
July 2011 Doc ID 17919 Rev 2 1/23

AN3270
Application note

Using the STM8L16x AES hardware accelerator

Introduction
The purpose of cryptography is to protect sensitive data to avoid it being read by
unauthorized persons. There are many algorithms that implement cryptography. These
techniques can be split into:

● Asymmetric cryptography algorithms: These algorithms use a key to encrypt and
another key to decrypt messages. RSA and DSA are examples of this type of
algorithm.

● Symmetric cryptography algorithms: These algorithms use the same key to encrypt
and decrypt messages. Advanced Encryption Standard (AES), Data Encryption
Standard (DES) are examples of this type of algorithm.

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptography
algorithm that can be used to protect electronic data. AES exists in three versions: 128-bit,
192-bit and 256-bit.

High density STM8L16x microcontrollers have an embedded AES 128-bit hardware
accelerator to off-load the CPU from encryption/decryption tasks. This AES peripheral is a
fully compliant implementation of the AES standard as defined by the Federal information
processing standards publication (FIPS PUB 197, 2001 November 26).

This application note applies to STM8L16x high-density devices with built-in AES peripheral.

The software supplied with this application note provides an implementation of some
commonly used AES chaining modes (ECB, CBC, CFB, OFB and CTR).

For more detailed information you should refer to the AES section of RM0031 STM8L15x
and STM8L16x microcontroller family reference manual.

www.st.com

http://www.st.com

Contents AN3270

2/23 Doc ID 17919 Rev 2

Contents

1 AES hardware accelerator operation modes . 3

1.1 AES encryption mode . 4

1.2 Key derivation mode . 6

1.3 AES decryption mode . 8

1.4 Key derivation and decryption mode . 10

1.5 Decryption mode vs. key derivation and decryption mode 12

2 AES peripheral driver . 13

3 AES block processing . 15

3.1 AES block padding . 15

3.2 AES block chaining: CBC as an example . 15

3.3 Using the software implementation of AES chaining modes 17

3.4 Some recommendations . 20

4 Conclusion . 21

5 Revision history . 22

AN3270 AES hardware accelerator operation modes

Doc ID 17919 Rev 2 3/23

1 AES hardware accelerator operation modes

The Advanced Encryption Standard (AES) hardware accelerator can be used to encrypt
(encipher) and decrypt (decipher) 128-bit blocks using a 128-bit key length. It is a fully
compliant implementation of the AES standard as defined by Federal Information
Processing Standards publication (FIPS PUB 197, 2001 November 26).

Figure 1. AES hardware accelerator

The main features of the built in AES hardware accelerator STM8L16x devices are:

● Both encryption and decryption with compliance to FIPS using a 128-bit key

● Key derivation for decryption

● 892 clock cycles to encrypt or decrypt one 128-bit block

● Read and write error detection with interrupt capability

● AES Computation Complete interrupt capability

● Automatic data flow control with support of direct memory access (DMA) using 2
channels: one for incoming data, the other for outgoing data.

The AES hardware accelerator provides four modes of operation:

1. Encryption mode

2. Decryption mode (using decryption key)

3. Key derivation mode

4. Key derivation and decryption mode (using encryption key)

00
81ö! ø¯Àþ 00

03 6¸•rËÑ¨

AES hardware accelerator operation modes AN3270

4/23 Doc ID 17919 Rev 2

Once configured and enabled, the AES goes through three phases:

● Input phase: data (plain text, cipher text or key) are written in the AES Data Input
Register (AES_DINR). This phase can be carried-out either by the CPU or by Direct
Memory Access (DMA).

● Computation phase: the AES hardware accelerator performs the AES operation
(encryption, decryption...). Once this phase ends, the Computation Complete Flag is
set. An interrupt can be generated if enabled using Computation Complete Interrupt
Enable bit (CCIE).

● Output phase: the application can read the Data Output Register (AES_DOUTR). Like
the input phase, this task can be performed by the CPU or by DMA.

1.1 AES encryption mode
In this mode, the AES accelerator performs the encryption of a 128-bit plain text using the
provided 128-bit key to compute the cipher text.

