16}, 1800016$ to 1E43F16)
The ROM for OSD contains dot pattern data for characters to be displayed. To actually display the character code and the extra code stored in this ROM, it is necessary to specify them by writing the character code inherent to each character (code determined based on the addresses in the ROM for OSD) into the RAM for OSD.

The OSD ROM of the character font has a capacity of 12800 bytes. Since 40 bytes are required for 1 character data, the ROM can stores up to 320 kinds of characters. The OSD ROM of the extra font has a capacity of 1664 bytes. Since 52 bytes are required for 1 character data, the ROM can stores up to 32 kinds of characters.
Data of the character font and extra font is specified shown in Figure 66.

OSD ROM address of character font data

OSD ROM address bit	AD16	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
Line number/character code/font bit	1	0	Line number					Character code									Font bit
Line number = "0216" to "1516"																	
Character code $=$ " 0016 " to " 13 F 16 "																	
Font bit		0 : left	font 1	: right	font												

OSD ROM address of extra font data

Fig. 66. OSD character data storing form

2 RAM for OSD (addresses 080016 to OFFF16)

The RAM for OSD is allocated at addresses 080016 to 0FFF16, and is divided into a display character code specification part, color code 1 specification part, and color code 2 specification part for each block. Table 14 shows the contents of the RAM for OSD.
For example, to display 1 character position (the left edge) in block 1, write the character code in address 080016, write the color code 1 at 084016, and write the color code 2 at 082816.
The structure of the RAM for OSD is shown in Figure 68.

Note: For the OSD mode block with dot size of $1.5 \mathrm{Tc} \times 1 / 2 \mathrm{H}$ and $1.5 \mathrm{Tc} \times 1 \mathrm{H}$, the 3nth ($\mathrm{n}=1$ to 13) character is skipped as compared with ordinary block*. Accordingly, maximum 26 characters are only displayed in 1 block. The RAM data for the 3nth character does not effect the display. Any character data can be stored here (refer to Figure 67).
$*$ Blocks with dot size of $1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$ and $1 \mathrm{Tc} \times 1 \mathrm{H}$, or blocks on the layer 1

Table 14. Contents of OSD RAM

Block	Display position (from left)	Character code specification	Color code 1 specification	Color code 2 specification
Block 1	1st character	080016	084016	082816
	2nd character 24th character	080116 081716	084116 085716	
	25th character 39th character	$\begin{gathered} 081816 \\ : \\ 082616 \end{gathered}$	$\begin{gathered} 085816 \\ : \\ 086616 \end{gathered}$	$\begin{gathered} 086816 \\ : \\ 087616 \end{gathered}$
	40th character	082716	086716	087716
Block 2	1st character	088016	08C016	08A816
	2nd character 24th character	088116 089716	08 C 116 08 D 716	$08 \mathrm{A916}$ 08BF16
	25th character 39th character	$\begin{gathered} \text { 0E9816 } \\ : \\ \text { 08A616 } \end{gathered}$	$\begin{gathered} \text { 08D816 } \\ : \\ 08 \mathrm{E} 616 \end{gathered}$	$\begin{gathered} \text { 08E816 } \\ : \\ 08 F 616 \end{gathered}$
	40th character	08A716	08E716	08F716
Block 3	1st character	090016	094016	092816
	2nd character 24th character	090116 091716	$\begin{gathered} 094116 \\ : \\ 095716 \end{gathered}$	092916 093F16
	25th character 39th character	$\begin{gathered} 091816 \\ : \\ 092616 \end{gathered}$	$\begin{gathered} 095816 \\ : \\ 096616 \end{gathered}$	$\begin{gathered} 096816 \\ : \\ 097616 \end{gathered}$
	40th character	092716	096716	097716
Block 4	1st character	098016	$09 \mathrm{C016}$	$09 \mathrm{A816}$
	2nd character 24th character	098116 099716	09C116 09D716	09 A 916 09BF16
	25th character 39th character	$\begin{gathered} 099816 \\ : \\ 09 \mathrm{~A} 616 \end{gathered}$	$\begin{gathered} \text { 08D816 } \\ : \\ \text { 09E616 } \end{gathered}$	$\begin{gathered} \text { 09E816 } \\ : \\ \text { 09F616 } \end{gathered}$
	40th character	09A716	09E716	09F716
Block 5	1st character	0A0016	0A4016	0A2816
	2nd character 24th character	0A0116 0A1716	0A4116 0A5716	0A2916 0A3F16
	25th character 39th character	$\begin{gathered} \hline \text { 0A1816 } \\ : \\ \text { 0A2616 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 0A5816 } \\ : \\ \text { 0A6616 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 0A6816 } \\ : \\ \text { 0A7616 } \\ \hline \end{gathered}$
	40th character	0A2716	0A6716	0A7716

Table 14. Contents of OSD RAM (continued)

Block	Display position (from left)	Character code specification	Color code 1 specification	Color code 2 specification
Block 6	1st character	0A8016	0AC016	0AA816
	2nd character 24th character	0 A8116 0A9716	0AC116 0AD716	
	25th character 39th character	$\begin{gathered} \text { 0A9816 } \\ : \\ \text { 0AA616 } \end{gathered}$	$\begin{gathered} \hline \text { OAD816 } \\ : \\ \text { OAE616 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 0AE816 } \\ : \\ \text { 0AF616 } \end{gathered}$
	40th character	0AA716	0AE716	0AF716
Block 7	1st character	0B0016	0B4016	0B2816
	2nd character 24th character	$\begin{gathered} \text { OB0116 } \\ : \\ \text { OB1716 } \end{gathered}$	$\begin{gathered} \text { 0B4116 } \\ : \\ \text { 0B5716 } \end{gathered}$	$\begin{gathered} \text { 0B2916 } \\ : \\ \text { 0B3F16 } \end{gathered}$
	25th character 39th character	$\begin{gathered} \hline \text { 0B1816 } \\ : \\ \text { 0B2616 } \end{gathered}$	$\begin{gathered} \text { 0B5816 } \\ : \\ \text { 0B6616 } \end{gathered}$	$\begin{gathered} \hline \text { 0B6816 } \\ : \\ \text { 0B7616 } \end{gathered}$
	40th character	0B2716	0B6716	0B7716
Block 8	1st character	0B8016	0BC016	0BA816
	2nd character 24th character	$\begin{gathered} 0 \mathrm{OB} 8116 \\ : \\ \text { 0B9716 } \end{gathered}$	$\begin{gathered} \hline \text { OBC116 } \\ : \\ \text { 0BD716 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 0BA916 } \\ : \\ \text { 0BBF16 } \end{gathered}$
	25th character 39th character	$\begin{gathered} \text { 0B9816 } \\ : \\ \text { 0BA616 } \end{gathered}$	$\begin{gathered} \hline \text { 0BD816 } \\ : \\ \text { OBE616 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 0BE816 } \\ : \\ \text { 0BF616 } \end{gathered}$
	40th character	0BA716	0BE716	0BF716
Block 9	1st character	0C0016	0C4016	0C2816
	2nd character 24th character	$\begin{gathered} 0 \mathrm{C} 0116 \\ : \\ 0 \mathrm{C} 1716 \end{gathered}$	$\begin{gathered} 0 \mathrm{C} 4116 \\ : \\ 0 \mathrm{C} 5716 \end{gathered}$	$\begin{gathered} 0 \mathrm{C} 2916 \\ : \\ 0 \mathrm{C} 3 \mathrm{~F}_{16} \end{gathered}$
	25th character 39th character	$\begin{gathered} \hline 0 \mathrm{C} 1816 \\ : \\ 0 \mathrm{C} 2616 \end{gathered}$	$\begin{gathered} \hline \text { 0C5816 } \\ : \\ \text { 0C6616 } \end{gathered}$	$\begin{gathered} \hline 0 \mathrm{C} 6816 \\ : \\ 0 \mathrm{C} 7616 \end{gathered}$
	40th character	0C2716	0C6716	0C7716
Block 10	1st character	0C8016	0CC016	0CA816
	2nd character 24th character	$\begin{gathered} \hline \text { 0C8116 } \\ : \\ \text { 0C9716 } \end{gathered}$	$\begin{gathered} \hline \text { 0CC116 } \\ : \\ \text { 0CD716 } \end{gathered}$	$\begin{gathered} \hline \text { 0CA916 } \\ : \\ \text { 0CBF16 } \end{gathered}$
	25th character 39th character	$\begin{gathered} \text { 0C9816 } \\ : \\ \text { 0CA616 } \end{gathered}$	$\begin{gathered} \hline \text { 0CD816 } \\ : \\ \text { 0CE616 } \end{gathered}$	$\begin{gathered} \hline \text { 0CE816 } \\ : \\ \text { 0CF616 } \end{gathered}$
	40th character	0CA716	0CE716	0CF716
Block 11	1st character	0D0016	0D4016	0D2816
	2nd character 24th character	0D0116 0D1716	0D4116 0D5716	0D2916 0D3F16
	25th character 39th character	$\begin{gathered} \hline \text { 0D1816 } \\ : \\ \text { 0D2616 } \end{gathered}$	$\begin{gathered} \text { 0D5816 } \\ : \\ \text { 0D6616 } \end{gathered}$	$\begin{gathered} \text { 0D6816 } \\ : \\ \text { 0D7616 } \end{gathered}$
	40th character	0D2716	0 D6716	0D7716

