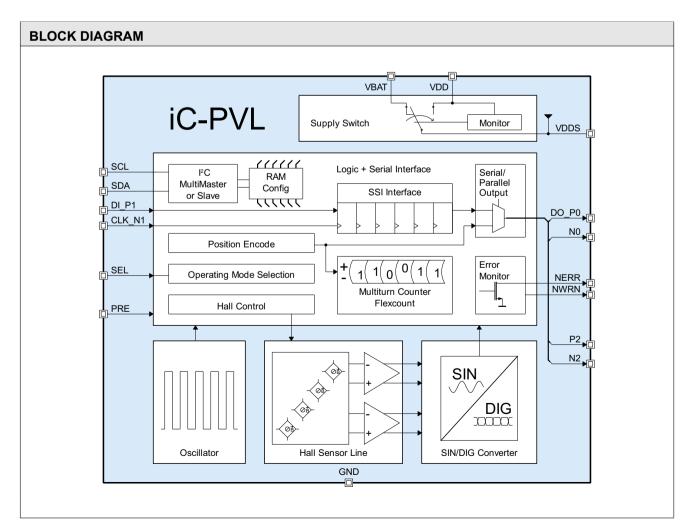


Rev B3, Page 1/33


FEATURES

- ♦ Integrated Hall sensors with automatic gain and offset control
- ♦ For magnetic scales of 1.0 up to 5.0 mm pole width
- ♦ Current consumption of only 2 µA to 30 µA in typ. applications
- ◆ Tracking speed of up to 24 m/s (1.5 mm poles) or 15 000 rpm (32 pole pairs)
- ♦ Configurable multiturn counting up to 40 bits
- ♦ Adjustable period count per revolution: FlexCount® logic for 1 to 256 pole pairs
- ♦ Serial, parallel and incremental singleturn operating modes
- ♦ SSI multiturn data output with error, warning, parity, and synchronization bits
- ♦ Multiturn preset by pin or command
- ♦ I²C master function for initial boot-up from EEPROM
- ♦ I²C slave function for controller operation
- ♦ Supply voltage of 3.0 V to 5.5 V
- ♦ Automatic low-power operation on backup battery
- ♦ Overspeed, battery and RAM (CRC) monitoring
- ♦ Space-saving 16-pin QFN package

APPLICATIONS

- Absolute hollow-shaft position encoders
- ♦ Gearless revolution counting
- Linear position sensors
- Metering applications
- Battery-powered portable equipment

PACKAGES QFN16 4 mm x 4 mm x 0.9 mm RoHS compliant

Rev B3, Page 2/33

DESCRIPTION

iC-PVL is an ultra low power magnetic encoder, used for linear and off-axis multiturn position sensing. On main power failure, iC-PVL switches automatically to battery supply and continues scanning the position.

iC-PVL operates with pole wheels or linear scales with a pole width of 1.0 mm up to 5.0 mm. Due to various operating modes, iC-PVL can work with iC-Haus singleturn encoders (e.g. iC-MU, iC-MN, iC-LGC, iC-LNB, iC-MHM, etc.), as stand-alone SSI or incremental encoder, or links to embedded controllers via I²C.

The Hall signal processing stage is designed for ultra low power applications and can be configured to support angular accelerations up to 180 000 rad/s² with 16 magnetic periods per revolution. The maximum magnetic signal frequency is 8 000 Hz. This corresponds to a rotational frequency of 30 000 rpm for magnetic scales with 16 pole pairs. With higher demands on acceleration, the power consumption increases. The maximum supported acceleration is configurable, therefore an optimal trade-off between power consumption and supported acceleration can be individually chosen to meet the demands of the target application.

iC-PVL reads its configuration from an external EEP-ROM via an I²C interface with multimaster support. Among others, the bit length for multiturn and synchronization data, the interface mode, the maximum supported acceleration and the usage of error or par-

ity bits can be configured. The configuration read-in is triggered by the preset pin PRE. A pulse on this pin resets the device and reads a new configuration from the EEPROM. The multiturn counter is preset to a configurable value (default 0).

The configuration RAM and multiturn counter value are protected against bit errors by an 8 bit CRC. Additionally, an error is generated on excessive speed or acceleration. An integrated battery monitor is used to signalize an empty battery as error. If an error is detected, it is displayed at output NERR and via the error bit in the SSI communication protocol. Additionally, a low battery voltage is indicated at output NWRN. Optionally, this warning can be transmitted in the serial data stream.

Besides linear position encoding, the iC-PVL is also used for off-axis scanning of magnetic pole wheels. In these applications, a certain number of magnetic north-south field periods may be interpreted as one mechanical revolution. The FlexCount® circuitry offers this functionality. By electrically emulating the characteristics of a gear box, a transmission is freely programmable. For instance, 1-256 magnetic periods can be interpreted as one mechanical revolution.

The iC-PVL multiturn encoder comes in a space-saving QFN16 package. This allows its integration in existing encoder systems or the design of smaller encoders.

Rev B3, Page 3/33

CONTENTS

PACKAGING INFORMATION PIN CONFIGURATION	4	I ² C SLAVE MODE	23
QFN16 4 mm x 4 mm (top view)	4 5	ERROR MONITOR, STATUS AND COMMAND REGISTER	23
		STUP_ERR: Startup Error	23
ABSOLUTE MAXIMUM RATINGS	6	CFG_ERR: Internal Configuration Error	23
THERMAL DATA	6	CTR_ERR: Internal Counter Error	23 23
ELECTRICAL CHARACTERISTICS	7	BAT_ERR: Battery Error	23
	_	BAT_WRN: Battery Early Warning	23
OPERATING REQUIREMENTS Serial and Parallel Interface	9	PDR: Power Down Reset Detected	23
Serial and Parallel Interface	9	PRESET: Pin Preset Detected	24
CONFIGURATION PARAMETERS	10	Error Output NERR	24
DECICIED MAD (EEDDOM)	40	Error Output During Startup	24
REGISTER MAP (EEPROM)	10	Warning Output NWRN	24
REGISTER MAP (iC-PVL during I ² C slave		Status Byte	
mode, ID = 0b1100 001)	11	Command Register	24
REGISTER MAP (iC-PVL during I ² C slave mode, ID = 0b1100 000)	11	SUPPLY SWITCH AND BATTERY MONITORING	25
OPERATING MODE SELECTION	12	CURRENT CONSUMPTION IN BATTERY	
STARTUP BEHAVIOR	14	MODE	26
		Serial Interface Mode (SEL = LOW)	26
MAGNETIC SCALE SELECTION	16	Parallel Encoder Mode (SEL = HIGH)	26
COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction	18	OSCILLATOR FREQUENCY CALIBRATION	27
SERIAL INTERFACE MODE (SEL = LOW)	19	APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI Mode)	28
OUTPUTS N0, P2, N2	20	APPLICATION EXAMPLE: iC-PVL as battery	
MULTITURN COUNTER		powered revolution counter or metering device	
PARALLEL ENCODER MODE (SEL = HIGH)	21	DESIGN REVIEW: Notes On Chip Functions	30
I ² C MULTIMASTER INTERFACE AND CRC PROTECTION	22	REVISION HISTORY	31

Rev B3, Page 4/33

PACKAGING INFORMATION

PIN CONFIGURATION QFN16 4 mm x 4 mm (top view)

\bigcirc 12 2 <P-CODE> 3 10 <A-CODE> 9 <D-CODE>

PIN FUNCTIONS

No.	Name	Function
1	SEL	Mode Select Input ¹⁾ Low: Battery buffered counter with serial read-out High: 3 bit parallel complementary output Shorted to PRE input: I ² C slave mode
2	PRE	Preset Trigger Input
3	NERR	Error Output (active low)
4	SDA	I ² C Interface, Data Line
5	GND	Ground
6	VBAT	Battery Supply Voltage Input (typ. 3.6 V)
7	VDDS	Switched Supply Voltage Output
8	VDD	+3.0 V to 5.5 V Main Supply Voltage Input
9	N2	Parallel Output Bit 2 (negative logic), Incremental Output B
10	P2	Parallel Output Bit 2 (positive logic), Incremental Output A
11	N0	Parallel Output Bit 0 (negative logic)
12	NWRN	Battery Warning Output (active low)
13	DO P0	Multiturn Interface, Data Output,
	_	Parallel Output Bit 0 (positive logic)
14	CLK_N1	Multiturn Interface, Clock Line,
15	DI_P1	Parallel Output Bit 1 (negative logic) Multiturn Interface, Data Input, Parallel Output Bit 1 (positive logic)
16	SCL	I ² C Interface, Clock Line
	BP	Backside paddle ²⁾

IC top marking: <P-CODE> = product code, <A-CODE> = assembly code (subject to changes);
1) Do not leave pin open.
2) Connecting the backside paddle is recommended by a single link to GND. A current flow across the paddle is not permissible.

Rev B3, Page 5/33

PACKAGE DIMENSIONS QFN16 4x4

RECOMMENDED PCB-FOOTPRINT 3.90 R0.175 2.70 SIDE 2.70 0.35 TOP **BOTTOM** 2.70 0 0.65 0.27

All dimensions given in mm. Tolerances of form and position according to JEDEC M0–220. Positional tolerance of sensor pattern: ± 0.10 mm / $\pm 1^{\circ}$ (with respect to center of backside pad).