In the example below, the plain text “STM32L and STM8L” is encrypted using the key “ultra-
low power.”. The cipher text, computed by the AES hardware accelerator, in ASCII format is
"ö!?ø¯Àþ6¸•rËÑ¨" and in hex format is “22 F6 21 81 F8 AF C0 FE 03 36 B8 95 72 CB D1 A8”.

Figure 2. AES hardware accelerator: encryption mode

The AES takes 892 clock cycles to encrypt one 128-bit block.

To perform text encryption, follow the algorithm given in the flowchart below.

MS19716V1

AES hardware accelerator:
Encryption mode

ö!�ø¯Àþ?6¸•rËÑ¨

128-bit cipher text

Encryption Key:
“ultra-low power.”

STM32L and STM8L

128-bit plain text

AN3270 AES hardware accelerator operation modes

Doc ID 17919 Rev 2 5/23

Figure 3. AES algorithm in encryption mode

1. The AES peripheral clock must be enabled to allow write access to the AES registers.

2. Mode configuration must be done before enabling the AES.

3. If required, the Computation Complete interrupt can be enabled using the Computation Complete Interrupt
Enable (CCIE) bit.

4. The AES hardware accelerator requires the 16 bytes of data (128 bits) to be written/read from MSB (16th
data byte) to LSB (1st data byte) that is why the Counter is initialized to 0.

Enable AES clock(1)

Configure AES peripheral:
Select encryption mode(2)

Enable computation complete
interrupt(3)

Enable AES to start processing

Counter = 0

Write encryption key EK[counter]
in DINR register

Write plain text PT[counter]
in DINR register

Counter = 16?(4)

Is computation complete?

Counter++

Counter = 16?(4)

End

Counter = 0

Read cypher text CT[counter]
from DOUTR register

Input phase

Computation phase

Output phase

Counter++

MS19717V1

AES hardware accelerator operation modes AN3270

6/23 Doc ID 17919 Rev 2

EK is a 16-byte buffer containing the Encryption Key.

PT is a 16-byte buffer containing the Plain Text.

CT is 16-byte buffer containing the Cipher Text.

Note: Refer to the AES_EncryptDecrypt example available in the STM8L15x_StdPeriph_Lib
firmware package for an example of single block encryption/decryption in C language.

1.2 Key derivation mode
AES is a symmetric cryptography algorithm: Encrypting and decrypting text is performed by
the same key. The AES hardware accelerator can compute a derived key from an encryption
key that is named “Decryption key”. The decryption key is pre-computed to speed-up the
decryption phase.

In this mode, the AES takes the encryption key as input and provides the decryption key in
output. This mode takes 320 clock cycles.

Figure 4. AES hardware accelerator: key derivation mode

In the example above, the decryption key, computed from the encryption key “ultra-low
power.”, is “91 DF 30 53 7A E9 49 19 92 FF 8D F8 C4 9B B7 4D” (hex format).

The algorithm given in the figure below provides the steps needed to use the AES hardware
accelerator in key derivation mode.

AN3270 AES hardware accelerator operation modes

Doc ID 17919 Rev 2 7/23

Figure 5. AES algorithm in key derivation mode

1. The AES peripheral clock must be enabled to allow write access to the AES registers.

2. Mode configuration must be done before enabling the AES.

3. If required, the Computation Complete interrupt can be enabled using the Computation Complete Interrupt
Enable (CCIE) bit.

4. The AES hardware accelerator requires the 16 bytes of data (128 bits) to be written/read from MSB (16th
data byte) to LSB (1st data byte) that is why the Counter is initialized to 0.

Enable AES clock(1)

Configure AES peripheral:
Select key derivation mode(2)

Enable computation complete
interrupt(3)

Enable AES to start processing

Counter = 0

Write encryption key EK[counter]
in DINR register

Counter = 16?(4)

Is computation complete?

