# LMV710,LMV711,LMV715

LMV710/LMV711/LMV715 Low Power, RRIO Operational Amplifiers with High

**Output Current Drive and Shutdown Option** 



Literature Number: SNOS519I



<10 us

# LMV710/LMV711/LMV715 Low Power, RRIO Operational Amplifiers with High Output **Current Drive and Shutdown Option**

### **General Description**

National Semiconductor

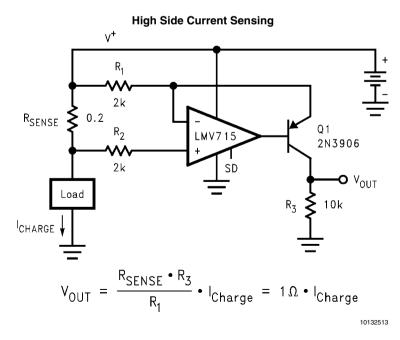
The LMV710/LMV711/LMV715 are BiCMOS operational amplifiers with a CMOS input stage. These devices have greater than RR input common mode voltage range, rail-to-rail output and high output current drive. They offer a bandwidth of 5 MHz and a slew rate of 5 V/µs.

On the LMV711/LMV715, a separate shutdown pin can be used to disable the device and reduces the supply current to 0.2 µA (typical). They also feature a turn on time of less than 10 µs. It is an ideal solution for power sensitive applications, such as cellular phone, pager, palm computer, etc. In addition, once the LMV715 is in shutdown the output will be "Tristated".

The LMV710 is offered in the space saving 5-Pin SOT23 Tinv package. The LMV711/LMV715 are offered in the space saving 6-Pin SOT23 Tiny package.

The LMV710/LMV711/LMV715 are designed to meet the demands of low power, low cost, and small size required by cellular phones and similar battery powered portable electronics.

### **Features**


(For 5V supply, typical unless otherwise noted).

- Low offset voltage 3 mV, max -Gain-bandwidth product 5 MHz, typ
  - -
  - Slew rate 5 V/µs, typ 5-Pin and 6-Pin SOT23 Space saving packages
  - Turn on time from shutdown
  - Industrial temperature range
  - -40°C to +85°C Supply current in shutdown mode 0.2 µA, typ
  - Guaranteed 2.7V and 5V performance
  - Unity gain stable
  - -Rail-to-rail input and output
  - Capable of driving  $600\Omega$  load

# Applications

- Wireless phones
- GSM/TDMA/CDMA power amp control
- AGC, RF power detector
- Temperature compensation
- Wireless LAN
- Bluetooth
- HomeRF -





# Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| ESD Tolerance (Note 2)      |                  |
|-----------------------------|------------------|
| Machine Model               | 100V             |
| Human Body Model            | 2000V            |
| Differential Input Voltage  | ± Supply Voltage |
| Voltage at Input/Output Pin | (V+) + 0.4V      |
|                             | (V⁻) – 0.4V      |
| Supply Voltage (V+ - V -)   | 5.5V             |
| Output Short Circuit to V+  | (Note 3)         |
| Output Short Circuit to V-  | (Note 4)         |

| Current at Input Pin                      | ± 10 mA        |
|-------------------------------------------|----------------|
| Mounting Temp.                            |                |
| Infrared or Convection (20 sec)           | 235°C          |
| Storage Temperature Range                 | –65°C to 150°C |
| Junction Temperature (T <sub>JMAX</sub> ) | 150°C          |
| (Note 5)                                  |                |

# Operating Ratings (Note 1)

| Supply Voltage                        | 2.7V to 5.0V  |
|---------------------------------------|---------------|
| Temperature Range                     | –40°C to 85°C |
| Thermal Resistance (θ <sub>JA</sub> ) |               |
| MF05A Package, 5-Pin SOT23            | 265 °C/W      |
| MF06A package, 6-Pin SOT23            | 265 °C/W      |