Table 14. Contents of OSD RAM (continued)

Block	Display position (from left)	Character code specification	Color code 1 specification	Color code 2 specification
Block 12	1st character	0D8016	0DC016	0DA816
	2nd character 24th character	0D8116 0D9716	0DC116 0DD716	0DA916 0DBF16
	25th character 39th character	$\begin{gathered} \text { 0D9816 } \\ : \\ \text { 0DA616 } \end{gathered}$	$\begin{gathered} \text { ODD816 } \\ : \\ \text { 0DE616 } \end{gathered}$	$\begin{gathered} \text { 0DE816 } \\ : \\ \text { 0DF616 } \end{gathered}$
	40th character	0DA716	0DE716	0DF716
Block 13	1st character	0E0016	0E4016	0E2816
	2nd character 24th character		$\begin{gathered} 0 \mathrm{E} 4116 \\ : \\ 0 \mathrm{E} 5716 \end{gathered}$	
	25th character 39th character	$\begin{gathered} \text { 0E1816 } \\ : \\ \text { 0E2616 } \end{gathered}$	$\begin{gathered} \text { 0E5816 } \\ : \\ \text { 0E6616 } \end{gathered}$	$\begin{gathered} \text { 0E6816 } \\ : \\ \text { 0E7616 } \end{gathered}$
	40th character	0E2716	0E6716	0E7716
Block 14	1st character	0 E 8016	0EC016	0EA816
	2nd character 24th character		$\begin{gathered} \text { 0EC116 } \\ : \\ 0 \text { 0ED716 } \end{gathered}$	
	25th character 39th character	$\begin{gathered} \text { 0E9916 } \\ : \\ \text { 0EA616 } \end{gathered}$	$\begin{gathered} \text { 0ED816 } \\ : \\ \text { 0EE616 } \end{gathered}$	$\begin{gathered} \text { 0EE816 } \\ : \\ \text { 0EF616 } \end{gathered}$
	40th character	0EA716	0EE716	0EF716
Block 15	1st character	0F0016	0F4016	0F2816
	2nd character 24th character		$\begin{gathered} \text { 0F4116 } \\ : \\ \text { 0F5716 } \end{gathered}$	0F2916 0F3F16
	25th character 39th character	$\begin{gathered} \text { 0F1816 } \\ : \\ \text { 0F2616 } \end{gathered}$	$\begin{gathered} \hline 0 \mathrm{~F} 5816 \\ : \\ 0 \mathrm{~F} 6616 \end{gathered}$	$\begin{gathered} \hline \text { 0F6816 } \\ : \\ \text { 0F7616 } \end{gathered}$
	40th character	0F2716	0F6716	0F7716
Block 16	1st character	0F8016	0FC016	0FA816
	2nd character 24th character	$\begin{gathered} 0 \text { 0F8116 } \\ : \\ \text { 0F9716 } \end{gathered}$	$\begin{gathered} \text { OFC116 } \\ : \\ \text { 0FD716 } \end{gathered}$	$\begin{gathered} \text { 0FA916 } \\ : \\ \text { 0FBF16 } \end{gathered}$
	25th character 39th character	$\begin{gathered} \hline \text { 0F9816 } \\ : \\ \text { 0FA616 } \end{gathered}$	$\begin{gathered} \text { 0FD816 } \\ : \\ \text { 0FE616 } \end{gathered}$	$\begin{gathered} \hline \text { 0FE816 } \\ : \\ \text { 0FF616 } \end{gathered}$
	40th character	0FA716	0FE716	0FF716

Fig. 67. RAM data for 3nth character

Note: Do not read from and write to addresses in OSD RAM shown in Table 15

Table 15. List of access disable addresses

087816	087916	087A16
08F816	08F916	08FA16
097816	097916	097A16
$09 F 816$	$09 F 916$	09FA16
0A7816	0A7916	0A7A16
0AF816	0AF916	OAFA16
0B7816	0B7916	0B7A16
0BF816	0BF916	0BFA16
0 C 7816	0 C 7916	0C7A16
0CF816	0CF916	0CFA16
0D7816	0D7916	0D7A16
0DF816	0DF916	0DFA16
0E7816	0E7916	0E7A16
0EF816	0EF916	0EFA16
0F7816	0F7916	OF7A16
0FF816	0FF916	OFFA16

Blocks 1 to16

	CC mode		OSD mode		EXOSD mode	
Bit	Bit name	Function	Bit name	Function	Bit name	Function
RF0	Character code (Low-order 8 bits)	Specification of character code in OSD ROM	Character code (Low-order 8 bits)	Specification of character code in OSD ROM	Character code (Low-order 8 bits)	Specification of character code in OSD ROM
RF1						
RF2						
RF3						
RF4						
RF5						
RF6						
RF7						
RC10	Character code (High-order 1 bit)		Character code (High-order 1 bit)		Character code (High-order 1 bit)	
RC11	Control of character color R	0: Color signal output OFF1: Color signal output ON	Control of character color R Control of character color G Control of character color B	0: Color signal output OFF 1: Color signal output ON	Character color code 0 (CCO) Character color code 1 (CC1) Character color code 2 (CC2)	Specification of character color
RC12	Control of					
RC13	character color G					
	Control of character color B					
RC14	OUT1 control	0: Character output 1: Background output	OUT1 control	0: Character output 1: Background output	OUT1 control	0: Character output 1: Background output
$\mathrm{RC15}$	Flash control	$\begin{aligned} & \hline \text { 0: Flash OFF } \\ & \text { 1: Flash ON } \end{aligned}$	Control of character color I1	0: Color signal output OFF 1: Color signal output ON	Extra code 0	Specification of extra code in OSD ROM
RC17	Underline control	$\begin{aligned} & \hline \text { 0: Underline OFF } \\ & \text { 1: Underline ON } \end{aligned}$	Not used		Extra code 1 (EX1)	
	Italic control	$\begin{array}{\|l\|} \hline 0: \text { Italic OFF } \\ \text { 1: Italic ON } \end{array}$			(EX1) Extra code 2 (EX2)	
RC20	Control of background color R Control of background color G Control of background color B	1: Color signal output ON	Control of background color R Control of background color G Control of background color B Control of background color I1	0: Color signal output OFF 1: Color signal output ON	Background color code 0 (BCCO)	Specification of background color
RC21					Background color code 1 (BCC1)	
RC22					Background color code 2 (BCC2)	
RC23	Not used				Extra code 3 (EX3)	Specification of extra code in OSD

Notes 1: Read value of bits 4 to 7 of the color code 2 is undefined
2: For "not used" bits, the write value is read.
3: The decode value of the extra code is "EX4."