Counter++

Counter = 16?(4)

End

Counter = 0

Read decryption key DK[counter]
from DOUTR register

Input phase

Computation phase

Output phase

Counter++

MS19719V1

AES hardware accelerator operation modes AN3270

8/23 Doc ID 17919 Rev 2

EK is a 16-byte buffer containing the encryption key.

DK is a 16-byte buffer of 16 bytes containing the decryption key.

Note: Refer to the AES_KeyDerivation example available in the STM8L15x_StdPeriph_Lib
firmware package for an example of implementation in C language.

1.3 AES decryption mode
In this mode, the AES hardware accelerator performs the decryption of a 128-bit cipher text
using the provided 128-bit decryption key to compute the plain text. This mode takes 892
clock cycles for a 128-bit block.

In the example below, the cipher text is “22 F6 21 81 F8 AF C0 FE 03 36 B8 95 72 CB D1
A8” and the decryption key is “91 DF 30 53 7A E9 49 19 92 FF 8D F8 C4 9B B7 4D”. The
plain text, computed by AES hardware accelerator, is the original text “STM32L and STM8L”.

Figure 6. AES hardware accelerator: decryption mode

Note: Cipher text and decryption key are in hexadecimal format.

AN3270 AES hardware accelerator operation modes

Doc ID 17919 Rev 2 9/23

Figure 7. AES algorithm in decryption mode

1. The AES peripheral clock must be enabled to allow write access to AES registers

2. Mode configuration must be done before enabling the AES.

3. If required, the Computation Complete interrupt can be enabled using the Computation Complete Interrupt
Enable (CCIE) bit.

4. The AES hardware accelerator requires the 16 bytes of data (128 bits) to be written/read from MSB (16th
data byte) to LSB (1st data byte) that is why the Counter is initialized to 0.

Enable AES clock(1)

Configure AES peripheral:
Select decryption mode(2)

Enable computation complete
interrupt(3)

Enable AES to start processing

Counter = 0

Write decryption key DK[counter]
in DINR register

Write cypher text CT[counter]
in DINR register

Counter = 16?(4)

Is computation complete?

Counter++

Counter = 16?(4)

End

Counter = 0

Read plain text PT[counter]
from DOUTR register

Input phase

Computation phase

Output phase

Counter++

MS19721V1

AES hardware accelerator operation modes AN3270

10/23 Doc ID 17919 Rev 2

DK is a 16-byte buffer containing the Decryption Key.

PT is a 16-byte buffer containing the Plain Text.

CT is a 16-byte buffer containing the Cipher Text.

1.4 Key derivation and decryption mode
When this mode is selected, the AES hardware accelerator performs the decryption of a
128-bit cipher text using the provided 128-bit encryption key to compute the plain text. In the
example below the cipher text is “22 F6 21 81 F8 AF C0 FE 03 36 B8 95 72 CB D1 A8” and
the encryption key is “ultra-low power.”. The plain text, computed by AES hardware
accelerator, is the text “STM32L and STM8L”.

Figure 8. AES hardware accelerator: key derivation and decryption mode

AN3270 AES hardware accelerator operation modes

Doc ID 17919 Rev 2 11/23

Figure 9. AES algorithm in key derivation and decryption mode

1. The AES peripheral clock must be enabled to allow write access to AES registers

2. Mode configuration must be done before enabling the AES

3. If required, the Computation Complete Interrupt can be enabled using the Computation Complete Interrupt
Enable (CCIE) bit

4. The AES hardware accelerator requires the 16 bytes of data (128 bits) to be written/read from MSB (16th
data byte) to LSB (1st data byte) that is why the Counter is initialized to 0.

Enable AES clock(1)

Configure AES peripheral:
Select key derivation mode(2)

Enable computation complete
interrupt(3)

Enable AES to start processing

Counter = 0

Write encryption key EK[counter]
in DINR register

Counter = 16?(4)

Is computation complete?

Counter++

Counter = 16?(4)

End

Counter = 0

Read decryption key DK[counter]
from DOUTR register

Input phase

Computation phase

Output phase

Counter++

MS19723V1

AES hardware accelerator operation modes AN3270

12/23 Doc ID 17919 Rev 2

EK is a 16-byte buffer containing the Encryption Key.