# **2.7V Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}$ C. V<sup>+</sup> = 2.7V, V<sup>-</sup> = 0V, V<sub>CM</sub> = 1.35V and R<sub>L</sub> > 1 M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol              | Parameter                                                | Condition                                            | Typ<br>(Note 6) | Limits<br>(Note 7)  | Units     |
|---------------------|----------------------------------------------------------|------------------------------------------------------|-----------------|---------------------|-----------|
| V <sub>OS</sub>     | Input Offset Voltage                                     | $V_{CM} = 0.85V$ and $V_{CM} = 1.85V$                | 0.4             | 3<br>3.2            | mV<br>max |
| I <sub>B</sub>      | Input Bias Current                                       |                                                      | 4               |                     | pA        |
| CMRR                | Common Mode Rejection Ratio                              | $0 \le V_{CM} \le 2.7V$                              | 75              | 50<br><b>45</b>     | dB<br>min |
| PSRR                | Power Supply Rejection Ratio                             | $2.7V \le V^+ \le 5V,$<br>$V_{CM} = 0.85V$           | 110             | 70<br>68            | dB<br>min |
|                     |                                                          | $2.7V \le V^+ \le 5V,$<br>$V_{CM} = 1.85V$           | 95              | 70<br>68            | dB<br>min |
| V <sub>CM</sub>     | Input Common-Mode Voltage Range                          | For CMRR ≥ 50 dB                                     | -0.3<br>3       | -0.2<br>2.9         | v         |
| I <sub>SC</sub>     | Output Short Circuit Current                             | Sourcing<br>V <sub>O</sub> = 0V                      | 28              | 15<br><b>12</b>     | mA<br>min |
|                     |                                                          | Sinking<br>$V_0 = 2.7V$                              | 40              | 25<br><b>22</b>     | mA<br>min |
| Vo                  | Output Swing                                             | $R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{V}$ | 2.68            | 2.62<br><b>2.60</b> | V<br>min  |
|                     |                                                          |                                                      | 0.01            | 0.12<br><b>0.15</b> | V<br>max  |
|                     |                                                          | $R_{L} = 600\Omega$ to 1.35V                         | 2.55            | 2.52<br><b>2.50</b> | V<br>min  |
|                     |                                                          |                                                      | 0.05            | 0.23<br><b>0.30</b> | V<br>max  |
| V <sub>O</sub> (SD) | Output Voltage Level in<br>Shutdown Mode (LMV711 only)   |                                                      | 50              | 200                 | mV        |
| I <sub>O</sub> (SD) | Output Leakage Current in<br>Shutdown Mode (LMV715 Only) |                                                      | 1               |                     | рA        |
| C <sub>O</sub> (SD) | Output Capacitance in<br>Shutdown Mode (LMV715 Only)     |                                                      | 32              |                     | pF        |
| I <sub>S</sub>      | Supply Current                                           | On Mode                                              | 1.22            | 1.7<br><b>1.9</b>   | mA<br>max |
|                     |                                                          | Shutdown Mode, V <sub>SD</sub> = 0V                  | 0.002           | 10                  | μA        |

| Symbol          | Parameter                    | Condition                      | Typ<br>(Note 6) | Limits<br>(Note 7) | Units       |
|-----------------|------------------------------|--------------------------------|-----------------|--------------------|-------------|
| A <sub>V</sub>  | Large Signal Voltage         | Sourcing                       | 115             | 80                 | dB          |
|                 |                              | $R_{L} = 10 \text{ k}\Omega$   |                 | 76                 | min         |
|                 |                              | V <sub>O</sub> = 1.35V to 2.3V |                 |                    |             |
|                 |                              | Sinking                        | 113             | 80                 | dB          |
|                 |                              | R <sub>L</sub> = 10 kΩ         |                 | 76                 | min         |
|                 |                              | V <sub>O</sub> = 0.4V to 1.35V |                 |                    |             |
|                 |                              | Sourcing                       | 110             | 80                 | dB          |
|                 |                              | R <sub>L</sub> = 600Ω          |                 | 76                 | min         |
|                 |                              | V <sub>O</sub> = 1.35V to 2.2V |                 |                    |             |
|                 |                              | Sinking                        | 100             | 80                 | dB          |
|                 |                              | R <sub>L</sub> = 600Ω          |                 | 76                 | min         |
|                 |                              | V <sub>O</sub> = 0.5V to 1.35V |                 |                    |             |
| SR              | Slew Rate                    | (Note 8)                       | 5               |                    | V/µs        |
| GBWP            | Gain-Bandwidth Product       |                                | 5               |                    | MHz         |
| φ <sub>m</sub>  | Phase Margin                 |                                | 60              |                    | Deg         |
| T <sub>ON</sub> | Turn-on Time from Shutdown   |                                | <10             |                    | μs          |
| V <sub>SD</sub> | Shutdown Pin Voltage Range   | On Mode                        | 1.5 to 2.7      | 2.4 to 2.7         | V           |
|                 |                              | Shutdown Mode                  | 0 to 1          | 0 to 0.8           | V           |
| e <sub>n</sub>  | Input-Referred Voltage Noise | f = 1 kHz                      | 20              |                    | _nV<br>1√Hz |
|                 |                              |                                |                 |                    | √Hz         |

