

Shielded Power Inductors – XFL5015

- High current and very low DCR
- Soft saturation

Environmental RoHS compliant, halogen free

Terminations RoHS compliant tin-silver over copper. Other terminations available at additional cost.

Core material Composite

Core and winding loss See www.coilcraft.com/coreloss **Weight** 0.185 – 0.200 g

Ambient temperature -40°C to +125°C with (40°C rise) Irms current.

Maximum part temperature +165°C (ambient + temp rise). Derating. Storage temperature Component: -40°C to +165°C.

Tape and reel packaging: -40°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at $<30^{\circ}$ C / 85% relative humidity)

Failures in Time (FIT) / Mean Time Between Failures (MTBF)
38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332
Packaging 1000/7" reel; 4000/13" reel Plastic tape: 12 mm wide,
0.2 mm thick, 8 mm pocket spacing, 1.65 mm pocket depth

PCB washing Tested to MIL-STD-202 Method 215 plus an additional aqueous wash. See Doc787_PCB_Washing.pdf.

	Inductance ²	DCR (mOhms)3		SRF typ ⁴	Isat (A)⁵			Irms (A) ⁶	
Part number ¹	±20% (µH)	typ	max	(MHź)	10% drop	20% drop	30% drop	20°C rise	40°C rise
XFL5015-221ME_	0.22	4.20	4.83	155	9.3	12.3	13.3	11.6	16.2
XFL5015-421ME_	0.42	6.25	7.19	92	6.3	9.3	10.1	9.8	12.7
XFL5015-681ME_	0.68	8.25	9.40	70	4.6	7.7	8.5	8.3	11.3
XFL5015-122ME_	1.2	15.1	16.6	51	3.7	4.9	6.1	6.4	9.2
XFL5015-152ME_	1.5	18.3	20.1	48	3.1	4.8	5.8	5.8	8.0

1. When ordering, please specify termination and packaging codes:

XFL5015-152MEC

Termination: E = RoHS compliant tin-silver over copper.

Special order: T = RoHS tin-silver-copper (95.5/4/0.5) or S = non-RoHS tin-lead (63/37).

Packaging: C = 7" machine-ready reel. EIA-481 embossed plastic tape (1000 parts per full reel).

B = Less than full reel. In tape, but not machine ready. To have a leader and trailer added (\$25 charge), use code letter C instead.

D = 13" machine-ready reel. EIA-481 embossed plastic tape. Factory order only, not stocked (4000 parts per full reel).

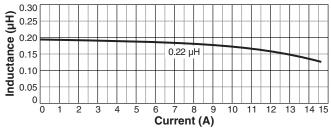
- 2. Inductance tested at 100 kHz, 0.1 Vrms, 0 Adc.
- 3. DCR measured on a micro-ohmmeter.
- 4. SRF measured using Agilent/HP 4395A or equivalent.
- DC current at 25°C that causes an inductance drop of 30% (typ) from its value without current. Click for temperature derating information.
- Current that causes the specified temperature rise from 25°C ambient. This information is for reference only and does not represent absolute maximum ratings. Click for temperature derating information.
- 7. Electrical specifications at 25°C.

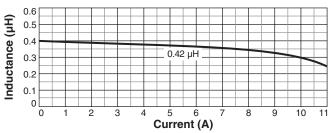
Refer to Doc 362 "Soldering Surface Mount Components" before soldering.

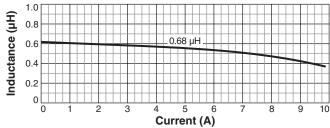
Irms Testing

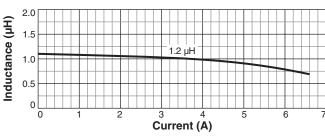
Irms testing was performed on 0.75 inch wide \times 0.25 inch thick copper traces in still air.

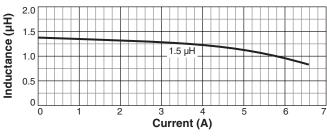
Temperature rise is highly dependent on many factors including pcb land pattern, trace size, and proximity to other components. Therefore temperature rise should be verified in application conditions.

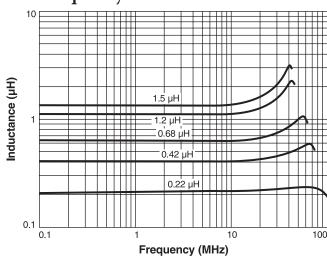


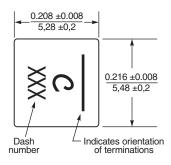


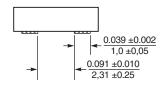


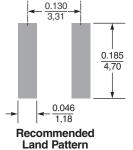



L vs Current









L vs Frequency

$\frac{0.059}{1,50}$ max	
	0.165.
Se tal	$\leftarrow \frac{0.165}{4.2} \text{typ} \rightarrow$

Terminal thickness (typ) (in / mm)
0.0039 / 0.10
0.0039 / 0.10
0.0039 / 0.10
0.0028 / 0.07
0.0028 / 0.07

Dimensions are in $\frac{inches}{mm}$

