

Current Transducer HNC-40CA 400A-100mA

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 400 A$

Electrical data				
I _{PN}	Primary nominal current	400	Α	
I _P	Primary current measuring range	0 ±800	Α	
R _M	Measuring resistance	20	Ω	
I _{SN}	Secondary nominal r.m.s. current	100	mΑ	
K _N	Conversion ratio	1:4000		
v _c	Supply voltage (± 5 %)	±15	V	
I _c	Current consumption	20 ± I _{SN}	mΑ	
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50Hz, 1mn	2	kV	

Accuracy-Dynamic performance data					
X	Accuracy @ I_{PN} , $T_A = 25$ °C	<±1	% of I _{PN}		
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity (0 ± I _{PN})	<±0.5	% of I _{PN}		
I _o	Electrical offset current @ $I_p = 0$, $T_A = 25$ °C	±0.5	mA		
I _{OH}	Hysteresis offset current @ $I_p = 0$;				
	after an excursion of 1 x I _{PN}	±0.6	mA		
I_{OT}	Thermal drift of I _o 0 +70 °C	< 0.03	mA/K		
TCe _G	Thermal drift of the gain	<±0.04	%/K		
t,	Response time @ 90% of I_{PMAX}	< 3	μs		

General data					
$T_{_{\rm A}}$	Ambient operating temperature	- 10 + 80	°C		
T_s	Ambient storage temperature	- 15 + 85	°C		
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 25°C	30	Ω		
m	Mass	310	g		

Features

- Hall effect measuring principle
- Panel mount type

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- · Small size and space saving
- High immunity to external interference

Applications

- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Power supplies for welding applications

Notes :

050114/1

HNC-40CA 400A-100mA Dimensions (in mm)

Connector Pin Identification