# **3.2V Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}$ C. V<sup>+</sup> = 3.2V, V<sup>-</sup> = 0V, V<sub>CM</sub> = 1.6V. **Boldface** limits apply at the temperature extremes.

| Symbol | Parameter    | Conditions              | Тур      | Limit    | Units |
|--------|--------------|-------------------------|----------|----------|-------|
|        |              |                         | (Note 6) | (Note 7) |       |
| Vo     | Output Swing | I <sub>O</sub> = 6.5 mA | 3.0      | 2.95     | V     |
| -      |              |                         |          | 2.92     | min   |
|        |              |                         | 0.01     | 0.18     | V     |
|        |              |                         |          | 0.25     | max   |

# **5V Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ . V<sup>+</sup> = 5V, V<sup>-</sup> = 0V, V<sub>CM</sub> = 2.5V, and R<sub>L</sub> > 1 M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol          | Parameter                       | Condition                                    | Typ<br>(Note 6) | Limits<br>(Note 7) | Units     |
|-----------------|---------------------------------|----------------------------------------------|-----------------|--------------------|-----------|
| V <sub>OS</sub> | Input Offset Voltage            | $V_{CM} = 0.85V$ and $V_{CM} = 1.85V$        | 0.4             | 3<br><b>3.2</b>    | mV<br>max |
| I <sub>B</sub>  | Input Bias Current              |                                              | 4               |                    | pА        |
| CMRR            | Common Mode Rejection Ratio     | $0V \le V_{CM} \le 5V$                       | 70              | 50<br><b>48</b>    | dB<br>min |
| PSRR            | Power Supply Rejection Ratio    | $2.7V \le V^+ \le 5V,$<br>$V_{CM} = 0.85V$   | 110             | 70<br><b>68</b>    | dB<br>min |
|                 |                                 | $2.7V \le V_{+} \le 5V,$<br>$V_{CM} = 1.85V$ | 95              | 70<br><b>68</b>    | dB<br>min |
| V <sub>CM</sub> | Input Common-Mode Voltage Range | For CMRR ≥ 50 dB                             | -0.3            | -0.2               | V         |
|                 |                                 |                                              | 5.3             | 5.2                | v         |