Rev B3, Page 6/33

ABSOLUTE MAXIMUM RATINGS

These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.

Item	Symbol	Parameter	Conditions			Unit
No.				Min.	Max.	
G001	V(VDD)	Voltage at VDD		-0.3	6	V
G002	V(VBAT)	Voltage at VBAT	VDD > Von: VBAT < VDD + 1.0 V	-0.3	6	V
G003	V(VDDS)	Voltage at VDDS		-0.3	6	V
G004	V()	Voltage at SCL, SDA, DI_P1, CLK_N1, DO_P0, N0, NERR, NWRN, P2, N2, PRE, SEL		-0.3	6	V
G005	I(VDD)	Current in VDD		-10	50	mA
G006	I(VBAT)	Current in VBAT		-10	50	mA
G007	I(VDDS)	Current in VDDS		-10	50	mA
G008	I(GND)	Current in GND		-50	10	mA
G009	I()	Current in SCL, SDA, DI_P1, CLK_N1, DO_P0, N0, NERR, NWRN, P2, N2, PRE, SEL		-30	30	mA
G010	Vd()	ESD Susceptibility at All Pins	HBM, 100 pF discharged through 1.5 kΩ		2	kV
G011	Tj	Junction Temperature		-40	150	°C
G012	Ts	Storage Temperature Range		-40	150	°C

THERMAL DATA

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V

Item	Symbol	Parameter Conditions					Unit
No.				Min.	Тур.	Max.	
T01	Та	Operating Ambient Temperature Range	package QFN16	-40		125	°C
T02	Rthja		QFN16-4x4 surface mounted to PCB according to JEDEC 51 thermal measurement standards		40		K/W

Rev B3, Page 7/33

ELECTRICAL CHARACTERISTICS

Operating conditions: VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Total	Device						
001	V(VDD)	Permissible Main Supply Voltage		3.0		5.5	V
002	I(VDD)	Supply Current in VDD	Tj = 27 °C, no load	1.5	4.0	6.0	mA
003	V(VBAT)	Permissible Battery Voltage	if VDD > Von: VBAT < VDD + 1 V	3.0	3.6	5.5	V
004	lavg(VBAT)	Average Supply Current in VBAT	VBAT = 3.6 V, Tj = 27 °C, depending on fmag and A_MAX, see Table 34	1	10	800	μA
005	Ispike()	Peak Current in VDD and VBAT	tspike < 5 µs		4.0	10.0	mA
006	Vc()hi	Clamp Voltage hi at All Pins	Vc()hi = V() - VDDS, I() = +1 mA	0.3	0.7	1.6	V
007	Vc()lo	Clamp Voltage Io at All Pins	I() = -1 mA	-1.6	-0.7	-0.3	V
800	tconfig	Power-Up Time After Preset	VDD > 3 V, initializing from EEPROM start address = 0x00, data valid start address = 0xA0, data valid		12 50	20 100	ms ms
009	C(VBAT)	External Bypass Capacitor at Pin VBAT	ceramic capacitor placed as close as possible to the pin	1			μF
Magn	etic Signal C	onditioning					
101	Hext	Permissible Magnetic Field Strength	at chip surface	10		100	kA/m
102	Bext	Permissible Magnetic Flux Density	at chip surface in air	12.5		125	mT
103	fmag	Magnetic Input Frequency	VDDS = 3.0 V, tested via electrical input			8	kHz
104	frot	Permissible Rotation of Pole Wheel with	16 pole pairs 32 pole pairs 64 pole pairs			30000 15000 7500	rpm rpm rpm
105	vmax	Permissible Movement Speed (Linear)	1.5 mm pole width (3 mm magnetic period)			24	m/s
106	dsens	Diameter of Hall Sensor Circle	measured from center of each Hall plate, ONAX = 1		2.25		mm
107	hpac	Sensor-to-Package-Surface Distance	QFN16		0.4		mm
Oscill	ator Freque	ncies					
301	fslow	Slow Oscillator Frequency	calibrated to 34 kHz with IBIAS	32	34	36	kHz
302	ffast	Fast Oscillator Frequency	fslow calibrated with IBIAS	4.0	6.0	8.0	MHz
Suppl	y and Batter	y Monitoring					
401	Von	Switch to VDD Supply (VDD Power On)	increasing voltage at VDD; VBAT > 3.0 V	2.8	2.9	3.0	V
402	Voff	Switch Back to Battery Supply (VDD Power Off)	decreasing voltage at VDD; VBAT > 3.0 V	2.7	2.8	2.9	V
403	Vhys	Hysteresis (VDD Switch)	Vhys = Von - Voff	25	100	150	mV
404	Vt()err	Battery Monitoring Error Threshold Voltage	BAT_THR = "11" BAT_THR = "10" BAT_THR = "01" BAT_THR = "00"	2.65 2.75 2.85 2.95	2.75 2.85 2.95 3.05	2.85 2.95 3.05 3.15	V V V
405	Vt()wrn	Battery Monitoring Warning Threshold Voltage	BAT_THR = "11" BAT_THR = "10" BAT_THR = "01" BAT_THR = "00"	2.75 2.85 2.95 3.05	2.85 2.95 3.05 3.15	2.975 3.075 3.175 3.275	V V V
406	Vew	Difference Battery Error-to-Warning	ΔVew = Vt()wrn - Vt()err	40	100	175	mV
Digita	l Outputs: D	N_P1, CLK_N1, DO_P0, N0, P2, N	2		•	. '	
501	Vs()hi	Saturation Voltage hi	Vs()hi = VDDS - V(), I() = -1.6 mA	0.05		0.4	V
502	Vs()lo	Saturation Voltage lo	I() = 1.6 mA	0.05		0.4	V
503	lsc()hi	Short-Circuit Current hi	VDDS = 3.0 V, V() = GND	-15		-4	mA
504	lsc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	4		15	mA
505	tr()	Rise Time	CL = 30 pF			50	ns

Rev B3, Page 8/33

ELECTRICAL CHARACTERISTICS

Operating conditions: VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item No.	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
506	tf()	Fall Time	CL = 30 pF		71	50	ns
EEPR		e: SCL, SDA	'				
601	Vt()hi	Input Threshold Voltage hi			1.7	2	V
602	Vt()lo	Input Threshold Voltage lo		0.8	1.4		V
603	Vt()hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
604	Vs()lo	Saturation Voltage Io	I() = 1.6 mA	0.05		0.4	V
605	Isc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	8		30	mA
606	lpu()	Pull-Up Current	V() = 0 VVDDS - 1 V	-1000	-300	-30	μA
607	fclk(SCL)	I ² C Output Frequency at SCL			f _{fast} / 128		kHz
Error	Monitoring	Output: NERR, NWRN		"			
701	Vs()lo	Saturation Voltage Io	I() = 1.6 mA	0.05		0.4	V
702	Isc()lo	Short-Circuit Current lo	VDDS = 3.0 V, V() = VDDS	4		15	mA
Digita	l Inputs: DI	_P1, CLK_N1					
801	Vt()hi	Threshold Voltage hi			1.7	2	V
802	Vt()lo	Threshold Voltage lo		0.8	1.4		V
803	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
804	lpd()	Pull-Down Current	V() = 1 VVDDS	2	30	100	μΑ
Mode	Select Inpu	t: SEL					
901	Vt()hi	Threshold Voltage hi			1.7	2	V
902	Vt()lo	Threshold Voltage lo		0.8	1.4		V
903	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	75	200	500	mV
Prese	t Input: PRI						
A01	Vt()hi	Threshold Voltage hi			60	75	%VDD
A02	Vt()lo	Threshold Voltage lo		30	40		%VDD
A03	Vt()hys	Hysteresis	Vt()hys = Vt()hi - Vt()lo	0.7	1.0	1.4	V
A04	lpd()	Pull-Down Current	V() = 1 VVDDS, SEL = GND	10	120	300	μA
Serial	Interface to	Singleturn Sensor, SSI and Ch	ain Mode				
B01	tp()	Propagation Delay: Clock Edge vs. DO Output		10		100	ns
B02	tout	Timeout	fslow calibrated via IBIAS	15	25	35	μs
Parall	el Encoder	Mode					
C01	tprocess	Processing Time (Parallel Output)	see Figure 11		10	30	μs

Rev B3, Page 9/33

OPERATING REQUIREMENTS: Serial and Parallel Interface

Operating conditions:

VDD = 3.0...5.5 V, VBAT < VDD + 1.0 V, Tj = -40...125 °C, fslow calibrated to 34 kHz with IBIAS, unless otherwise stated.