Fig. 68. Structure of OSD RAM

(7) Character color

The color for each character is displayed by the color code 1. The kinds and specification method of character color are different depending on each mode.

- CC mode \qquad
7 kinds
Specified by bits $1(R), 2(G)$, and $3(B)$ of the color code 1
- OSD mode \qquad 15 kinds
Specified by bits 1 (R), $2(G), 3(B)$, and 5 (I1) of the color code 1
- EXOSD mode \qquad 7 kinds
Specified by bits 1 (CC0), 2 (CC1), and 3 (CC2) of the color code 1
The correspondence Table of the color code 1 and color signal output in the EXOSD mode is shown in Table 16.

(8) Character background color

The character background color can be displayed in the character display area. The character background color for each character is specified by the color code 2 . The kinds and specification method of character background color are different depending on each mode.

- CC mode . \qquad 7 kinds
Specified by bits $0(R), 1(G)$, and $2(B)$ of the color code 2
- OSD mode \qquad 15 kinds
Specified by bits $0(R), 1(G), 2(B)$, and 3 (I1) of the color code 2
- EXOSD mode 7 kinds
Specified by bits 0 (BCC0), 1 (BCC1), and 2 (BCC2) of the color code 2
The correspondence table of the color code 2 and color signal output in the EXOSD mode is shown in Table 17.

Note : The character background color is displayed in the following part :
(character display area)-(character font)-(border)-(extra font). Accordingly, the character background color does not mix with these color signal.

Table 16. Correspondence table of color code 1 and color signal output in EXOSD mode

Color code 1				Color signal output				
Bit 3 CC2	Bit 2 CC1	Bit 1 CC0	R	G	B	I1	I2	
0	0	0	0	0	0	0	0	
0	0	1	1	0	0	0	0	
0	1	0	0	1	0	0	0	
0	1	1	1	1	0	1	0	
1	0	0	1	1	0	0	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	1	0	0	
1	1	1	1	1	1	0	0	

Table 17. Correspondence table of color code 2 and color signal output in EXOSD mode

Color code 2			Color signal output				
Bit 2	Bit 1	Bit 0	R	G	B	11	12
BCC2	BCC1	BCC0					
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	0	1	0
1	0	0	1	1	0	0	1
1	0	1	1	1	1	1	0
1	1	0	0	1	1	0	0
1	1	1	1	1	1	0	0

(9) OUT1, OUT2 signals

The OUT1, OUT2 signals are used to control the luminance of the video signal. The output waveform of the OUT1, OUT2 signals is controlled by bit 4 of the color code 1 (refer to Figure 68), bits 2 and

7 of the block control register (refer to Figure 53). The setting values for controlling OUT1, OUT2 and the corresponding output waveform is shown in Figure 69.

Fig. 69. Setting value for controlling OUT1, OUT2 and corresponding output waveform

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER

(10) Attribute

The attributes (flash, underline, italic) are controlled to the character font. The attributes for each character are specified by the color codes 1 and 2 (refer to Figure 68). The attributes to be controlled are different depending on each mode.
CC mode. \qquad Flash, underline, italic
OSD mode \qquad Border (all bordered, shadow bordered can be selected)
EXOSD mode \qquad Border (all bordered, shadow bordered can be selected) , extra font (32 kinds)

1 Under line

The underline is output at the 23th and 24th dots in vertical direction only in the CC mode. The underline is controlled by bit 6 of the color code 1 . The color of underline is the same color as that of the character font.

2 Flash

The parts of the character font, the underline, and the character background are flashed only in the CC mode. The color signals (R, G, B, OUT1) of the character font and the underline are controlled by bit 5 of the color code 1. All of the color signals for the character font flash. However, the color signal for the character background can be controlled by bit 3 of the OSD control register (refer to Figure 52). The flash cycle bases on the Vsync count.

- VsYnc cycle $\times 48$; 768 ms (at flash ON)
- VsYnc cycle $\times 16$; 256 ms (at flash OFF)

3 Italic

The italic is made by slanting the font stored in OSD ROM only in the CC mode. The italic is controlled by bit 7 of the color code 1.

The display example of the italic and underline is shown in Figure 70. In this case, 1626 dots are used and " R " is displayed.

Notes 1: When setting both the italic and the flash, the italic character flashes.
2: When the pre-divide ratio $=1$, the italic character with slant of 1 dot $\times 5$ steps is displayed (refer to Figure 71 (c)). When the pre-divide ratio $=2$, the italic character with slant of $1 / 2$ dot $\times 10$ steps is displayed (refer to Figure 71 (d)).
3: The boundary of character color is displayed in italic. However, the boundary of character background color is not affected by the italic (refer to Figure 72).
4: The adjacent character (one side or both side) to an italic character is displayed in italic even when the character is not specified to display in italic (refer to Figure 72).
5: When displaying the italic character in the block with the pre-divide ratio $=1$, set the OSD clock frequency to 11 MHz to 14 MHz .

4 Extra font

There are 32 kinds of the extra fonts configured with 16×26 dots in OSD ROM. 16 kinds of these fonts can be displayed by ORed with the character font by a character unit (refer to Figure 50). For the others, only the extra font is displayed (refer to Figure 50). In only the EXOSD mode, the extra font is controlled the following : bits 7 to 5 of the color code 1, bit 3 of the color code 2, and decode value (EX4) of the character code. When the character code = "0016" to "13F16," EX4 is " 0 , " when the character code $=$ " 14016 ," EX4 is " 1 ." Since there is no font with the character code $=" 14016$," a blank is displayed.
The extra font color for each screen is specified by the extra color register. When the character font overlaps with the extra font, the color of the area becomes the ORed color of both fonts.

Note: When using the extra font, set bits 7 and 6 of the OSD control register to "0" (refer to Figure 52).

Fig. 70. Structure of extra font color register

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

Fig. 71. Example of attribute display (in CC mode)

Fig. 72. Example of italic display

5 Border

The border is output in the OSD mode and the EXOSD mode. The all bordered (bordering around of character font) and the shadow bordered (bordering right and bottom sides of character font) are selected (refer to Figure 73) by bit 2 of the OSD control register (refer to Figure 52). The border ON/OFF is controlled by bit 2 of the block control register (refer to Figure 53).
The OUT1 signal is used for border output. The border color for each screen is specified by the border color register.
The horizontal size (x) of border is 1Tc (OSD clock cycle divided in the pre-divide circuit) regardless of the character font dot size. The vertical size (y) different depending on the screen scan mode and the vertical dot size of character font.