www.national.com

LMV710/LMV711/LMV715

# LMV710/LMV711/LMV715

| Symbol              | Parameter                                                | Condition                                           | Typ<br>(Note 6) | Limits<br>(Note 7) | Units       |
|---------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------|--------------------|-------------|
| I <sub>sc</sub>     | Output Short Circuit Current                             | Sourcing                                            | 35              | 25                 | mA          |
| 30                  |                                                          | $V_{O} = 0V$                                        |                 | 21                 | min         |
|                     |                                                          | Sinking                                             | 40              | 25                 | mA          |
|                     |                                                          | $V_0 = 5V$                                          |                 | 21                 | min         |
| Vo                  | Output Swing                                             | $R_L = 10 \text{ k}\Omega \text{ to } 2.5 \text{V}$ | 4.98            | 4.92               | V           |
| -                   |                                                          | L                                                   |                 | 4.90               | min         |
|                     |                                                          |                                                     | 0.01            | 0.12               | V           |
|                     |                                                          |                                                     |                 | 0.15               | max         |
|                     |                                                          | $R_L = 600\Omega$ to 2.5V                           | 4.85            | 4.82               | V           |
|                     |                                                          |                                                     |                 | 4.80               | min         |
|                     |                                                          |                                                     | 0.05            | 0.23               | V           |
|                     |                                                          |                                                     |                 | 0.3                | max         |
| V <sub>O</sub> (SD) | Output Voltage Level in                                  |                                                     | 50              | 200                | mV          |
|                     | Shutdown Mode (LMV711 only)                              |                                                     |                 |                    |             |
| I <sub>O</sub> (SD) | Output Leakage Current in<br>Shutdown Mode (LMV715 Only) |                                                     | 1               |                    | рA          |
| C <sub>O</sub> (SD) | Output Capacitance in                                    |                                                     | 32              |                    | pF          |
| -0()                | shutdown Mode (LMV715 Only)                              |                                                     |                 |                    | P.          |
| I <sub>s</sub>      | Supply Current                                           | On Mode                                             | 1.17            | 1.7                | mA          |
|                     |                                                          |                                                     |                 | 1.9                | max         |
|                     |                                                          | Shutdown Mode                                       | 0.2             | 10                 | μA          |
| A <sub>V</sub>      | Large Signal Voltage Gain                                | Sourcing                                            | 123             | 80                 | dB          |
|                     |                                                          | $R_L = 10 \ k\Omega$                                |                 | 76                 | min         |
|                     |                                                          | $V_0 = 2.5V$ to 4.6V                                |                 |                    |             |
|                     |                                                          | Sinking                                             | 120             | 80                 | dB          |
|                     |                                                          | $R_L = 10 \ k\Omega$                                |                 | 76                 | min         |
|                     |                                                          | $V_0 = 0.4V$ to 2.5V                                |                 |                    |             |
|                     |                                                          | Sourcing                                            | 110             | 80                 | dB          |
|                     |                                                          | R <sub>L</sub> = 600Ω                               |                 | 76                 | min         |
|                     |                                                          | $V_0 = 2.5V$ to $4.5V$                              |                 |                    |             |
|                     |                                                          | Sinking                                             | 118             | 80                 | dB          |
|                     |                                                          | R <sub>L</sub> = 600Ω                               |                 | 76                 | min         |
|                     |                                                          | $V_{0} = 0.5V$ to 2.5V                              |                 |                    |             |
| SR                  | Slew Rate                                                | (Note 8)                                            | 5               |                    | V/µs        |
| GBWP                | Gain-Bandwidth Product                                   |                                                     | 5               |                    | MHz         |
| φ <sub>m</sub>      | Phase Margin                                             |                                                     | 60              |                    | Deg         |
| T <sub>ON</sub>     | Turn-on Time from Shutdown                               |                                                     | <10             |                    | μs          |
| V <sub>SD</sub>     | Shutdown Pin Voltage Range                               | On Mode                                             | 2 to 5          | 2.4 to 5           | V           |
|                     |                                                          | Shutdown Mode                                       | 0 to 1.5        | 0 to 0.8           |             |
| e <sub>n</sub>      | Input-Referred Voltage Noise                             | f = 1 kHz                                           | 20              |                    | _nV<br>1√Hz |
|                     |                                                          |                                                     |                 |                    | 1∕Hz        |

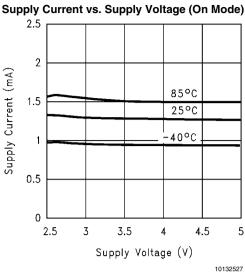
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, 1.5 k $_{\Omega}$  in series with 100 pF. Machine model, 0  $_{\Omega}$  in series with 100 pF.

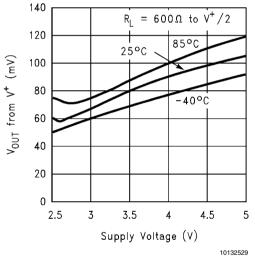
Note 3: Shorting circuit output to V+ will adversely affect reliability.

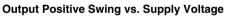
Note 4: Shorting circuit output to V- will adversely affect reliability.