Item	Symbol	Parameter	Conditions	T .		Unit
No.				Min.	Max.	
Serial	Interface N	Node (SSI or Chain Mode if Applicable)				
1001	t _{wait}	SSI Request after VDD Power-on		10		μs
1002	t _{req}	Request Signal lo Level Duration		50		ns
1003	t _C	Permissible Clock Period	due to Elec. Char. B02	0.25	2·t _{out}	μs
1004	f _C	Permissible Clock Frequency	due to Elec. Char. B02	1/(2·t _{out})	10	MHz
1005	t _{L1}	Clock Signal hi Level Duration		50		ns
1006	t _{L2}	Clock Signal lo Level Duration		50		ns
1007	t _{frame}	Cyclic Multiturn Data Frame Request Interval		85		μs
1008	ts	Setup Time: Data stable before clock edge $hi \rightarrow lo$	refer to Fig. 2	30		ns
1009	t _H	Hold Time: Data stable after clock edge hi → lo	refer to Fig. 2	30		ns
I ² C Sla	ve Mode D	Direct Access				
1010	t _{wait}	I ² C Request after VDD Power-on		10		μs
I011	f _{scl}	Permissible Input Clock Frequency	I ² C standard mode with timeout Elec. Char. B02	1/(2·t _{out})	100	kHz
Paralle	el Encoder	Mode (SEL = High)				
1012	t _{start}	Length of Start Pulse on PRE Pin	see Figure 11 on Page 21	1		μs
1013	t _{cycle}	Time Between Two Consecutive Sensor Read Cycles	see Figure 11 on Page 21	30		μs

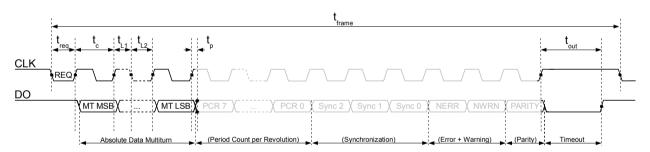


Figure 1: I/O line signals of the serial interface in SSI mode (INT MODE = 0)

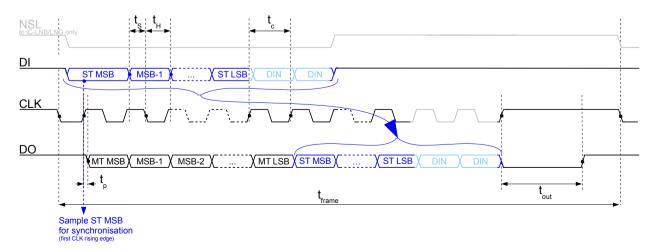


Figure 2: I/O line signals of the serial interface in chain mode (INT_MODE = 1).

Rev B3, Page 10/33

CONFIGURATION PARAMETERS

Hall Sensor Signal Conditioning

DIR: Code Direction (P. 18)

OS: Electrical Offset Multiturn to Singleturn

(P. 18)

Serial Interface

INT_MODE: Serial Interface Operating Mode (P. 19)
MT_GRAY: Multiturn Output Data Format (P. 19)
ST_GRAY: Singleturn Input Data Format (P. 19)
MT_BW: Bit Width of Multiturn Data and Counter

(P. 19)

SYNC_BW: Synchronization Bit Width (P. 20)
PCR: Period Count per Revolution (P. 17)

PCR OUT: PCR Output Mode (P. 17)

EN_ERR: Error Bit Transmission Enable (P. 20) EN PAR: Parity Bit Transmission Enable (P. 20)

Bias and Oscillators

IBIAS: Bias Current; Oscillator Frequency

Calibration (P. 27)

A_MAX: Maximum Angle Acceleration (P. 26)

Battery Monitor

BAT_MON: Battery Monitoring Enable (P. 25)
EN_WRN: Low Battery Warning Enable (P. 20)
BAT THR: Battery Monitor Thresholds (P. 25)

Miscellaneous

POLEWID: Pole Size of Magnetic Scale (P. 16)
ONAX: On-Axis Magnetic Scanning (P. 17)
ABQUAD: AB Quadrature Output (P. 20)

HYS: Hysteresis (P. 20)

I2C_POS: Enable I²C Position Read-out (P. 23)
MT PREL: Multiturn Counter Preload Value (P. 21)

CHIP_REL: Chip Release (P. 23)

CRC Checksums

CRC CFG: Checksum for Chip Configuration

(0x00-0x05) (P. 22)

CRC_CTR: Checksum for MT_PREL (0x07-0x0B)

(P. 22)

REGISTER MAP (EEPROM)

OVERV	'IEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Interface	nterface and Hall Signal Processing								
0x00	EN_	PAR	EN_	ERR	DIR	ST_GRAY	MT_GRAY	INT_MODE	
0x01		os				MT_BW			
0x02				P	CR				
Battery	Monitor, Bias	and Oscillato	rs						
0x03	EN_WRN	BAT_MON		A_MAX			IBIAS		
Miscella	neous								
0x04	0	0	0	0	0	ONAX	POLE	EWID	
0x05	I2C_POS	PCR_OUT	SYNC	C_BW	BAT_	_THR	HYS	ABQUAD	
CRC Co	nfiguration (ir	nverted)							
0x06				CRC_C	FG(7:0)				
Multitur	n Counter: Pr	eload Value							
0x07				MT_PR	REL(7:0)				
0x08				MT_PR	EL(15:8)				
0x09				MT_PRE	L(23:16)				
0x0A	MT_PREL(31:24)								
0x0B	MT_PREL(39:32)								
CRC Co	unter (inverte	d)							
0x0C				CRC_C	TR(7:0)				

Rev B3, Page 11/33

REGISTER MAP (iC-PVL during I²C slave mode, ID = 0b1100 001)

OVERV	IEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Interface	and Hall Sig	nal Processir	ng						
0x00	EN_	PAR	EN_	ERR	DIR	ST_GRAY	MT_GRAY	INT_MODE	
0x01		os				MT_BW			
0x02				P	CR				
Battery	Monitor, Bias	and Oscillato	rs						
0x03	EN_WRN	BAT_MON		A_MAX			IBIAS		
Miscella	neous								
0x04	0	0	0	0	0	ONAX	POLI	EWID	
0x05	I2C_POS	PCR_OUT	SYNC	C_BW	BAT_	_THR	HYS	ABQUAD	
CRC Co	nfiguration (i	nverted)							
0x06	0x06 CRC_CFG(7:0)								
Multitur	n Counter: Cu	urrent Count (PCR_OUT = 0)		Multiturn Co	ounter: Curre	nt Count (PCR	_OUT = 1)	
0x07		MT_COL					PCR(7:0)		
80x0		MT_COU	INT(15:8)			MT_CO	JNT(7:0)		
0x09			NT(23:16)				JNT(15:8)		
0x0A			NT(31:24)		MT_COUNT(23:16)				
0x0B		MT_COU	NT(39:32)		MT_COUNT(31:24)				
	unter (inverte	ed)							
0x0C					TR(7:0)				
	nization Bits	(I ² C slave mo	de read only)						
0x0D	0	0	0	0	0		SYNC(2:0)		
0x0E	_			Rese	erved				
-	lease (l ² C sla	ve mode read	only)						
0x0F				CHIP	REL				
		lave mode on							
0x10	PRESET	PDR	BAT_WRN	BAT_ERR	POS_ERR	CTR_ERR	CFG_ERR	STUP_ERR	
	nd Register (I	² C slave mod	e write only)						
0x11				CME	0(7:0)				

Table 6: Register map during I²C slave mode

REGISTER MAP (iC-PVL during I²C slave mode, ID = 0b1100 000)

OVERV	OVERVIEW							
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Status F	Status Register (I ² C slave mode only)							
0x00	PRESET	PDR	BAT_WRN	BAT_ERR	POS_ERR	CTR_ERR	CFG_ERR	STUP_ERR
Comma	Command Register (I ² C slave mode write only)							
0x01	CMD(7:0)							

Rev B3, Page 12/33

OPERATING MODE SELECTION

The input SEL defines the operating mode of iC-PVL. For the default application as battery buffered multiturn counter with serial position read-out (SSI Interface), it is mandatory to connect the SEL input to GND potential. In case a three bit parallel and differential position output is desired, a high state at SEL input selects a parallel encoder mode. It is mandatory to connect SEL to a defined high or low potential.

An additional operating mode is activated when SEL is shorted to input PRE. In this mode, the preset pulse

does not trigger an EEPROM read-out. iC-PVL now behaves as I^2C slave and all registers (configuration, position, status and command registers) are accessible via I^2C device ID 0xC1. These are the first seven bits of the I^2C addressing sequence, in binary representation 0b1100 001, this means group C = 0b1100, device 1 = 0b001.

The register layout visible via I²C is shown on page 11 for each particular address. Please note that some addresses are read only.

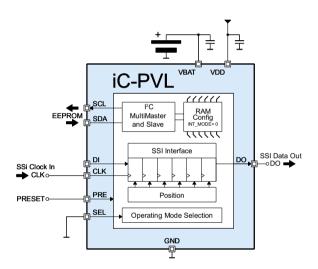
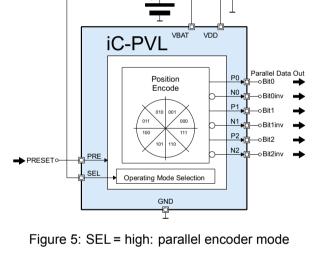



Figure 3: SEL = low: serial interface SSI mode

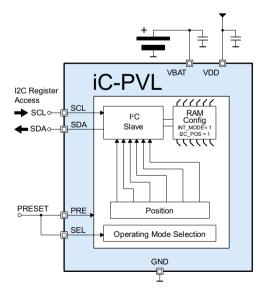


Figure 4: SEL = PRE: I²C slave mode

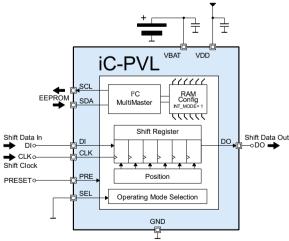


Figure 6: SEL = low: serial interface chain mode

Rev B3, Page 13/33

OPERATING	G MODE SELECTION	N				
Operating Mode	Description	Pin SEL	Parameter INT_MODE (see Table 15)	Parameter I2C_POS (see Table 27)	I ² C Slave Function	I ² C Master Function (Read E2P cfg)
SSI Mode (Fig. 3)	Battery buffered counter with serial read-out.	low	0	0	yes (without position read-out)	after preset pulse or I ² C command REBOOT
I ² C Slave mode (Fig. 4)	iC-PVL operates as I ² C slave, ID = 0b1100 001.	Shorted to PRE	0	1	yes (with position read-out)	only after I ² C command REBOOT
Parallel Mode (Fig. 5)	3 bit Parallel Encoder Mode, complementary output.	high	-	-	-	-
Chain Mode (Fig. 6)	Battery buffered counter with serial read-out.	low	1	0	no	only after preset pulse

Table 8: Operating mode selection, configuration settings, available functions

Rev B3, Page 14/33

STARTUP BEHAVIOR

As shown in the previous chapter, iC-PVL can be booted up in four distinct operating modes. These are the SSI Mode, the Chain Mode, the Parallel Encoder Mode and the I²C Slave Mode, respectively. In case of a faulty startup procedure, an error is indicated at pin NERR.

