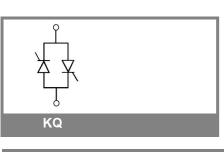
SK 120 KQ

Antiparallel Thyristor

Module

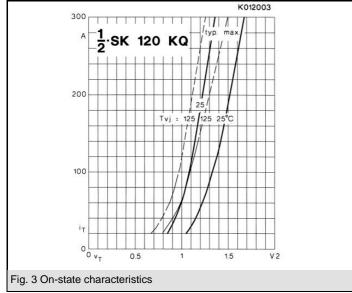
SK 120 KQ

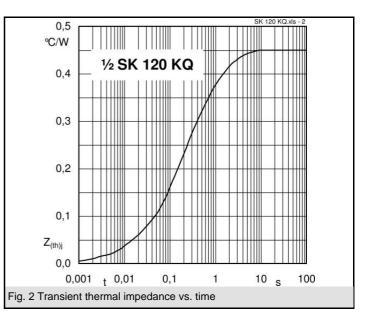
Preliminary Data

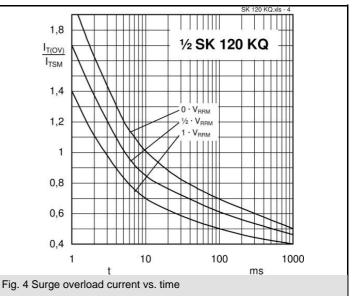

Features

- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

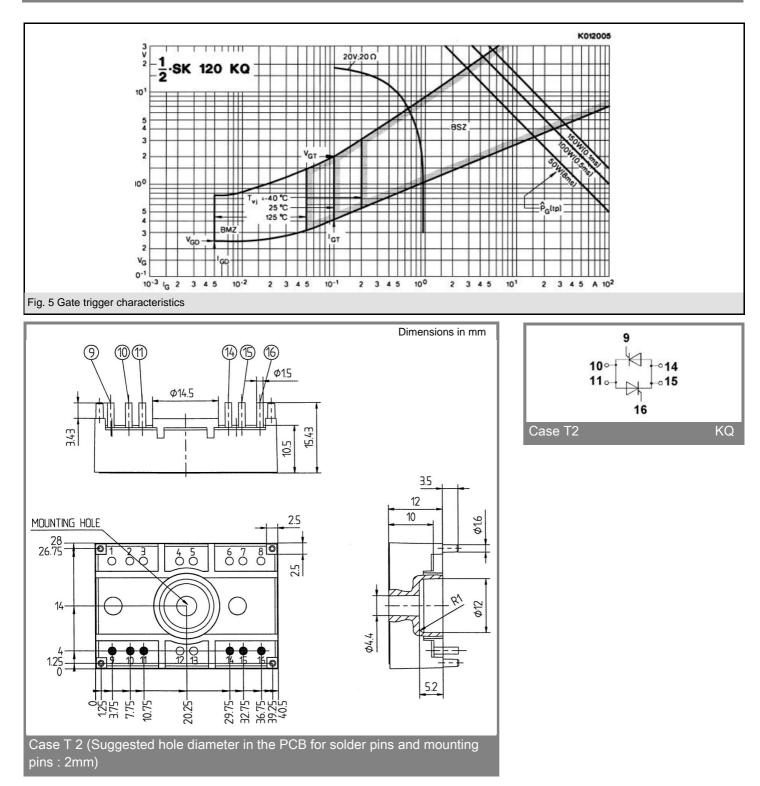
Typical Applications


- Soft starters
- Light control (studios, theaters...)
- Temperature control


V _{RSM}	V _{RRM} , V _{DRM}	I _{RMS} = 134 A (full conduction)	
V	V	(T _s = 85 °C)	
900	800	SK 100 KQ 08	
1300	1200	SK 100 KQ 12	
1700 1600		SK 100 KQ 16	
Symbol	Conditions	Values	Units
I _{RMS}	W1C ; sin. 180° ; T _s = 100	°C 94	А
	W1C ; sin. 180° ; T _s = 85°0	C 134	А
I _{TSM}	T _{vi} = 25 °C ; 10 ms	2000	Α
_	T _{vi} = 125 °C ; 10 ms	1800	А
i²t	T _{vi} = 25 °C ; 8,310 ms	20000	A²s
	T _{vj} = 125 °C ; 8,310 ms	16200	A²s
V _T	T _{vi} = 25 °C, I _T = 300 A	max. 1,85	V
V _{T(TO)}	T _{vi} = 125 °C	max. 0,9	V
r _T	T _{vi} = 125 °C	max. 3,5	mΩ
I _{DD} ;I _{RD}	$T_{vj} = 25 \text{ °C}, V_{RD} = V_{RRM}$	max. 1	mA
	$T_{vj} = 125 \text{ °C}, V_{RD} = V_{RRM}$	max. 20	mA
t _{gd}	$T_{vj} = 25 \text{ °C}, I_G = 1 \text{ A}; di_G/dt$	t= 1 A/µs 1	μs
t _{gr}	V _D = 0,67 *V _{DRM}	2	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	1000	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f= 5060 Hz	100	A/µs
t _q	T _{vj} = 125 °C; typ.	80	μs
I _H	T _{vj} = 25 °C; typ. / max.	100 / 200	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω; typ	o. / max. 200 / 500	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 2	V
I _{GT}	T _{vj} = 25 °C; d.c.	min. 100	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 5	mA
R _{th(j-s)}	cont. per thyristor	0,45	K/W
	sin 180° per thyristor	0,47	K/W
R _{th(j-s)}	cont. per W1C	0,225	K/W
	sin 180° per W1C	0,235	K/W
T _{vj}		-40 +125	°C
T _{stg}		-40 +125	°C
T _{solder}	terminals, 10s	260	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 r		V~
M _s	Mounting torque to heatsin	ık 2,0	Nm
M _t			Nm
а			m/s²
m		19	g
Case	SEMITOP [®] 2	Т 2	



SK 120 KQ



SK 120 KQ

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.