Notes 1 : There is no border for the extra font.
2 : The border dot area is the shaded area as shown in Figure 75. In the EXOSD mode, top and bottom of character font display area is not bordered.
3 : When the border dot overlaps on the next character font, the character font has priority (refer to Figure 76 A). When the border dot overlaps on the next character back ground, the border has priority (refer to Figure 76 B).
4 : The border is not displayed at right side of the most right dot in the display area of the 40th character (the character located at the most right of the block).

All bordered

Shadow bordered

Fig. 73. Example of border display

Fig. 74. Horizontal and vertical size of border

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER with CLOSED CAPTION DECODER and ON-SCREEN DISPLAY CONTROLLER

Fig. 75. Border area

Fig. 76. Border priority

(11) Multiline Display

The M37271MF-XXXSP can ordinarily display 16 lines on the CRT screen by displaying 16 blocks at different vertical positions. In addition, it can display up to 16 lines by using OSD interrupts.
An OSD interrupt request occurs at the point at which display of each block has been completed. In other words, when a scanning line reaches the point of the display position (specified by the vertical position registers) of a certain block, the character display of that block starts, and an interrupt occurs at the point at which the scanning line exceeds the block. The mode in which an OSD interrupt occurs is different depending on the setting of the raster color register (refer to Figure 84).

- When bit 7 of the raster color register is " 0 "

An OSD interrupt occurs at the end of block display in the OSD and the EXOSD mode.

- When bit 7 of the raster color register is " 1 "

An OSD interrupt occurs at the end of block display in the CC mode.

Notes 1: An OSD interrupt does not occur at the end of display when the block is not displayed. In other words, if a block is set to off display by the display control bit of the block control register (addresses 00D016 to 00DF16), an OSD interrupt request does not occur (refer to Figure 78 (A)).
2: When another block display appeares while one block is displayed, an OSD interrupt request occurs only once at the end of the another block display (refer to Figure 78 (B)).
3: On the screen setting window, an OSD interrupt occurs even at the end of the CC mode block (off display) out of window (refer to Figure 78 (C)).

On display (OSD interrupt request occurs at the end of block display)

(A)

In CC mode
(B)
(C)

Fig. 78. Note on occurence of OSD interrupt

(12) Automatic Solid Space Function

This function generates automatically the solid space (OUT1 or OUT2
blank output) of the character area in the CC mode.
The solid space is output in the following area :

- the character area except character code "00916"
the character area on the left and right sides of the character area except character code "00916"
This function is turned on and off by bit 4 of the OSD control register (refer to Figure 52).

Notes 1 : Blank is disabled on the left side of the 1st character and on the right side of the 40th character of each block.
2 : When using this function, set " 00916 " to the 40 th character.

Table 18. Setting for automatic solid space

Bit 4 of OSD control register	0				1		
Bit 7 of block control register	0		1		0	1	
Bit 4 of color code 1	0	1	0	1	0	0	1
OUT1 output signal	Character font part	Character display area	Character font part				
OUT2 output signal	OFF		OFF	Character display area			

When setting the character code " 00516 " as the character $\mathrm{A}, ~ " 00616$ " as the character B.

Fig. 79. Display screen example of automatic solid space

(13) Scan Mode

M37271MF-XXXSP has the bi-scan mode for corresponding to HSYNC of double speed frequency. In the bi-scan mode, the vertical start display position and the vertical size is two times as compared with the normal scan mode. The scan mode is selected by bit 1 of the OSD control register (refer to Figure 52).

Table 19. Setting for scan mode

Parameter Scan mode	Normal scan	Bi-scan
Bit 1 of OSD control register	0	1
Vertical display start position	Value of vertical position register $\times 1 \mathrm{H}$	Value of vertical position register $\times 2 \mathrm{H}$
Vertical dot size	$1 \mathrm{Tc} \times 1 / 2 \mathrm{H}$	$1 \mathrm{Tc} \times 1 \mathrm{H}$
	$1 \mathrm{Tc} \times 1 \mathrm{H}$	$1 \mathrm{Tc} \times 2 \mathrm{H}$
	$2 \mathrm{Tc} \times 2 \mathrm{H}$	$2 \mathrm{Tc} \times 4 \mathrm{H}$
	$3 \mathrm{Tc} \times 3 \mathrm{H}$	$3 \mathrm{Tc} \times 6 \mathrm{H}$

(14) Window Function

This function sets the top and bottom boundary of display limit on a screen. The window function is valid only in the CC mode. The top boundary is set by the window H registers 1 and 2 . The bottom boundary is set by the window L registers 1 and 2 . This function is turned on and off by bit 5 of the OSD control register (refer to Figure 52). The structure of the window H registers 1 and 2 is shown in Figure 81 , the structure of the window L registers 1 and 2 is shown in Figure 82.

Notes 1: Set values except " 0016 " and " 0116 " to the window H register 1 when the window H register 2 is " 0016 ."
2: Set the register value fit for the following condition: $(\mathrm{WH} 1+\mathrm{WH} 2)<(\mathrm{WL} 1+\mathrm{WL} 2)$

Fig. 80. Example of window function

Note : Set values except " 0016 " and " 0116 " to the WH1 when the WH2 is "00 16."

Fig. 81. Structure of window H registers

Bottom boundary position (low-order 8bits)
$\mathrm{TH} \times$ (setting value of low-order 2bits of WL 2×16^{2} +setting value of high-order 4 bits of WL $1 \times 16^{1}+$ setting value of low-order 4bits of WL1 $\times 16^{0}$)

Window L register 2 (WL2 : address 021F16)

Control bits of window bottom boundary (Note)
Bottom boundary position (high-order 2bits)
THX (setting value of low-order 2bits of WL $2 \times 16^{2}+$ setting value of high-order 4bits of WL1 $\times 16^{1}+$ setting value of low-order 4bits of WL1×16 ${ }^{0}$)

Note : Set values fit for the following condition : (WH1+WH2) < (WL1+WL2).

Fig. 82. Structure of window L registers

(15) OSD Output Pin Control

The OSD output pins R, G, B, and OUT1 can also function as ports $\mathrm{P} 52, \mathrm{P} 53, \mathrm{P} 54$ and P55. Set the corresponding bit of the OSD port control register (address 00CB16) to "0" to specify these pins as OSD output pins, or set it to "1" to specify it as a general-purpose port P5 pins. The OUT2, I 1 , and I 2 can also function as port P10, P15, P16. Set the corresponding bit of the port P1 direction register (address 00C316) to "1" (output mode). After that, switch between the OSD output function and the port function by the OSD port control register. Set the corresponding bit to " 1 " to specify the pin as OSD output pin, or set it to "0" to specify as port P1 pin.
The input polarity of the HSYNC, VSYNC and output polarity of signals R, G, B, I1, I2, OUT1 and OUT2 can be specified with the I/O polarity control register (address 021716) . Set a bit to " 0 " to specify positive polarity; set it to " 1 " to specify negative polarity (refer to Figure 64). The structure of the OSD port control register is shown in Figure 83.

Fig. 83. Structure of OSD port control register

(16) Raster Coloring Function

An entire screen (raster) can be colored by setting the bits 6 to 0 of the raster color register. Since each of the R, G, B, I1, I2, OUT1, and OUT2 pins can be switched to raster coloring output, 7 raster colors can be obtained.
If the OUT1 pin has been set to raster coloring output, a raster coloring signal is always output during 1 horizontal scanning period. This setting is necessary for erasing a background TV image.
If the $\mathrm{R}, \mathrm{G}, \mathrm{B}, \mathrm{I} 1$, and I 2 pins have been set to output, a raster coloring signal is output in the part except a no-raster colored character (in Figure 85, a character "1") during 1 horizontal scanning period. This ensures that character colors are not mixed with the raster color. The structure of the raster color register is shown in Figure 84, the example of raster coloring is shown in Figure 85.