Figure 7 shows the startup procedure of iC-PVL. The procedure starts when a battery supply is available. This would be the case if a battery is newly attached to the encoder system or the battery supply is switched on by an external microcontroller.

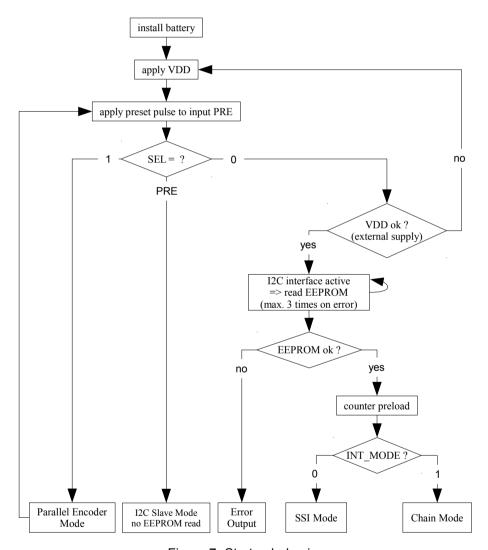


Figure 7: Startup behavior

Subsequent to powering up the VBAT pin, a suitable magnetic target needs to be installed, the main supply VDD powered, and a preset pulse (low-high-low) applied to input PRE. This resets the internal circuitry to its default initial state.

Via SEL, the operating mode is selected according to Table 8. If SEL = high, the chip functions as a 3 bit encoder with parallel complementary output and encodes the current position as shown in Figure 11.

In Parallel Encoder Mode, an external microcontroller activates the iC-PVL in distinct intervals to acquire the current position. The encoded position is valid when all complementary bits have changed their logic value (see Figure 11). After successful position read-out, iC-PVL is in ultra low power idle mode. The battery supply may then be switched off.

If SEL = low and for $V(VDD) > V_{on}$ during startup, the preset pulse triggers EEPROM read-out. Therefore, the VDD supply has to remain above V_{on} for at least t_{config} .

Rev B3, Page 15/33

The I²C multimaster tries to read the configuration data from an EEPROM connected to SCL and SDA. When the data is read without errors, the iC-PVL operates in SSI Mode or Chain Mode according to the configuration bit INT_MODE and stays in this operating mode as long as the battery supply is above V_{off} . After a third faulty attempt, EEPROM read-out is stopped and an error is indicated at pin NERR. Both serial interface modes are further explained on Page 19. I²C communication is possible in this operating mode, but position read-out via SSI or I²C is exclusive (refer to I²C SLAVE MODE on Page 23).

If SEL is shorted to input PRE, the device directly boots into I^2C slave mode without any activity on the I^2C lines. iC-PVL now responds to the I^2C ID = 0b1100 001.

Note: After installation of the battery, it is important to put iC-PVL into a valid operating state to prevent the battery from an excessive current drain. To do so, a suitable magnetic target needs to be installed, the main supply VDD powered, and a preset pulse applied to input PRE.

Note: A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 30) or disconnect the battery.

Rev B3, Page 16/33

MAGNETIC SCALE SELECTION

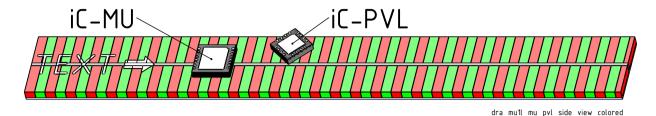


Figure 8: Positioning of iC-PVL on a linear scale (iC-MU nonius type)

iC-PVL is able to scan magnetic pole wheels or linear scales with a pole width of 1 mm to 5 mm. This corresponds to a magnetic period (N-S sequence) of 2 to 10 mm. Due to the diagonal sensor array, iC-PVL is rotated 45° in relation to the magnetic code (see Figures 8, 9, 10).

With the recommended differential scanning mode (POLEWID = 0x00), the measurement is highly tolerant to external common mode magnetic stray fields. The ideal pole width in this operating mode is 1.5 mm, but the device is functional with a pole width range of about 1 to 3 mm. This enables iC-PVL to use the same magnetic scale as a linear or off-axis singleturn sensor (e.g. iC-MU (1.28 mm), iC-MU150 (1.5 mm), iC-MHL200 (2 mm)).

POLEWID	Addr. 0x04; bit 1:0				
Code	Pole size	Ideal size	Scanning		
0x00	1-3 mm	1.5 mm	Off-axis, differential		
0x01	4-5 mm	4.5 mm	Off-axis, single-ended		
0x02	2-4 mm	3.0 mm	Off-axis, single-ended		
0x03	1-3 mm	1.5 mm	Off-axis, single-ended		

Table 9: Pole size of magnetic scale

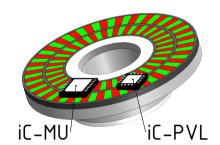


Figure 9: Positioning of iC-PVL on a pole wheel (iC-MU nonius type)

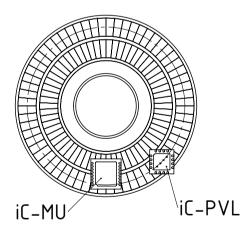


Figure 10: Positioning of iC-PVL on a pole wheel (iC-MU nonius type).

Together with the iC-MU off-axis nonius encoder, a magnetic multiturn encoder can be realized (see Figure 13, P. 28). The iC-PVL Hall sensor array is placed over the center line of a magnetic track, e.g. at a radius of 13.375 mm to scan the master track of the MU18S 30-32N magnetic target (see Figure 10). In this case, the corresponding PCR value for 32 magnetic periods (PCR = 0x1F) has to be applied (see Table 10).

In these applications, a certain number of magnetic periods (i.e., north-south pole pairs) may be interpreted as one mechanical revolution. The FlexCount® logic offers this functionality. By electrically emulating the characteristics of a gear box, the gear transmission is freely programmable. 1 to 256 pole pairs can be interpreted as one mechanical revolution. The configuration parameter PCR, period counts per (mechanical) revolution, is used as defined in Table 10.

Rev B3, Page 17/33

PCR	Addr. 0x02; bit 7:0		
Code	Period counts per revolution		
0x00	1		
0x01	2		
0x02	3		
	Code + 1		
0xFE	255		
0xFF	256		

Table 10: Period counts per (mechanical) revolution

By way of example, assume a magnetic code disc with 32 periods. iC-PVL will make a multiturn count every 32 periods. The synchronization bits are distributed evenly over these 32 periods, i.e. the disc is divided in eight sectors. Therefore, one sector consists of 8 periods. While reading the position information, it looks like the iC-PVL would be placed above a normal diametrically polarized magnet. This scheme is also valid for non-binary, decimal or odd counts per revolution.

PCR_OUT	Addr. 0x05; bit 6	
Code	Mode	
0	No output of PCR in serial data stream	
1	PCR is transmitted as 8 LSBs of MT data (Only for PCR > 0x00)	

Table 11: Period count per revolution output mode

Alternatively, the current magnetic period of the mechanical revolution can be transmitted in the serial data stream with option PCR_OUT = 1. In this mode, the eight LSBs of the multiturn data are used for PCR output. Unused bits are filled with zeroes. As a consequence, the multiturn counter is limited to 32 bits in this mode. The multiturn, PCR and synchronization information give the exact position of the code disc down to one eighth of a magnetic period.

Even as iC-PVL is particularly designed for off-axis scanning of magnetic pole wheels, it can also be used for on-axis scanning of a diametric cylindrical magnet. The on-axis scanning mode is activated with the configuration bit ONAX = 1. The sensor circle diameter is specified in Elec. Char. 106. In this mode, setting POLEWID to 0x01 is mandatory for differential scanning.

ONAX	Addr. 0x04; bit 2	
Code	Magnetic scanning mode	
0	Off-axis (default)	
1	On-axis, differential (POLEWID = 0x01 required)	

Table 12: Use off- or on-axis magnetic scanning

Rev B3, Page 18/33

COMPENSATION OF ASSEMBLY: Data Offset and Counting Direction

Assembled together with a magnetic code disc, code wheel or magnetic tape, the integrated Hall sensor signal processing generates a three bit position word, i.e. eight positions per magnetic period. Therefore, the iC-PVL provides up to three synchronization bits to the singleturn sensor in SSI read-out mode.