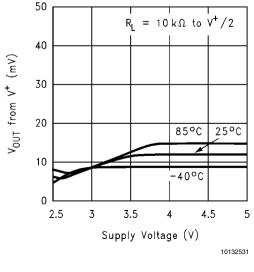
**Note 5:** The maximum power dissipation is a function of  $T_{J(MAX)}$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(MAX)} - T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly into a PC board.

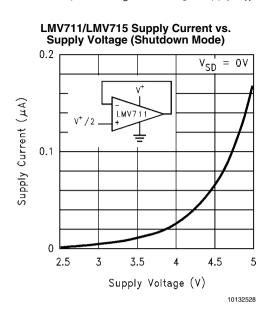

Note 6: Typical values represent the most likely parametric norm.

Note 7: All limits are guaranteed by testing or statistical analysis.

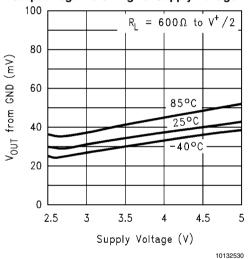

Note 8: Number specified is the slower of the positive and negative slew rates.


# LMV710/LMV711/LMV715

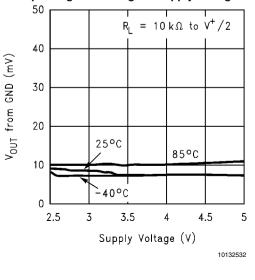

# Supply Current vs. Supply Voltage (On Mode) LMV711/LMV715 Supply Current vs. Supply Voltage (Shutdown Mode) 2.5 0.2

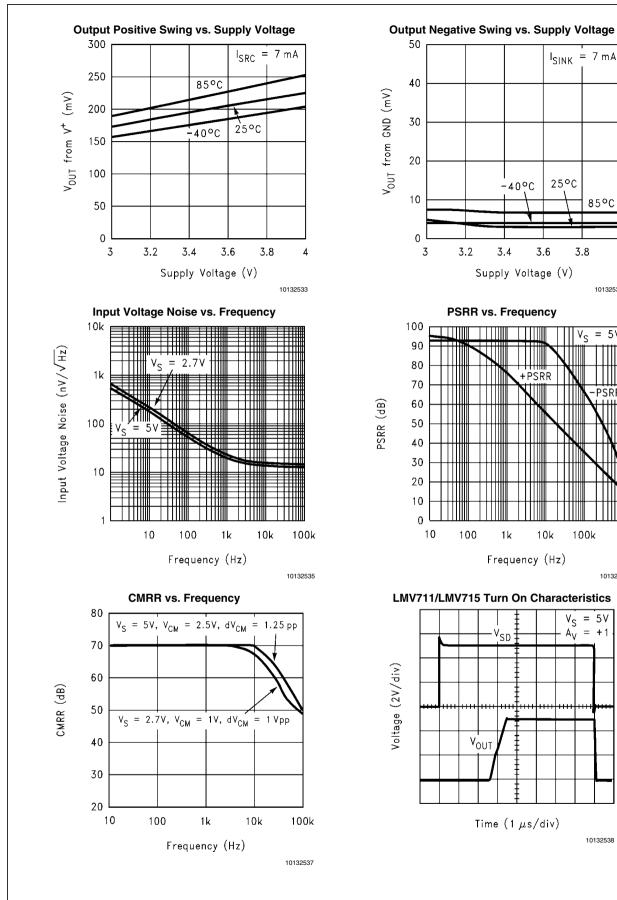



**Output Positive Swing vs. Supply Voltage** 






Output Negative Swing vs. Supply Voltage

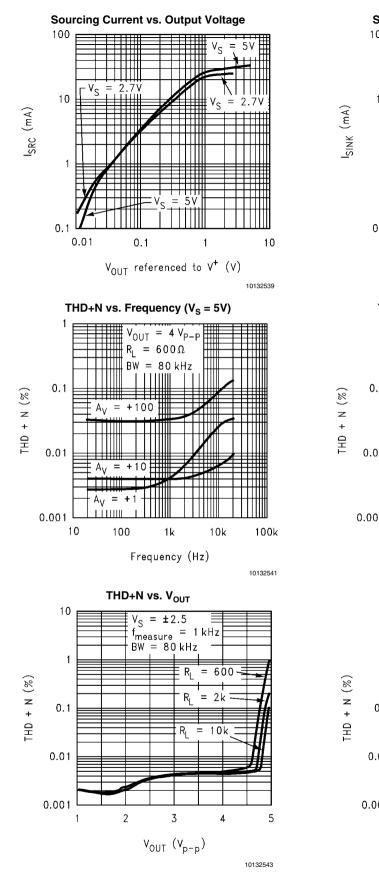


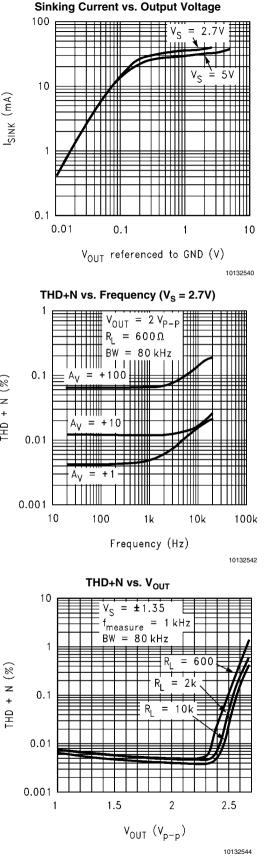
Output Negative Swing vs. Supply Voltage