PT is a 16-byte containing the Plain Text.

CT is 16-byte containing the Cipher Text.

Note: Refer to the AES_EncryptDecrypt example available in the STM8L15x_StdPeriph_Lib
firmware package for an example of implementation in C language.

1.5 Decryption mode vs. key derivation and decryption mode
The AES hardware accelerator support two methods for decrypting a cipher text:

● Key derivation and decryption mode which requires the encryption key.

● Decryption mode which requires the decryption key that must previously be computed
using the key derivation mode.

The former takes 1228 clock cycles for one 128-bit data block but the latter takes only 892
clock cycles for the same data block length.

Key derivation and decryption modes are useful when the data length is greater than 128-
bit. In the first step the decryption key is computed using key derivation mode then data are
decrypted using decryption mode.

Example: The length of the data to be encrypted is 160 bytes (128-bit * 10). The formulas
below can be used to determine the processing time for both methods:

● Key derivation and decryption mode method:

processing time = number of 128-bit blocks * processing time of single block = 10 *
1228 = 12280 clock cycles

● Decryption mode + Key derivation mode method:

processing time = key derivation processing time + number of 128-bit blocks *
processing time of single block = 320 + 10 *892 = 9240 clock cycles

This shows that it is better to use the combined key derivation and decryption mode
when processing multiple blocks.

AN3270 AES peripheral driver

Doc ID 17919 Rev 2 13/23

2 AES peripheral driver

An AES driver written in C language (stm8l15x_aes.c/.h) is available in the
STM8L15x_StdPeriph_Lib standard firmware package. This driver provides an abstraction
layer to make it easier to use the AES hardware accelerator.

A flowchart of encryption mode using the driver is shown in Figure 10.

To help you get started quickly, a set of examples is available in the
STM8L15x_StdPeriph_Lib package:

● AES_KeyDerivation: how to get the decryption key from the encryption key

● AES_EncryptionDecryption: how to encrypt and decrypt a single data block

● AES_EncryptionDecryptionBlocks: how to use the DMA peripheral to manage
reading/writing data from/to AES data registers

AES peripheral driver AN3270

14/23 Doc ID 17919 Rev 2

Figure 10. AES encryption mode: implementation using AES peripheral driver

1. Once set, Computation Complete Flag (CCF) should be cleared in multiple block processing using the
following function AES_ClearFlag(AES_FLAG_CCF).

CLK_PeripheralClockConfig(CLK_Peripheral_AES, ENABLE)

AES_OperationModeConfig(AES_Operation_Encryp)
AES_Cmd(ENABLE)

Counter = 0

AES_WriteSubKey(EncryptionKey[Counter])

AES_WriteSubData(InputText[Counter])

Counter = 16?

while(AES_GetFlagStatus(AES_FLAG_CCF) == RESET)(1)

Counter++

Counter = 16?

End

Counter = 0

OutputText[Counter] = AES_ReadSubData()

Input phase

Computation phase

Output phase

Counter++

MS19724V1

AN3270 AES block processing

Doc ID 17919 Rev 2 15/23

3 AES block processing

3.1 AES block padding
AES-128 is a 128-bit block cryptography that means that AES encrypts 128-bit plain text
providing a 128-bit cipher text. But in general, text to be encrypted/decrypted is of any length
so the text must be padded to get an exact multiple of block size (128 bits) before being
processed (encrypted or decrypted).

In the following example, the text “The STM8L family combines high performance and ultra-
low power consumption” is split into 6 blocks. The last one, since it’s size is 10 bytes, is
padded by six “00”.

Note: There are other methods of message padding than filling with “00”.

Figure 11. Message padding with “00”

3.2 AES block chaining: CBC as an example
Encrypting the same plain text using the same key produces the same cipher text, each
block is encrypted independently. This could be insecure when encrypting long texts.
Chaining modes have been introduced to overcome this limitation. With chaining modes,
each block is no longer dependent just on the plain text.