The position can be electrically manipulated to achieve the desired (leading or trailing) phase shift, regardless of the actual mounting position. This is useful if the phase relationship between an additional singleturn iC and the iC-PVL as multiturn encoder is unknown, or the singleturn sensor takes care of the synchronization (SSI mode) and expects a defined phase relationship. An offset value is added to the digitized Hall sensor position according to parameter OS (see Table 13).

In applications where the chain operation mode is used (see Page 19), the iC-PVL takes care of synchronization. Therefore, it has to be mounted in a leading position in relation to the singleturn iC. If the mounting position varies from that, the OS parameter can be used to achieve this phase shift. To ensure correct synchronization of multiturn and singleturn data, the resulting phase shift between the multiturn and singleturn position must be within the range of 0 ° to 180 ° (MT leading).

os	Addr. 0x01; bit 7:5		
Code	Phase shift		
000	0°, no shift		
001	+ 45° leading		
010	+ 90 ° leading		
011	+ 135° leading		
100	\pm 180 $^{\circ}$ leading or trailing		
101	- 135 ° trailing		
110	- 90 ° trailing		
111	- 45 ° trailing		

Table 13: Offset multiturn to singleturn

Note: 0° to 180° is the ideal range for tolerated values of phase shift between ST and MT. This range is further reduced due to communication, propagation or processing delays for the specific application. Typically, it is reduced by a few degrees, but increases with the signal frequency.

DIR	Addr. 0x00; bit 3	
Code	Code direction	
0	Normal	
1	Inverted	

Table 14: Code direction

The counting direction can be easily swapped with the configuration bit DIR. The bit would be typically used to invert the counting direction if the iC-PVL is assembled rotated or flipped.

Rev B3, Page 19/33

SERIAL INTERFACE MODE (SEL = LOW)

iC-PVL can be connected to a singleturn sensor or interpolator via its serial interface. To ensure compatibility with different devices, iC-PVL's serial interface can operate in two distinct modes: standard SSI or in a chain mode.

In SSI mode, iC-PVL replies to a multiturn data request of an SSI protocol master. The master takes care of data synchronization and calculates a consistent absolute position. Data input DI is not used in this operating mode. iC-PVL is compatible with all iC-Haus optical or magnetic singleturn encoders featuring a multiturn interface (MTI). For details refer to the application examples of Figure 13 and Figure ?? on Page 28. In SSI mode, iC-PVL can also be used as stand-alone magnetic period counter. The position data is output in an SSI compatible protocol (see Figure 15 on Page 29).

In chain mode, a singleturn sensor transmits its singleturn position to the data input DI of iC-PVL. In this mode, iC-PVL takes care of synchronization, calculates a consistent absolute position and outputs at data output DO, comparable to a shift register, with MSB first.

The operating mode is set using parameter INT MODE.

INT_MODE	Addr. 0x00; bit 0	
Code	Mode	
0	Standard SSI read-out mode (SSI mode)	
1	Chain mode (chain mode)	

Table 15: Serial interface operating mode

By default, the iC-PVL expects binary data at input DI, and also outputs its counted multiturn position (and PCR) at DO in binary format. In case one data or both data is required in Gray format, this can be configured by setting the ST_GRAY bit or the MT_GRAY bit, respectively.

ST_GRAY	Addr. 0x00; bit 2		
Code	Format		
0	Binary code		
1	Gray code		

Table 16: Singleturn input data format via port DI (in chain mode)

MT_GRAY	Addr. 0x00; bit 1		
Code	Format		
0	Binary code		
1	Gray code		

Table 17: Multiturn and PCR output data format via port

Note: The usage of ST_GRAY = 1 in chain mode is limited. If activated, all data to input DI is converted to binary code. This conversion may lead to an unclean ending of the SSI communication. In this case, instead of a timeout at logic low level, a timeout at logic high level is received. If this is not appropriate, the exact singleturn input bit width can be defined by configuration parameter SYNC_BW which is not used in chain mode.

SYNC_BW	Addr. 0x05; bit 1:0	
Code	Input bit width	
00	all bits (default)	
01	14 bit	
10	16 bit	
11	18 bit	

Table 18: Number of expected and converted input bits at pin DI with ST GRAY = 1

The internal multiturn counter is 40 bit wide. In applications where smaller counter depths are sufficient or the bit width of the serial interface is limited, the output length of the counter value can be configured with MT_BW as shown in Table 19.

MT_BW	Addr. 0x01; bit 4:0
Code	Bit width
0x00	9 bit
0x01	10 bit
0x1E	39 bit
0x1F	40 bit

Table 19: Bit width of multiturn data and counter

Additionally, iC-PVL can transmit up to 3 synchronization bits, according to configuration parameter SYNC BW shown in Table 20.

Rev B3, Page 20/33

SYNC_BW	Addr. 0x05; bit 1:0	
Code	Bit width	Tolerable phase shift range
00	0 bit	no synchronization bit
01	1 bit	0° 180°
10	2 bit	0° 270°
11	3 bit	0° 315°

Table 20: Synchronization bit width and resulting tolerable ideal phase shift

After the transmission of the absolute position and the synchronization information, iC-PVL's serial protocol allows the optional transmission of an error bit, a warning bit and a parity bit.

The error bit signalizes if a startup error, a wrong CRC checksum, an empty battery or position error (e.g. overspeed or magnet loss). Its polarity is configured with parameter EN ERR shown in Table 21.

The warning bit represents an early battery warning. It indicates a low battery while the system is still functional. The polarity of the warning bit follows the polarity configured with EN_ERR. Details regarding error and status information are explained on Page 23. The optional parity bit finishes the transmission. Its polarity is either even or odd according to parameter EN PAR.

Finally, the last 8 LSBs of the multiturn data can be used to transmit the period counts revolution in off-axis applications. See Table 11 for details.

The line signals for both interface modes are shown in Figures 1 and 2 on Page 9. Optional bits are greyed-out.

The number of transmitted multiturn and singleturn bits depends on parameter MT_BW and ST_BW.

EN_ERR	Addr. 0x00; bit 5:4	
Code	Mode	
00	Communication without error bit	
01	Calibration mode	
10	Communication with additional error bit (negative polarity)	
11	Communication with additional error bit (positive polarity)	

Table 21: Error bit enable

EN_WRN	Addr. 0x03; bit 7		
Code	Mode		
0	Communication without warning bit		
1	Communication with additional warning bit (polarity as configured via EN_ERR)		

Table 22: Warning bit enable

EN_PAR	Addr. 0x00; bit 7:6
Code	Mode
00	Communication without parity bit
01	reserved
10	Communication with additional parity bit (even polarity)
11	Communication with additional parity bit (odd polarity)

Table 23: Parity bit enable

OUTPUTS N0, P2, N2

In serial interface (P.) or I^2C slave mode (P.), the outputs N0, P2, N2 provide either parallel or incremental position information. A magnetic period is divided in eight sectors. By default, these three bits are output in real-time at N0, P2, N2.

ABQUAD Addr. 0x05; bit 0				
C.	Mode	N2	P2	N0
0	Parallel position	MSB	MSB-1	LSB
1 Quadrature AB		В	Α	none
N.	The output is inverted to the internally generated position.			

Table 24: AB quadrature output

With configuration parameter ABQUAD, a quadrature output can be activated. In this mode, A and B are

output at P2 and N2. One magnetic period is interpolated by a factor of two, i.e., two quadrature periods are observed per period corresponding to eight countable edges per period.

For evaluating these outputs, a hysteresis may be desired. Configuration parameter HYS activates a hysteresis of 45°. When active, the synchronization bits of the serial data output also feature a 45° hysteresis.

HYS	Addr. 0x05; bit 1
Code	Mode
0	No angle hysteresis
1	45° hysteresis on direction change

Table 25: Angle hysteresis

Rev B3, Page 21/33

MULTITURN COUNTER

In battery buffered serial interface mode (SEL = low) or I^2C slave mode, and as long as the system is powered up correctly (i.e. via battery or main supply), iC-PVL will count the multiturn position. Note that there is no counter overflow handling (positive or negative direction).

The internal counter (MT_COUNT) is 40 bits wide and thus can count up to $2^{40} - 1$ revolutions. In SSI mode, the output bit width is defined by MT_BW, so that $2^{MT_BW} - 1$ revolutions can be counted. Position read-out via SSI or I²C is exclusive, please refer to I²C SLAVE MODE on Page 23.

The counter can be preloaded to a position defined by configuration parameter MT_PREL (Table 26).Refer to Table 19 for the configuration of the counter bit width.

The multiturn counter value as well as the configuration RAM are secured by an eight bit CRC. Refer to chapter I²C MULTIMASTER INTERFACE AND CRC PROTECTION for details.

MT_PREL	Addr. 0x06 - 0x0A;
Code	Value
0x000000000	0
0x000000001	1
0x0000000FF	255
0xFFFFFFFF	$2^{40} - 1$

Table 26: Multiturn preload value

PARALLEL ENCODER MODE (SEL = HIGH)

The input/output signals in parallel encoder mode are described in Figure 11. A start pulse on the PRE line triggers the Hall sensor signal acquisition. The current position is sent as a three bit complementary word via pins P0, N0 to P2, N2. In this mode, the iC-PVL oper-

ates with a single power supply on pin VBAT. Pin VDD must be tied to GND, and the select input SEL must be connected to a logic high level, e.g. VBAT (see circuit in Figure 5).