Fig. 84. Structure of raster color register

Fig. 85. Example of raster coloring

INTERRUPT INTERVAL DETERMINATION FUNCTION

The M37271MF-XXXSP incorporates an interrupt interval determination circuit. This interrupt interval determination circuit has an 8-bit binary up counter as shown in Figure 86. Using this counter, it determines an interval or a pulse width on the INT1 or INT2 (refer to Figure 88).
The following describes how the interrupt interval is determined.

1. The determination mode is selected by using bit 5 of the interrupt interval determination control register (address 021216). When this bit is set to " 0 ," the interrupt interval determination mode is selected; when the bit is set to " 1 ," the pulse width determination mode is selected.
2. The interrupt input to be determined (INT1 input or INT2 input) is selected by using bit 2 in the interrupt interval determination control register (address 021216). When this bit is cleared to " 0 ," the INT1 input is selected ; when the bit is set to " 1 ," the INT2 input is selected.
3. When the INT1 input is to be determined, the polarity is selected by using bit 3 of the interrupt interval determination control register ; when the INT2 input is to be determined, the polarity is selected by using bit 4 of the interrupt interval determination control register.

When the relevant bit is cleared to " 0 ," determination is made of the interval of a positive polarity (rising transition) ; when the bit is set to " 1 ," determination is made of the interval of a negative polarity (falling transition).
4. The reference clock is selected by using bit 1 of the interrupt interval determination control register. When the bit is cleared to " 0 ," a 32μ s clock is selected ; when the bit is set to " 1 ," a 16μ s clock is selected (based on an oscillation frequency of 8 MHz in either case).
5. Simultaneously when the input pulse of the specified polarity (rising or falling transition) occurs on the INT1 pin (or INT2 pin), the 8-bit binary up counter starts counting up with the selected reference clock ($32 \mu \mathrm{~s}$ or $16 \mu \mathrm{~s}$).
6. Simultaneously with the next input pulse, the value of the 8 -bit binary up counter is loaded into the interrupt interval determination register (address 021116) and the counter is immediately reset ("0016"). The reference clock is input in succession even after the counter is reset, and the counter restarts counting up from "0016".
7. When count value "FE16" is reached, the 8-bit binary up counter stops counting. Then, simultaneously when the next reference clock is input, the counter sets value "FF16" to the interrupt interval determination register. The reference clock is generated by setting bit 0 of the PWM mode register 1 to " 0 ."

RE: Input interval determination control register
Note: The pulse width of external interrupt INT1 and INT2 needs 5 or more machine cycles.

Fig. 86. Block diagram of interrupt interval determination circuit

Fig. 87. Structure of interrupt interval determination control register

Fig. 88. Setting value of interrpt interval determination control register and measuring interval

RESET CIRCUIT

The M37271MF-XXXSP is reset according to the sequence shown in Figure 90. It starts the program from the address formed by using the content of address FFFF16 as the high-order address and the content of the address FFFE16 as the low-order address, when the $\overline{R E S E T}$ pin is held at "L" level for 2μ s or more while the power source voltage is $5 \mathrm{~V} \pm 10 \%$ and the oscillation of a quartz-crystal oscillator or a ceramic resonator is stable and then returned to " H " level. The internal state of microcomputer at reset are shown in Figures 3 to 7. An example of the reset circuit is shown in Figure 89.
The reset input voltage must be kept 0.9 V or less until the power source voltage surpasses 4.5 V .

Fig. 89. Example of reset circuit

Fig. 90. Reset sequence

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

Ports $\mathrm{P} 03, \mathrm{P} 10, \mathrm{P} 15-\mathrm{P} 17, \mathrm{P} 2, \mathrm{P} 30, \mathrm{P} 31$

Ports P00-P02, P04-P07

Ports P11-P14

Fig. 91. I/O pin block diagram (1)

M37271MF-XXXSP M37271EF-XXXSP, M37271EFSP

Hsync, Vsync
R, G, B, OUT1
CMOS output

Ports P40-P44

R, G, B, OUT1

Note : Each pin is also used as below :
R: P52 B: P54
$\mathrm{G}:$ P53 OUT1: P55

Ports P40-P44
Note : Each port is also used as below :
P40: AD4
P41: INT2
P42: TIM2
P43: TIM3
P44: INT1

Fig. 92. I/O pin block diagram (2)

CLOCK GENERATING CIRCUIT

The M37271MF-XXXSP has 2 built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and Xout (XCIN and XcOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XcOUT. When using XCIN-XcOUT as subclock, clear bits 5 and 4 of the clock source control register to " 0 ." To supply a clock signal externally, input it to the XIN (XCIN) pin and make the Xout (XCOUT) pin open. When not using Xcin clock, connect the Xcin to Vss and make the Xcout pin open.
After reset has completed, the internal clock ϕ is half the frequency of XIN. Immediately after poweron, both the XIN and XCIN clock start oscillating. To set the internal clock ϕ to low-speed operation mode, set bit 7 of the CPU mode register (address 00FB16) to "1."

Oscillation Control

(1) Stop mode

The built-in clock generating circuit is shown in Figure 93. When the STP instruction is executed, the internal clock ϕ stops at " H " level. At the same time, timers 3 and 4 are connected in hardware and "FF16" is set in the timer 3, "0716" is set in the timer 4 . Select $\mathrm{f}(\mathrm{XIN}) / 16$ or $f(X C I N) / 16$ as the timer 3 count source (set both bit 0 of the timer mode register 2 and bit 6 at address 00 C 716 to " 0 " before the execution of the STP instruction). And besides, set the timer 3 and timer 4 interrupt enable bits to disabled ("0") before execution of the STP instruction. The oscillator restarts when external interrupt is accepted, however, the internal clock ϕ keeps its " H " level until timer 4 overflows. Because this allows time for oscillation stabilizing when a ceramic resonator or a quartz-crystal oscillator is used.

(2) Wait mode

When the WIT instruction is executed, the internal clock ϕ stops in the " H " level but the oscillator continues running. This wait state is released at reset or when an interrupt is accepted (Note). Since the oscillator does not stop, the next instruction can be executed at once.

Note: In the wait mode, the following interrupts are invalid.
(1) VsYNC interrupt
(2) OSD interrupt
(3) Timers 1 and 2 interrupts using P42/TIM2 pin input as count source
(4) Timer 3 interrupt using P43/TIM3 pin input as count source
(5) Data slicer interrupt
(6) Multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface interrupt
(7) $f(X i n) / 4096$ interrupt
(8) All timer interrupts using $f\left(X_{I N}\right) / 2$ or $f\left(X_{\text {CIN }}\right) / 2$ as count source
(9) All timer interrupts using $f(X I N) / 4096$ or $f(X C I N) / 4096$ as count source
(10) A-D conversion interrupt

(3) Low-Speed Mode

If the internal clock is generated from the sub-clock (XCIN), a low power consumption operation can be realized by stopping only the main clock XIN. To stop the main clock, set bit 6 (CM6) of the CPU mode register (00FB16) to "1." When the main clock XIN is restarted, the program must allow enough time to for oscillation to stabilize. Note that in low-power-consumption mode the XCIN-XCOUT drivability can be reduced, allowing even lower power consumption ($60 \mu \mathrm{~A}$ with $f(\mathrm{XCIN})=32 \mathrm{kHz})$. To reduce the XCIN-XCOUT drivability, clear bit 5 (CM5) of the CPU mode register (00FB16) to " 0 ." At reset, this bit is set to " 1 " and strong drivability is selected to help the oscillation to start. When an STP instruction is executed, set this bit to " 1 " by software before executing.