The following are some examples of chaining modes:

● Electronic CodeBook (ECB): This is the simplest mode. Each plain text is
encrypted/decrypted separately.

● Cipher Block Chaining (CBC): Each block is XORed with the previous block. This
mode requires a 128-bit initialization vector.

● Cipher Feedback (CFB): Each plain text block is XORed with the previous cipher text
block before encryption.

● Output Feedback (OFB): The output of the encryption process is used as input for the
next block encryption. The output block is XORed with plain text to give the cipher text

● Counter (CTR): A 128-bit counter is encrypted and then XORed with the plain text to
give the cipher text. The counter is incremented at each block.

For the purposes of illustration, this section describes block chaining using CBC.

Figure 12 and Figure 13 below explain the implementation of CBC mode in both encryption
and decryption. In CBC mode, each input block is dependent on the previous output block.
The input block is XORed with the previous cipher text block before being encrypted. The
first block requires an initialization vector.

AES block processing AN3270

16/23 Doc ID 17919 Rev 2

Figure 12. Encryption using Cipher Block Chaining (CBC) mode

Figure 13. Decryption using Cipher Block Chaining (CBC) mode

Chaining modes (CBC, CFB, OFB and CTR) are not implemented in hardware. A firmware
implementation of block chaining modes (ECB, CBC, CFB, OFB and CTR) using the AES
hardware accelerator is provided in the aes_util.c/.h files with this application note.

As an example, the prototype of CBC mode is as follows:

AES_Encrypt_CBC(): Encrypt plain text with encryption key providing cipher text using
CBC chaining mode. Encryption status is returned by the function.

ErrorStatus AES_Encrypt_CBC(PlainText, /* address of plain text to be encrypted */

CipherText, /* address of buffer that used to store the cipher text */

EncryptionKey, /* address of key used to encrypt plain text */

InitVector, /* address of initialization vector */

TextSize); /* size of padded plain text */

For the implementation of other chaining modes, refer to the aes_util.c/.h files.

AN3270 AES block processing

Doc ID 17919 Rev 2 17/23

3.3 Using the software implementation of AES chaining modes
An example is available in the firmware associated with this application note to show you
how to add a chaining mode implementation to your application.

The example performs both encryption and decryption of a text entered through
hyperterminal (or a compatible communication software) using the available chaining
modes. The key is stored in the data EEPROM of the STM8L16x device.

Figure 14. below gives a screenshot of encryption/decryption selection.

Figure 14. Encryption / decryption selection

AES block processing AN3270

18/23 Doc ID 17919 Rev 2

Figure 15. is a screenshot of block chaining mode selection.

Figure 15. Chaining mode selection

The text received through the RS232 port is saved in a static buffer. The end of transmission
occurs when the maximum buffer size has been reached or the carriage return (enter key)
has been pressed.

The maximum buffer size is defined in main.h:

#define RX_BUFFER_SIZE (uint16_t) 128

The following code listing (available in stm8l15x_it.c) shows how the end of transmission is
detected:

if ((RxCounter == RX_BUFFER_SIZE) || (RxBuffer[RxCounter-1] == 0x0D))

 {

 /* Disable the Read data register not empty interrupt */

 USART_ITConfig(EVAL_COM1, USART_IT_RXNE, DISABLE);

/* Max buffer size had been reached or carriage return had been pressed */

 TransferComplete = 1;

........

.......

If the received buffer size is not a multiple of 128-bit, it is padded with the pre-defined pad
character. it is defined in main.h

#define PAD_CHARACTER (uint8_t) 0x00

The BufferInit() function (in main.c) is available for padding purposes. It checks the size of
the entered text and then pads it if necessary.

AN3270 AES block processing

Doc ID 17919 Rev 2 19/23

/* Pad the buffer with defined pad character */

 while(counter < (nbrblocks + 1) * 16)

 {

 pText[counter] = PAD_CHARACTER;

 counter++;

 }

Another buffer is created dynamically to store the result of encryption or decryption
(depending on the user selection)

if (CryptoMode == CRYPTO_MODE_ENCRYPTION)

 {

 /* Pad the received buffer */

 BufferInit(RxBuffer, &TextSize);

 /* PlainText points at the received buffer */

 PlainText = RxBuffer;

 /* Allocate memory space */

 CipherText = (uint8_t*) malloc(TextSize);

......