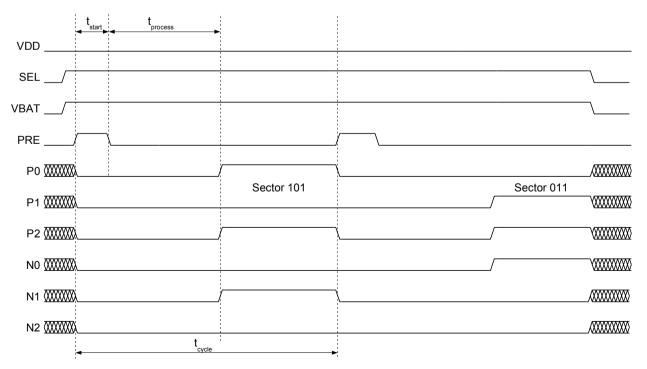


Figure 11: Line signals for parallel encoder mode (3 bit complementary P0-P2 and N0-N2)

Rev B3, Page 22/33

I²C MULTIMASTER INTERFACE AND CRC PROTECTION

Pins SCL and SDA form an interface to read an external EEPROM according to the I^2C protocol (with at least 128 bytes, e.g. 24C01, 24C02, 24C08 and maximum 24C16, extended address range is not supported). Writing to the EEPROM is not supported.

By default, this EEPROM is used to store the iC-PVL configuration (at addresses 0x00 to 0x0C) according to the register map on Page 10. The configuration is protected against bit errors by an 8-bit CRC checksum. A checksum failure is displayed at output NERR and via the error bit at the end of the SSI data. The multiturn counter preload value is stored in its own configuration area (0x07 - 0x0B) and is also saved with its own CRC on 0x0C. The CRC of the remaining four configuration bytes (0x00 - 0x05) is stored at address 0x06. Both CRC checksums are generated with the polynomial $X^8 + X^5 + X^3 + X^2 + X^1 + 1$ (0x2F, also named 0x12F sometimes). The CRC start value is zero.

Note: In order to avoid an EEPROM content of all bytes = 0x00 to be a valid configuration, the CRC checksums in addresses 0x06 and 0x0C are stored inverted.

Since iC-PVL does only read configuration data, writing EEPROM requires an external programming via pins SCL and SDA (I²C protocol). Refer to circuit on Page 29. In applications with a shared EEPROM, e.g. with iC-MU or iC-MHM, the EEPROM programming of the

iC-PVL configuration can be done via the BiSS interface of the singleturn IC.

If no EEPROM is available or desired in the application, programming the iC-PVL by a microcontroller (MCU) is possible. As described in the subsequent chapter, the I²C slave mode allows direct read/write access to internal configuration and counter. Alternatively, the MCU may emulate an EEPROM (i.e. an I²C slave), since iC-PVL is acting as a bus master by default. At startup, after a short high pulse at pin PRE, the iC-PVL requests addresses 0x00 to 0x0C from the connected I²C slave. This is done in a combined write/read command as shown in Figure 12, repeating 13 times.

The expected slave address here is 0xA0 or "0b 1010 000", the standard I²C EEPROM address.

Notes: In typical applications, the iC-PVL is used in combination with external encoder, line driver or safety ICs. If several devices try to share one common EEP-ROM, the default configuration area of iC-PVL may not be usable (addresses 0x00 to 0x0C).

Therefore, the iC-PVL is capable to **boot from dif- ferent addresses**. The EEPROM is scanned for the unique iC-PVL configuration footprint, i.e. 13 bytes with correct checksums of configuration and counter preload. If no configuration is found at address **0x00 to 0x0C**, the iC-PVL searches at address **0x40 to 0x4C**, then at address **0x80 to 0x8C** and finally at address **0xA0 to 0xAC**.

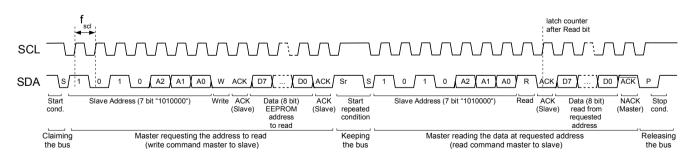


Figure 12: iC-PVL combined write/read command reading one slave address

Rev B3, Page 23/33

I²C SLAVE MODE

Additionally to the I²C master interface described in the previous section, iC-PVL can be booted as I²C slave (see circuit of Figure 4 on page 12).

At I²C device ID = 0b1100 001 iC-PVL's internal registers are addressed according to the register map on page 11.

The I^2C communication protocol described in Figure 12 may be used for read and write register access. The internal multiturn counter is readable at address 0x07 to 0x0B, protected with CRC checksum at address 0x0C. Additionally, the three synchronization bits are readable at address 0x0D.

Note: For a consistent position information, it is necessary to read all these position registers in one burst command. The counter and synchronization bits are latched after each read addressing (i.e. read/not write bit = high). At burst command, the addressing for read is done only once, for the first address 0x07. The effective clock edge is marked in Figure 12.

If the seven registers are read in seven separate read instructions, the transmitted position may change during readout time and the transmitted position will be inconsistent.

Access to the internal counter via I²C needs to be enabled with configuration parameter I2C_POS. This bit locks position read-out to SSI or I²C exclusively.

I2C_POS	Addr. 0x05; bit 7
Code	Function
0	SSI read-out of MT counter only
1	I ² C read-out of MT counter only

Table 27: Enable I²C or SSI position read-out

For chip release verification purposes an identification value is stored under ROM address 0x0F; a write access to this address is not permitted.

CHIP_REL	Adr 0x0F, bit 7:0 (ROM)
Code	Chip Release
0x01	iC-PVL Y
0x02	iC-PVL Y1
0x03	iC-PVL X
0x04	iC-PVL X1
Note	For all previous versions, address 0x0F is not readable via I2C or answer is 0x00.

Table 28: Chip Release

ERROR MONITOR, STATUS AND COMMAND REGISTER

The iC-PVL has several error conditions. These are stored in a status byte which is readable at I²C address 0x10.

STUP_ERR: Startup Error

Erroneous startup procedure, e.g., I²C stuck-at, EEP-ROM read error or invalid CRC checksum stored in the EEPROM. No position acquisition is performed. Interfaces are blocked. Please revise configuration and checksums or replace EEPROM. Reboot iC-PVL.

CFG_ERR: Internal Configuration Error

The configuration stored in the internal RAM had an unexpected level flip of one or more bits, visible as wrong CRC checksum. Position is invalid. Reboot iC-PVL.

CTR ERR: Internal Counter Error

The internal period counter had an unexpected level flip of one or more bits, visible as wrong CRC checksum. Position is invalid. Reboot iC-PVL.

POS_ERR: Position Error

The position encoding observed an unexpected posi-

tion jump, caused e.g. by excessive speed or excessive acceleration of the magnetic disc or tape. Alternatively, this error bit is set on weak, disturbed magnetic signals or complete loss of magnet. Position is invalid. Optimize magnet position and cross-check angular velocity/acceleration with Table 33. Reboot iC-PVL.

BAT_ERR: Battery Error

Battery undervoltage according to Elec. Char. No. 404. Position is invalid. Change battery. Reboot iC-PVL. Battery monitoring is active during VDD supply.

BAT WRN: Battery Early Warning

Battery voltage early warning according to Elec. Char. No. 405. Battery may be changed during main supply (VDD) as soon as possible. Alternatively, halt system, read current position and restore it. Switch off system, change battery and restart. Restored position may be set as counter preload. Battery monitoring is active during VDD supply.

PDR: Power Down Reset Detected

A power down reset was performed, caused by un-

Rev B3, Page 24/33

dervoltage considerably lower than the battery error threshold. Another reason may be due to insufficient stabilizing capacitors at the supply lines VDD and VBAT.

PRESET: Pin Preset Detected

As described on Page 14, a preset pulse at pin PRE is mandatory to initialize and boot-up the iC-PVL after battery insertion. Therefore, this bit is set after each startup. It may be reset by overwriting it or issuing a reset instruction. This can be interpreted as an acknowledgment that this startup was intentional. If the bit is set later during field operation, it is most likely unintentional. The cause may have been an external disruption or short circuit error on the PRE line.

Error Output NERR

An LED may be connected to the error output NERR to signalize errors. The pin is an open drain output driver. If an error is detected, the pin is pulled low. STUP_ERR, CFG_ERR, CTR_ERR, POS_ERR, BAT_ERR are visible at NERR.

Error Output During Startup

During startup phase, a low level at NERR is visible. I.e., from preset pulse until complete and correct configuration read-in from the EEPROM. This indicates that iC-PVL is not ready to operate yet and does not answer a position read request. A reader must wait until error indication is cleared after successful boot-up.

Warning Output NWRN

Battery early warning BAT_WRN is exclusively output at open drain pin NWRN.

Status Byte

Table 29 gives a summary of available error and status messages. Errors can be acknowledged by overwriting the status byte at the desired position or by sending the SCLR command. If the error is still active, iC-PVL error monitor will set it again immediately, i.e, the error condition is still present.