Fig. 93. Ceramic resonator circuit example

Fig. 94. External clock input circuit example

Fig. 95. Clock generating circuit block diagram

The example assumes that 8 MHz is being applied to the $\mathrm{X} \operatorname{IN}$ pin and 32 kHz to the X cIN pin. The ϕ indicates the internal clock.
Notes 1: When the STP state is ended, a delay of approximately 8 ms is automatically generated by timer 3 and timer 4.
2: The delay after the STP state ends is approximately 2 s .
3: When the internal clock ϕ divided by 8 is used as the timer count source, the frequency of the count source is 2 kHz .

Fig. 96. State transitions of system clock

DISPLAY OSCILLATION CIRCUIT

The OSD oscillation circuit has a built-in clock oscillation circuits, so that a clock for OSD can be obtained simply by connecting an LC, a ceramic resonator, or a quartz-crystal oscillator across the pins OSC1 and OSC2. Which of the sub-clock or the OSD oscillation circuit is selected by setting bits 5 and 4 of the clock source control register (address 021616).

Fig. 97. Display oscillation circuit

AUTO-CLEAR CIRCUIT

When power source is supplied, the auto-clear function can be performed by connecting the following circuit to the RESET pin.

Circuit example 1

Circuit example 2

Note : Make the level change from " L " to " H " at the point at which the power source voltage exceeds the specified voltage.

Fig. 98. Auto-clear circuit example

ADDRESSING MODE

The memory access is reinforced with 17 kinds of addressing modes. Refer to the SERIES 740 <Software> User's Manual for details.

MACHINE INSTRUCTIONS

There are 71 machine instructions. Refer to the SERIES 740 <Software > User's Manual for details.

PROGRAMMING NOTES

(1) The divide ratio of the timer is $1 /(n+1)$.
(2) Even though the BBC and BBS instructions are executed immediately after the interrupt request bits are modified (by the program), those instructions are only valid for the contents before the modification. At least one instruction cycle is needed (such as an NOP) between the modification of the interrupt request bits and the execution of the BBC and BBS instructions.
(3) After the ADC and SBC instructions are executed (in decimal mode), one instruction cycle (such as an NOP) is needed before the SEC, CLC, or CLD instruction is executed.
(4) An NOP instruction is needed immediately after the execution of a PLP instruction.
(5) In order to avoid noise and latch-up, connect a bypass capacitor ($\approx 0.1 \mu \mathrm{~F}$) directly between the Vcc pin-Vss pin, AVcc pin-Vss pin, and the Vcc pin-CNVss pin using a thick wire.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (32-pin DIP Type 27C101, three identical copies)

PROM Programming Method

The built-in PROM of the One Time PROM version (blank) and builtin EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter.

Product	Name of Programming Adapter
M37271EFSP	PCA7400

The PROM of the One Time PROM version (blank) is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 99 is recommended to verify programming.

Fig. 99. Programming and testing of One Time PROM version

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Conditions	Ratings	Unit
Vcc, AVcc	Power source voltage Vcc, AVcc		All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6	V
VI	Input voltage	CNVss		-0.3 to 6	V
VI	Input voltage	$\begin{aligned} & \text { P00-P07, P10-P17, P20-P27, } \\ & \text { P30, P31, P40-P46, P64, OSC1, } \\ & \text { XIN, HSYNC, VSYNC, RESET, } \\ & \text { CVIN } \end{aligned}$		-0.3 to Vcc +0.3	V
Vo	Output voltage	P03, P10-P17, P20-P27, P30, P31, R, G, B, OUT1, Sout, Sclk, Xout, OSC2		-0.3 to Vcc +0.3	V
Vo	Output voltage	P00-P02, P04-P07		-0.3 to 13	V
IOH	Circuit current	R, G, B, OUT1, OUT2, P03, P15-P17, P20-P27, P30, P31		0 to 1 (Note 1)	mA
IOL1	Circuit current	R, G, B, OUT1, OUT2, P03, P15-P17, P20-P27, Sout, ScLK		0 to 2 (Note 2)	mA
IOL2	Circuit current	P11-P14		0 to 6 (Note 2)	mA
IOL3	Circuit current	P00-P02, P04-P07		0 to 1 (Note 2)	mA
IOL4	Circuit current	P30, P31		0 to 10 (Note 3)	mA
Pd	Power dissipation		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	550	mW
Topr	Operating temp			-10 to 70	${ }^{\circ} \mathrm{C}$
Tstg	Storage tempe			-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$, unless otherwise noted)

Symbol	Parameter				Limits		Unit
				Min.	Typ.	Max.	
Vcc, AVcc	Power source voltage (Note 4), During CPU, OSD, data slicer operation			4.5	5.0	5.5	V
Vcc, AVcc	RAM hold voltage (when clock is stopped)			2.0		5.5	V
Vss	Power source voltage			0	0	0	V
VIH1	"H" input voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20-\mathrm{P} 27, \mathrm{P} 30, \mathrm{P} 31$, $\mathrm{P} 40-\mathrm{P} 46, \mathrm{P} 64$, HsYNc, VSYNC, RESET, $\mathrm{XIN}, \mathrm{OSC} 1$			0.8Vcc		Vcc	V
VIH2	"H" input voltage	P11-P14 (When using $\mathrm{I}^{2} \mathrm{C}-\mathrm{BUS}$)		0.7Vcc		Vcc	V
VIL1	"L" input voltage	$\begin{aligned} & \text { P00-P07, P10-P17, P20-P27, P30, P31, } \\ & \text { P40-P46, P63, P64 } \end{aligned}$		0		0.4 Vcc	V
VIL2	"L" input voltage	SCL1, SCL2, SDA1, SDA2, (When using ${ }^{2} \mathrm{C}$-BUS)		0		0.3 Vcc	V
VIL3	"L" input voltage (Note 6)	$\begin{aligned} & \text { P41-P44, P46, P16, P17, Hsync, Vsync, } \\ & \text { RESET, XIN, OSC1 } \end{aligned}$		0		0.2 Vcc	V
IOH	"H" average output current (Note 1) $\begin{aligned} & \text { R, G, B, OUT1, OUT2, P03, P15-P17, } \\ & \text { P20-P27, P30, P31 }\end{aligned}$					1	mA
IOL1	"L" average output current (Note 2) R, G, B, OUT1, OUT2, P03, P15-P17, P20-P27, SOUT, ScLK					2	mA
IOL2	"L" average output current (Note 2)	P11-P14				6	mA
IOL3	"L" average output current (Note 2)	P00-P02, P04				1	mA
IOL4	"L" average output current (Note 3) P30, P31					10	mA
fCPU	Oscillation frequency (for CPU operation) (Note 5)		XIN	7.9	8.0	8.1	MHz
fCLK	Oscillation frequency (for sub-clock operation)		XCIN	29	32	35	kHz
fosd	Oscillation frequency (for OSD)	OSC1	LC oscillating mode	11.0		27.0	MHz
			Ceramic oscillating mode	26.5	27.0	27.5	
fhs1	Input frequency TIM2, TIM3,		1, INT2, INT3			100	kHz
fhs2	Input frequency	SCLK				1	MHz
fhs3	Input frequency	SCL1, SCL2				400	kHz
fhs4	Input frequency	Horizontal sync. signal of video signal		15.262	15.734	16.206	kHz
VI	Input amplitude video signal	CVIN		1.5	2.0	2.5	V