......

 else

 {

 /* Pad the received buffer */

 BufferInit(RxBuffer, &TextSize);

 /* CipherText points at the received buffer */

 CipherText = RxBuffer1;

 /* Allocate memory space */

 PlainText = (uint8_t*) malloc(TextSize);

......

......

Once the input text is encrypted or decrypted, both plain text and cipher text are displayed.
Plain text is displayed in ASCII format and the cipher text is displayed in both ASCII and hex
format (because cipher text may include non-printable characters).

AES block processing AN3270

20/23 Doc ID 17919 Rev 2

Figure 16. shows an example of the display of typed text, plain text and cipher text (ASCII
and hex formats).

Figure 16. Encryption/Decryption result display

3.4 Some recommendations
The firmware implementation of the AES chaining modes provided with this application note
is intended to be used as a starting-point. For many applications, this firmware may be used
as is. However, for applications with tough constraints in terms of code size and/or execution
speed, this firmware may be tailored and simplified to cover only the required features. Refer
to the AES section in the microcontroller’s reference manual RM0031 for more details.

The Direct Memory Access (DMA) can be used to handle input and output phases for better
performance and free the CPU for other tasks

The encryption key can be stored and protected in EEPROM data memory. Refer to the
“Flash program memory and data EEPROM” section in the microcontroller’s reference
manual RM0031.

AN3270 Conclusion

Doc ID 17919 Rev 2 21/23

4 Conclusion

This application note gives an introduction to the AES hardware accelerator embedded in
STM8L16x microcontrollers which can be used for data encryption/decryption with minimal
CPU load and memory usage. The main operating modes have been presented in Section 1
on page 3.

A description has been given of the software available for the AES with this application note.
Section 2 on page 13 described the peripheral driver with an abstraction layer for easy use
of the peripheral, Section 3 on page 15 described a set of examples that can be used as a
quick start for developing your own code and an in-depth example using AES block chaining
modes.

Revision history AN3270

22/23 Doc ID 17919 Rev 2

5 Revision history

Table 1. Document revision history

Date Revision Changes

02-Dec-2010 1 Initial release.

01-Jul-2011 2 Updated figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, and 16.

AN3270

Doc ID 17919 Rev 2 23/23

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any

time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such

third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING

APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE

GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any

liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 AES hardware accelerator operation modes
	Figure 1. AES hardware accelerator
	1.1 AES encryption mode
	Figure 2. AES hardware accelerator: encryption mode
	Figure 3. AES algorithm in encryption mode

	1.2 Key derivation mode
	Figure 4. AES hardware accelerator: key derivation mode
	Figure 5. AES algorithm in key derivation mode

	1.3 AES decryption mode
	Figure 6. AES hardware accelerator: decryption mode
	Figure 7. AES algorithm in decryption mode

	1.4 Key derivation and decryption mode
	Figure 8. AES hardware accelerator: key derivation and decryption mode
	Figure 9. AES algorithm in key derivation and decryption mode

	1.5 Decryption mode vs. key derivation and decryption mode

	2 AES peripheral driver
	Figure 10. AES encryption mode: implementation using AES peripheral driver

	3 AES block processing
	3.1 AES block padding
	Figure 11. Message padding with “00”

	3.2 AES block chaining: CBC as an example
	Figure 12. Encryption using Cipher Block Chaining (CBC) mode
	Figure 13. Decryption using Cipher Block Chaining (CBC) mode

	3.3 Using the software implementation of AES chaining modes
	Figure 14. Encryption / decryption selection
	Figure 15. Chaining mode selection
	Figure 16. Encryption/Decryption result display

	3.4 Some recommendations

	4 Conclusion
	5 Revision history
	Table 1. Document revision history