STATUS	Addr. 0x10; bit 7:0				
Bit	Name	Description			
0	STUP_ERR	Startup error			
1	CFG_ERR	Internal configuration error			
2	CTR_ERR	Internal counter error			
3	POS_ERR	Position error			
4	BAT_ERR	Battery error			
5	BAT_WRN	Battery early warning			
6	PDR	Power down reset detected			
7	PRESET	Pin preset detected, I ² C REBOOT detected, Sleep mode activated			

Table 29: Status byte

Command Register

The **RESET** command reinitializes the internal circuitry. Counter position and configuration remain untouched.

CMD	Addr. 0x11; bit 7:0			
Code	Name	Description		
0x00	none	Reserved		
0x01	none	Reserved		
0x02	RESET	Soft reset		
0x03	REBOOT	Reboot and preset from EEPROM		
0x04	SLEEP	Halt iC-PVL position sensing		
0x05	SCLR	Clear all status bits		
	none	No operation		

Table 30: Command register

The **REBOOT** command reinitializes the internal circuitry, reloads new configuration and counter preload value from EEPROM. The same actions are performed after a preset pulse at pin PRE.

The **SLEEP** command stops all position sensing action during battery mode and VDD mode. No position is tracked anymore. Power consumption is reduced to a minimum but interfaces are active during VDD supply. This is useful for the storage of encoders with installed battery.

Sleep mode is skipped and position tracking is restarted on any I2C write instruction. Read instructions like status read do not skip sleep mode. With activation of the sleep mode, the status bit 7 (PRESET) is activated and an error is indicated at pin NERR. After leaving the sleep mode, NERR indication is removed and a SCLR command can be used to reset the status bit 7.

The **SCLR** command (Status CLeaR) is used to clear all status messaged in the status register.

Rev B3, Page 25/33

SUPPLY SWITCH AND BATTERY MONITORING

To retain and acquire the absolute position even on main power failure, iC-PVL monitors VDD and switches to a battery supply on pin VBAT automatically. The switching point is just below 3 V. So, if the main supply voltage on VDD drops below 3 V, the internal circuitry will be powered by VBAT instead of VDD.

The supply switch features a built-in hysteresis. The threshold voltages are defined in the Electrical Characteristics: V_{off} (Item No. 402), the voltage at which the circuit switches from VDD supply to VBAT supply, and V_{on} (Item No. 401) for the voltage at which the circuit switches back to VDD supply.

BAT_MON	Addr. 0x03; bit 6		
Code	Function		
0	Battery monitoring off		
1*	Battery monitoring on		
Note	*) Battery monitoring is active during VDD supply.		

Table 31: Enable battery monitoring

Depending on the power pack, e.g. a $3.6\,\text{V}$ battery with 1 Ah capacity, the device can operate for several years. During VDD supply, the iC-PVL monitors the voltage at pin VBAT to detect a low battery voltage. If the supply drops below the error threshold V_{err} voltage (Item No. 404), an error is generated and signalized at

pin NERR, by the error bit in the SSI communication protocol, and by the I²C status register. The battery monitoring function can be enabled/disabled with the configuration parameter BAT_MON (Table 31).

Additionally, if battery monitoring is enabled by parameter BAT_MON, an early battery warning message is generated. The warning threshold is specified in V_{wm} (Elec. Char. No. 405). If the voltage at pin VBAT drops below this warning threshold, a warning is generated and signalized at pin NWRN and optionally by the warning bit of the SSI data (refer to Table 22).

The thresholds of V_{err} and V_{wrn} are defined by Elec. Char. 404 and Elec. Char. 405. They can be configured with configuration parameter BAT_THR according to Table 32.

BAT_THR	Addr. 0x05; bit 3:2			
Code	V _{err}	V _{wrn}		
00*	3.05	3.15		
01	2.95	3.05		
10	2.85	2.95		
11	2.75	2.85		
Notes	Nominal values. Refer to Elec. Char. 404 and 405 for variation. *) BAT_THR = 0x00 is recommended.			

Table 32: Battery monitor threshold levels

Rev B3, Page 26/33

CURRENT CONSUMPTION IN BATTERY MODE

Serial Interface Mode (SEL = LOW)

In this chapter, all values for angular velocity and acceleration refer to one magnetic period, i.e. one north-south pole pair sequence. One period is 360° . A velocity of one pole pair per second relates to $360^{\circ}/s = 1 \text{ Hz} = 60^{1}/\text{min}$.

The current consumption of the iC-PVL can be configured by parameter A_MAX. Besides the current consumption, this parameter sets the maximum angle acceleration (from complete halt) supported by the iC-PVL in the respective configuration. The relationship between maximum acceleration and current consumption is shown in Table 33. For accelerations below $48 \cdot 10^3 rad/s^2$, the typical current consumption is below $10 \, \mu A$.

For applications where only sporadic motor movement is expected during battery supply, Table 33 mainly defines the current consumed by iC-PVL. Additionally, Table 34 gives typical values in case of enduring movement at a certain angular velocity during battery supply.

Note: A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 30) or disconnect the battery.

A_MAX	Addr. 0x03; bit 5:3				
Code	$\alpha_{max} \left[\frac{\circ}{s^2} \right]$	$lpha_{ extit{max}} \left[rac{ extit{rad}}{ extit{s}^2} ight]$	typ <i>I_{avg}</i> [μ <i>A</i>]	max Ι _{avg} [μΑ]	
000	160 · 10 ⁶	3000 · 10 ³	- 7avg[μ/-] 52	72	
001	40 · 10 ⁶	760 · 10 ³	26	36	
010	10 · 10 ⁶	190 · 10 ³	14	18	
011	2.5 · 10 ⁶	48 · 10 ³	7	10	
100	625 · 10 ³	12 · 10 ³	4	6	
101	160 · 10 ³	3 · 10 ³	2.5	4	
110	40 · 10 ³	$0.75 \cdot 10^{3}$	2	3	
111	10 · 10 ³	$0.2\cdot 10^3$	1.5	2.5	

Table 33: Maximum supported angular acceleration (from shaft halt) and average current consumption on shaft halt or slow angular velocity. V(VBAT) = 3.6 V, V(PRE) < 0.5 V.

I(VBAT) for angular velocity [RPM]								
f[RPM]	f _{mag} [Hz]	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$	$I_{avg}[\mu A]$
2-pole magnet	magnetic input freq.	A _{MAX} = 110	A _{MAX} = 101	$A_{MAX} = 100$	A _{MAX} = 011	A _{MAX} = 010	A _{MAX} = 001	$A_{MAX} = 000$
0	0	2	2.5	4	7	14	26	52
< 125	< 2	2	2.5	4	7	14	26	52
< 250	< 4	2	2.5	4	7	14	26	52
< 500	< 8	2.5	2.5	4	7	14	26	52
< 1000	< 16	4	4	4	7	14	26	52
< 2000	< 33	7	7	7	7	14	26	52
< 4000	< 66	14	14	14	14	14	26	52
< 8000	< 133	26	26	26	26	26	26	52
< 16000	< 266	52	52	52	52	52	52	52
< 32000	< 533	100	100	100	100	100	100	100
< 64000	< 1066	200	200	200	200	200	200	200
< 128000	< 2133	400	400	400	400	400	400	400
< 480000	< 8000	800	800	800	800	800	800	800

Table 34: Average current consumption vs. angular velocity. Typical values for V(VBAT) = 3.6 V, T_j = 27 °C and V(PRE) < 0.5 V.

Parallel Encoder Mode (SEL = HIGH)

The current consumption in parallel encoder mode is directly proportional to the sampling frequency, f_s . The typical average current consumption of iC-PVL is calculated as shown below (V(VBAT) = 3.6 V, T_i = 27 °C):

$$I_{avg}[\mu A] = 25 \cdot f_s[kHz]$$

For instance, at a sampling frequency of 1 000 samples per second: f_s = 1 kHz and I = 25 μ A. At 100 samples per second: I = 2.5 μ A.

Rev B3, Page 27/33

OSCILLATOR FREQUENCY CALIBRATION

The bias current for the internal oscillator can be configured with parameter IBIAS. An increase or decrease in bias current will directly affect the oscillator frequency. The bias current should be calibrated at the typical battery supply voltage so that the frequency of the oscillator is around 34 kHz (see Elec. Char. No. 301). The clock frequency is observable at output pin DI_P1 in the dedicated calibration mode. The calibration mode is entered by configuring the EN_ERR parameter to "01" (see Table 21).

Calibrating the oscillator frequency is not absolutely necessary to ensure iC-PVL operation. Nevertheless, if left uncalibrated, among others, mainly the values defined in Table 33 and 34 may be out of range.

IBIAS	Addr. 0x03; bit 2:0
Code	Frequency change (typ.)
100	+20 %
101	+10 %
110	0 %
111	-10 %
000	-20 %
001	-30 %
010	-40 %
011	-50 %

Table 35: Bias current: Oscillator frequency calibration.