ELECTRIC CHARACTERISTICS (Vcc $=5 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter			Test conditions		Limits			Unit		
				Min.	Typ.	Max.					
ICC	Power source current		System operation			$\begin{aligned} & \mathrm{VcC}=5.5 \mathrm{~V}, \\ & \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz} \end{aligned}$	CRT OFF Data slicer OFF		15	30	mA
				CRT ON Data slicer ON			30	45			
				$\begin{aligned} & \mathrm{VcC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0, \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}, \end{aligned}$ OSD OFF, Data slicer OFF, Low-power dissipation mode set (CM5 = "0", CM6 = "1")			60	200	$\mu \mathrm{A}$		
			Wait mode	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$			2	4	mA		
				$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0, \\ & \mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}, \\ & \text { Low-power dissipation } \\ & \text { mode set (CM5 = "0", } \\ & \mathrm{CM} 6=" 1 \text { ") } \end{aligned}$			25	100	$\mu \mathrm{A}$		
			Stop mode	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=0, \\ & \mathrm{f}(\mathrm{XCIN})=0 \end{aligned}$			1	10			
VOH	"H" output voltage	R, G, B, OUT1, OUT2, P03, P15-P17, P20-P27, P30, P31		$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IOH}=-0.5 \mathrm{~mA} \end{aligned}$		2.4			V		
VoL	"L" output voltage $\begin{array}{l}\text { R, G, B, OUT1, OUT2, SOUT, } \\ \\ \\ \text { SCLK, PO0-P07, P15-P17, } \\ \text { P20-P27 }\end{array}$			$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IOL}=0.5 \mathrm{~mA} \end{aligned}$				0.4			
	"L" output voltage P	P30, P31		$\begin{aligned} & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \mathrm{IOL}=10.0 \mathrm{~mA} \end{aligned}$				3.0	V		
	"L" output voltage P	P11-P14		$\mathrm{Vcc}=4.5 \mathrm{~V}$	$\mathrm{IOL}=3 \mathrm{~mA}$			0.4			
					$\mathrm{IOL}=6 \mathrm{~mA}$			0.6			
$\mathrm{V} \mathrm{T}_{+}-\mathrm{V}^{\text {- }}$	Hysteresis	RESET		$\mathrm{Vcc}=5.0 \mathrm{~V}$			0.5	0.7	V		
	Hysteresis (Note 6)	Hsync, Vsync, P41-P44, P46, P11-P14, P17		$\mathrm{Vcc}=5.0 \mathrm{~V}$			0.5	1.3			
IIZH	" H " input leak current RESET, P03, P10-P17, P20-P27, P30, P31, P40-P46,P63, P64, HSYNC, VSYNC			$\begin{aligned} & V C C=5.5 \mathrm{~V} \\ & \mathrm{VI}=5.5 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{A}$		
IIZL	"L" input leak current RESET, P00-P07, P10-P17, P20-P27, P30, P31, P40-P46, P63, P64, HsYnc, VsYnc			$\begin{aligned} & \mathrm{VCc}=5.5 \mathrm{~V} \\ & \mathrm{VI}=0 \mathrm{~V} \end{aligned}$				5	$\mu \mathrm{A}$		
IIZH	"H" input leak current $\mathrm{P} 00-\mathrm{P} 02, \mathrm{P} 04-\mathrm{PO} 7$			$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{VI}=12 \mathrm{~V} \end{aligned}$				10	$\mu \mathrm{A}$		
RbS	$\mathrm{I}^{2} \mathrm{C}$-BUS $\cdot \mathrm{BUS}$ switch connection resistor (between SCL1 and SCL2, SDA1 and SDA2)			$\mathrm{Vcc}=4.5 \mathrm{~V}$				130	Ω		

Notes 1: The total current that flows out of the IC must be 20 or less.
2: The total input current to IC (IOL1 + IOL2 + IOL3) must be 20 mA or less.
3: The total average input current for ports P30, P31 to IC must be 10 mA or less.
4: Connect $0.1 \mu \mathrm{~F}$ or more capacitor externally across the power source pins Vcc-Vss and AVcc-Vss so as to reduce power source noise.
Also connect $0.1 \mu \mathrm{~F}$ or more capacitor externally across the pins Vcc-CNVss.
5: Use a quartz-crystal oscillator or a ceramic resonator for the CPU oscillation circuit. When using the data slicer, use 8 MHz .
6: P16, P41-P44 have the hysteresis when these pins are used as interrupt input pins or timer input pins. P11-P14 have the hysteresis when these pins are used as multi-master $\mathrm{I}^{2} \mathrm{C}$-BUS interface ports. P 17 and P 46 have the hysteresis when these pins are used as serial I/O pins.
7: When using the sub-clock, set fcLK $<\mathrm{fCPU} / 3$.

A-D CONVERTER CHARACTERISTICS

(VCC $=5 \mathrm{~V} \pm 10 \%, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				8	bits
-	Non-linearity error		0		± 2	LSB
-	Differential non-linearity error		0		± 0.9	LSB
Vot	Zero transition error	$\begin{aligned} & \mathrm{VCC}=5.12 \mathrm{~V} \\ & \mathrm{IOL}(\mathrm{SUM})=0 \mathrm{~mA} \end{aligned}$	0		2	LSB
Vfst	Full-scale transition error	$\mathrm{VcC}=5.12 \mathrm{~V}$	0		4	LSB
Tconv	Conversion time		12.25		12.5	$\mu \mathrm{s}$
Vref	Reference voltage				Vcc	V
RLADDER	Ladder resistor			25		k Ω
VIA	Analog input current		0		Vref	V

MULTI-MASTER ${ }^{2}$ ²C-BUS BUS LINE CHARACTERISTICS

Symbol	Parameter	Standard clock mode		High-speed clock mode		Unit
		Min.	Max.	Min.	Max.	
tBuF	Bus free time	4.7		1.3		$\mu \mathrm{s}$
tHD:STA	Hold time for START condition	4.0		0.6		$\mu \mathrm{s}$
tLow	"L" period of SCL clock	4.7		1.3		$\mu \mathrm{s}$
tR	Rising time of both SCL and SDA signals		1000	$20+0.1 \mathrm{Cb}$	300	ns
thD:DAT	Data hold time	0		0	0.9	$\mu \mathrm{s}$
tHIGH	"H" period of SCL clock	4.0		0.6		$\mu \mathrm{s}$
tF	Falling time of both SCL and SDA signals		300	$20+0.1 \mathrm{Cb}$	300	ns
tSU:DAT	Data set-up time	250		100		ns
tSU:STA	Set-up time for repeated START condition	4.7		0.6		$\mu \mathrm{s}$
tSU:STO	Set-up time for STOP condition	4.0		0.6		$\mu \mathrm{s}$

Note: $\mathrm{Cb}=$ total capacitance of 1 bus line

Fig. 100. Definition diagram of timing on multi-master $I^{2} C$-BUS

PACKAGE OUTLINE

52P4B
Plastic 52pin 600mil SDIP

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.
Three EPROMs are required for each pattern.
If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Checksum code for entire EPROM
 (hexadecimal notation)

EPROM type (indicate the type used)

(1) Set " $\mathrm{FF}_{16 \text { " in the shaded area. }}$
(2) Write the ASCII codes that indicates the product name of "M37271MF-" to addresses 0000 to to $000 \mathrm{~F}_{16}$.