Rev B3, Page 28/33

APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI Mode)

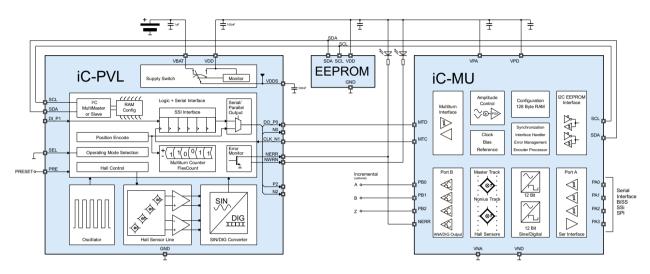


Figure 13: Principle application example. iC-PVL as battery-buffered multiturn device connected to the MT interface of the iC-MU absolute singleturn encoder. Interface operating in SSI-Mode (INT_MODE = 0). The two iCs share one common EEPROM for configuration. BiSS register access via iC-MU is used for access to iC-PVL STATUS register, for iC-PVL COMMAND execution (e.g. REBOOT, SCLR, SLEEP), and for EEPROM access (iC-PVL configuration). BiSS, SPI or SSI are available for serial data transmission (refer to iC-MU datasheet for details).

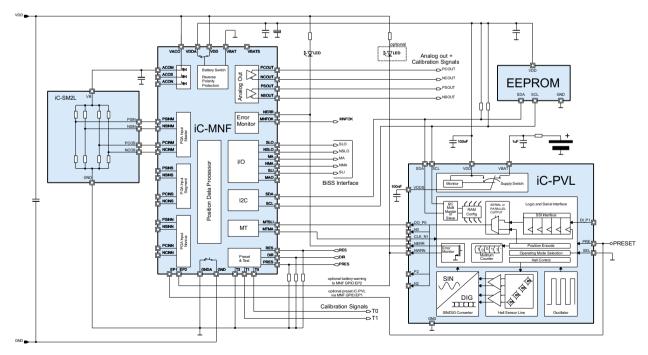


Figure 14: Principle application example. iC-PVL as battery-buffered multiturn device connected to the MT interface of the iC-MNF nonius encoder (together with an iC-SM2L AMR linear position sensor). iC-PVL interface is operated in SSI-Mode (INT_MODE = 0). The two iCs share one common EEPROM for configuration. BiSS register access via iC-MNF is used for access to iC-PVL STATUS register, for iC-PVL COMMAND execution (e.g. REBOOT, SCLR, SLEEP), and for EEPROM access (iC-PVL configuration). BiSS or SSI are available for serial data transmission (refer to iC-MNF/iC-SM2L datasheet for details).

Rev B3, Page 29/33

APPLICATION EXAMPLE: iC-PVL as battery powered revolution counter or metering device

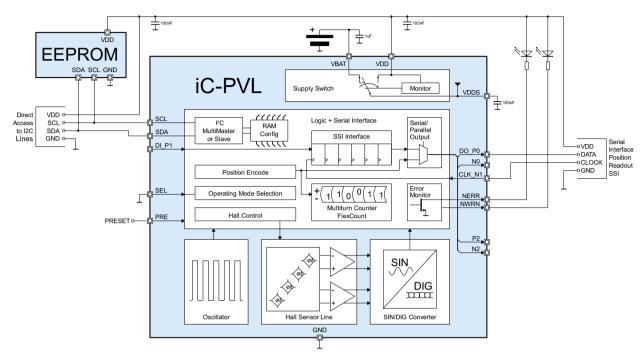


Figure 15: Principle application example. iC-PVL as battery powered multiturn counter, e.g. in a metering application. Interface operating in INT_MODE = 0, read-out of the internal counter value via SSI or I²C. VDD supply is only needed during read-out, otherwise iC-PVL is battery-powered. Direct access to iC-PVL EEPROM via SCL, SDA.

Note: All circuit examples shown in this chapter are principle wiring diagrams. Further components may be necessary but are omitted for clarification of the application principle.

Rev B3, Page 30/33

DESIGN REVIEW: Notes On Chip Functions

iC-PVL 0,	iC-PVL 0, Y, Y1, X					
No.	Function, Parameter/Code	Description and Application Hints				
1		For any former chip release, please refer to datasheet release B1.				
2	Battery Assembly and Initial Operation	After installation of the battery, it is important to put iC-PVL into a valid operating state to prevent the battery from an excessive current drain. To do so, a suitable magnetic target needs to be installed, the main supply VDD powered, and a preset pulse applied to input PRE. For details refer to the instructions in chapter STARTUP BEHAVIOUR on P. 14.				
3	Magnet Assembly, Shipment and Storage	A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 30) or disconnect the battery.				

Table 36: Notes on chip functions regarding former iC-PVL chip releases

iC-PVL X1	iC-PVL X1					
No.	Function, Parameter/Code	Description and Application Hints				
1	Battery Assembly and Initial Operation	After installation of the battery, it is important to put iC-PVL into a valid operating state to prevent the battery from an excessive current drain. To do so, a suitable magnetic target needs to be installed, the main supply VDD powered, and a preset pulse applied to input PRE. For details refer to the instructions in chapter STARTUP BEHAVIOUR on P. 14.				
2	Magnet Assembly, Shipment and Storage	A magnetic field according to the specifications should be provided any time (see Elec. Char. No. 102). If a suitable magnetic target can not be provided during shipment or storage, use the sleep command (refer to Table 30) or disconnect the battery.				

Table 37: Notes on chip functions regarding iC-PVL chip release X1

Rev B3, Page 31/33

REVISION HISTORY

Rel.	Rel. Date*	Chapter	Modification	Page
A1	2016-06-09	All	Initial release	All

Rel.	Rel. Date*	Chapter	Modification	Page
B1	2016-08-09	ELECTRICAL CHARACTERISTICS	Item 404: max. limits Item 405: max. limits	7
		OPERATING REQUIREMENTS	Figure 1 updated	9
		CONFIGURATION PARAMETERS	Table 5, Table 6: parameter PCR_OUT added	10
	MAGNETIC SCALE SELECTION -		Table 11: description of PCR_OUT added	15
		APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI-Mode)	Figure 13 updated	24
		APPLICATION EXAMPLE: iC-PVL as battery powered revolution counter or metering device	Figure 15 updated	25
		DESIGN REVIEW: Notes On Chip Functions	Chapter updated	30

Rel.	Rel. Date*	Chapter	Modification	Page
B2	2017-05-12	ELECTRICAL CHARACTERISTICS	Item 008: Max. tconfig for start adress 0xA0 added	7
		OPERATING MODE SELECTION	Table 8: contents updated	13
		STARTUP BEHAVIOR	Chapter updated Note boxes added	14
		MAGNETIC SCALE SELECTION	Chapter updated Table 9: contents updated	16
		I ² C MULTIMASTER INTERFACE AND CRC PROTECTION	Figure 12: contents updated	22
		I ² C SLAVE MODE	Note box added Table 28 added	23
		ERROR MONITOR, STATUS AND COMMAND REGISTER	Description of sleep mode updated Table 29: contents updated	24
		SUPPLY SWITCH AND BATTERY MONITORING	Table 32: note added	25
		CURRENT CONSUMPTION IN BATTERY MODE	Note box updated	26
		APPLICATION EXAMPLES: Singleturn iCs with multiturn interface (SSI-Mode)	Chapter updated Figure 14 updated	28, 28
		DESIGN REVIEW: Notes On Chip Functions	Chapter updated	30

Rel.	Rel. Date*	Chapter	Modification	Page
ВЗ	2017-08-02	ELECTRICAL CHARACTERISTICS	Item 004: conditions updated	7
		MAGNETIC SCALE SELECTION	Table 9: contents corrected	16
		ERROR MONITOR, STATUS AND COMMAND REGISTER	BAT_ERR, BAT_WRN: description revised	23
		SUPPLY SWITCH AND BATTERY MONITORING	Table 31: note added	25
		CURRENT CONSUMPTION IN BATTERY MODE	Table 34: table heading revised, contents updated Temperature values revised	26

^{*} Release Date format: YYYY-MM-DD

Rev B3, Page 32/33

iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.com/infoletter and is automatically generated and shall be sent to registered users by email. Copying – even as an excerpt – is only permitted with iC-Haus' approval in writing and precise reference to source.

The data specified is intended solely for the purpose of product description and shall represent the usual quality of the product. In case the specifications contain obvious mistakes e.g. in writing or calculation, iC-Haus reserves the right to correct the specification and no liability arises insofar that the specification was from a third party view obviously not reliable. There shall be no claims based on defects as to quality in cases of insignificant deviations from the specifications or in case of only minor impairment of usability.

No representations or warranties, either expressed or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (Safety-Critical Applications) without iC-Haus' specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems. iC-Haus products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by iC-Haus.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Software and its documentation is provided by iC-Haus GmbH or contributors "AS IS" and is subject to the ZVEI General Conditions for the Supply of Products and Services with iC-Haus amendments and the ZVEI Software clause with iC-Haus amendments (www.ichaus.com/EULA).

Rev B3, Page 33/33

ORDERING INFORMATION

Туре	Package	Options	Order Designation
iC-PVL	QFN16-4x4		iC-PVL QFN16-4x4
Evaluation kit	61 mm x 64 mm PCB		iC-PVL EVAL PVL1M
iC-PVL GUI		Evaluation software for Windows PC	For download link refer to www.ichaus.com/pvl_gui

Please send your purchase orders to our order handling team:

Fax: +49 (0) 61 35 - 92 92 - 692 E-Mail: dispo@ichaus.com

For technical support, information about prices and terms of delivery please contact:

 iC-Haus GmbH
 Tel.: +49 (0) 61 35 - 92 92 - 0

 Am Kuemmerling 18
 Fax: +49 (0) 61 35 - 92 92 - 192

 D-55294 Bodenheim
 Web: http://www.ichaus.com

 GERMANY
 E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.com/sales_partners