EPROM data check item (Refer the EPROM data and check " \checkmark " in the appropriate box)

- Do you set "FF16" in the shaded area? $\quad \rightarrow$ Yes \square
- Do you write the ASCII codes that indicates the product name of "M37271MF-" to addresses $0000{ }_{16}$ to 000F ${ }_{16}$? \rightarrow Yes \square
* 2. Mark specification

Mark specification must be submitted using the correct form for the type package being ordered fill out the appropriate mark specification form (52P4B for M37271MF-XXXSP) and attach to the mask ROM confirmation form.

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37271MF-XXXSP MITSUBISHI ELECTRIC

Writing the product name and character ROM data onto EPROMs

Addresses $00000{ }_{16}$ to 0000F ${ }_{16}$ store the product name, and addresses 1080016 to $1 \mathrm{E}^{2} 43 \mathrm{~F}_{16}$ store the character pattern. If the name of the product contained in the EPROMs does not match the name on the mask ROM confirmation form, the ROM processing is disabled. Write the data correctly.

1. Inputting the name of the product with the ASCII code ASCII codes 'M37271MF-' are listed on the right.
The addresses and data are in hexadecimal notation.

Address		Address	
000016	'M' = 4 D ${ }_{16}$	000816	${ }^{\prime}-{ }^{\prime}=2 \mathrm{D}_{16}$
$0001{ }_{16}$	' 3 ' = 33_{16}	000916	F F 16
$0002{ }_{16}$	'7' = 3 7_{16}	$000 \mathrm{~A}_{16}$	FF 16
000316	'2' $=32_{16}$	000B16	FF 16
000416	${ }^{\prime} 7$ ' $=37_{16}$	$000 \mathrm{C}_{16}$	FF 16
000516	' 1 ' = $31{ }_{16}$	000D16	FF 16
000616	'M' = 4 D ${ }_{16}$	000E ${ }_{16}$	FF 16
000716	'F' = 4 6 ${ }_{16}$	$000 \mathrm{~F}_{16}$	FF 16

2. Inputting the character ROM

Input the character ROM data to character ROM. For the character ROM data, see the next page and on.

GZZ-SH10-44B < 5ZA0 >

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37271MF-XXXSP MITSUBISHI ELECTRIC

Font data must be stored in the proper OSD ROM address according to the following table.
(1)OSD ROM address of character font data

| OSD ROM address bit | AD16 | AD15 | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | AD1 | AD0 |
| :---: |
| Line number / Character
 code $/$ Font bit |

Line number = 0216 to 1516
Character code $=0016$ to 13F16
Font bit = 0 : Left font
1 : Right font

Example) The font data " 60 " (shaded area \square) of the character code "AA 16 " is stored in address

$$
\begin{array}{llll:lll:lll:lll:l}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 2=1295416 .
\end{array}
$$

(2)OSD ROM address of extra font data

OSD ROM address bit	AD16	AD15		3	AD12	AD	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
Line number / Extra cod Font bit	1	1		Line	e num	er		0	0	0	0			a			Font bit

Line number = 0016 to 1916
Extra code $=0016$ to $1 \mathrm{~F}_{16}$
Font bit $=0$: Left font
1 : Right font
Example) The font data " 03 " (shaded area \triangle) of the extra code " 0 A 16 " is stored in address

$$
\begin{array}{llll:llllll:lllll}
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array} 0
$$

(2) Extra code " 0 A 16 "

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M37271MF-XXXSP MITSUBISHI ELECTRIC

The following OSD ROM addresses must be set "FF." There are no font data in these addresses.

10A8016 to 10BFF 16	1328016 to 133FF16
10E8016 to 10FFF16	1368016 to 137FF16
1128016 to 113FF16	13 A 8016 to 13BFF16
1168016 to 117FF16	13 E 8016 to 13FFF 16
11A8016 to 11BFF16	1428016 to 143FF 16
11 E 8016 to 11FFF16	1468016 to 147FF 16
1228016 to 123FF16	14A8016 to 14BFF 16
1268016 to 127FF16	14E8016 to 14FFF 16
12A8016 to 12BFF16	1528016 to 153FF 16
12E8016 to 12FFF 16	1568016 to 17FFF 16

1804016 to 183FF16	
1844016 to 187FF16	1B44016 to 1B7FF16
1884016 to 18BFF16	1B84016 to 1BBFF 16
18C4016 to 18FFF16	1 BC 4016 to 1BFFF 16
1904016 to 193FF16	1 C 04016 to 1C3FF16
1944016 to 197FF16	1C44016 to 1C7FF16
1984016 to 19BFF16	$1 \mathrm{C84016}$ to 1CBFF16
19C4016 to 19FFF16	$1 \mathrm{CC4016}$ to 1CFFF16
1A04016 to 1A3FF16	1 D04016 to 1D3FF16
1A44016 to 1A7FF16	
1A84016 to 1ABFF16	1 D84016 to 1DBFF16
1AC4016 to 1AFFF 16	1DC4016 to 1DFFF16
	1 E 04016 to 1E3FF16

52P4B (52-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name \square
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi Catalog Name

Note1 : The mark field should be written right aligned.
2:The fonts and size of characters are standard Mitsubishi type.
3: Customer's parts number can be up to 18 characters:
Only $0 \sim 9, A \sim Z,+,-, /,(), \&,, \mathbb{C}$, (period), and , (comma) are usable.
4 : If the Mitsubishi logo $\&$ is not required, check the box on the right.
\&.Mitsubishi logo is not required
C. Special Mark Required

(32)

Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6 -digit or 7 -digit) and mask ROM number (3-digit) are always marked.
2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.
For the new special character fonts a clean font original (ideally logo drawing) must be submitted.
Special logo required
The standard Mitsubishi font is used for all characters except for a logo.

SHRINK DIP MARK SPECIFICATION FORM for one time PROM version microcomputers

Enter MITSUBISHI IC catalog name for which this mark specification is intended. (If you do not know the ROM number, enter XXX in its place.)

$$
\text { The MITSUBISHI IC catalog name } \mathbf{M}
$$

A. Standard Mitsubishi Mark

Customer specified part number will be printed together with the ROM number on the top line.
Enter the desired part number left aligned in the box below. (up to 10 characters)

Note1: The following characters can be used in the part number:
Uppercase alphabet, numbers, ampersand, hyphen, period, comma, 十, /, (,), (C)
(© will be printed at $1,5 \mathrm{X}$ character width)
2 : $X X X$ is the ROM number.
B. Special Mark Required

If you desire anything other than the standard Mitsubishi mark, it will be treated as a special mark.
Special marks will take longer to produce and should be avoided if possible.
If a special mark is to be printed, indicate the desired layout of the mark in the figure below. The layout will be duplicated as closely as possible.

Note3: If the customer's trademark logo must be used in the special mark, please submit a clean original logo. Note that special marks require extra cost and time to produce.

- Keep safety first in your circuit designs.

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
MITSUBISMI
NEECIRC

REVISION DESCRIPTION LIST	M37271MF-XXXSP $M 37271 E F-X X X S P, ~ M 37271 E F S P ~$	DATA SHEET

| Rev.
 No. | Revision Description | Rev.
 date |
| :--- | :--- | :--- | :--- |
| 1.0 | First Edition | 9708 |
| 2.0 | Information about copyright note, revision number, release date added (last page). | 971130 |
| | | |