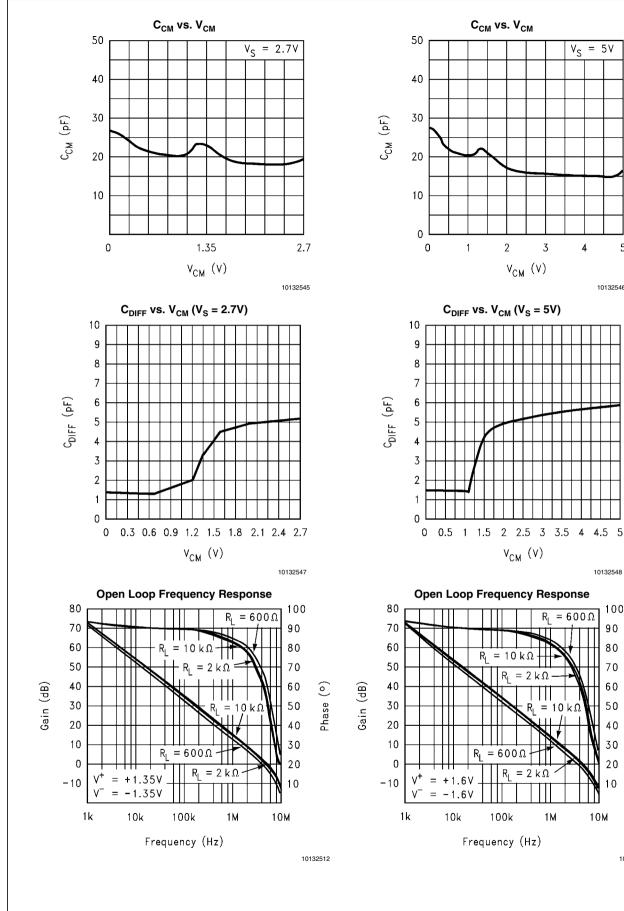




1


1M


10132536

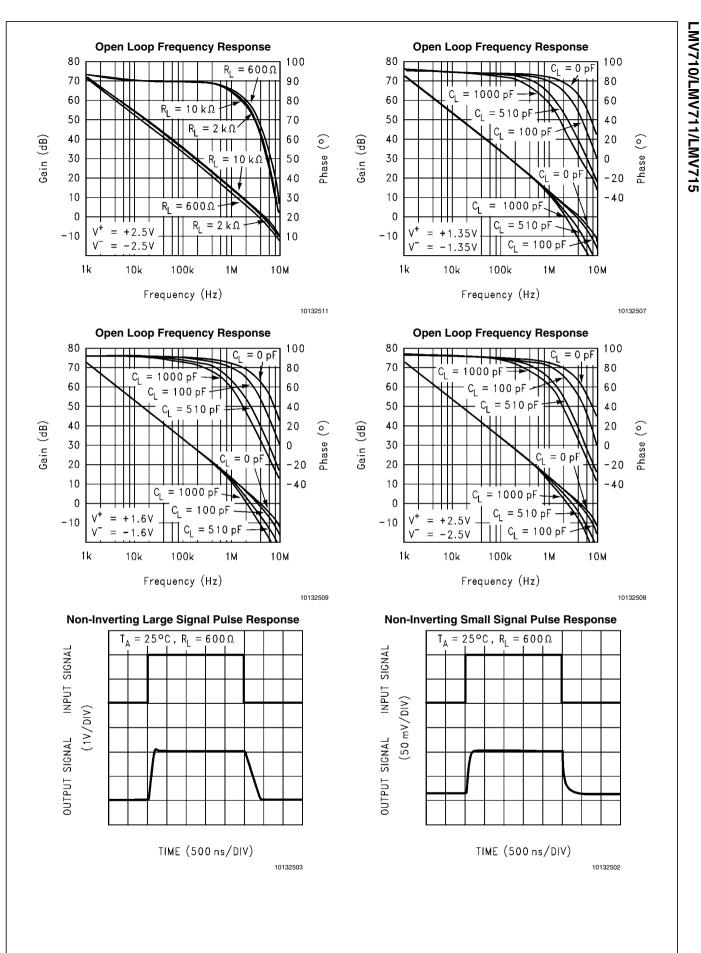

10132534

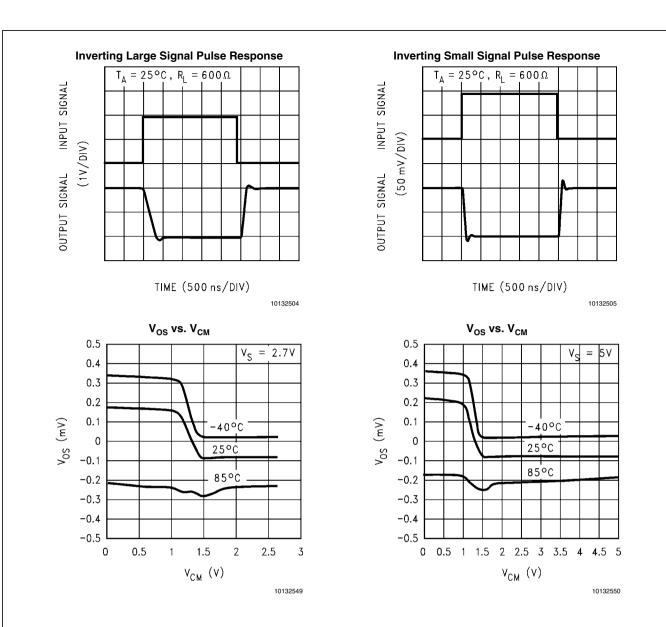
= 5٧











 $V_{\rm S} = 5V$ 

10M

Phase (°)

= 600Ω





# **Application Information**

#### **1.0 SUPPLY BYPASSING**

The application circuits in this datasheet do not show the power supply connections and the associated bypass capacitors for simplification. When the circuits are built, it is always required to have bypass capacitors. Ceramic disc capacitors (0.1 µF) or solid tantalum (1 µF) with short leads, and located close to the IC are usually necessary to prevent interstage coupling through the power supply internal impedance. Inadequate bypassing will manifest itself by a low frequency oscillation or by high frequency instabilities. Sometimes, a 10 µF (or larger) capacitor is used to absorb low frequency variations and a smaller 0.1 µF disc is paralleled across it to prevent any high frequency feedback through the power supply lines.

#### 2.0 SHUTDOWN MODE

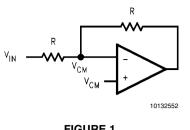
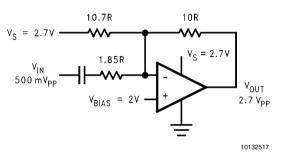
The LMV711/LMV715 have a shutdown pin. To conserve battery life in portable applications, they can be disabled when the shutdown pin voltage is pulled low. For LMV711 during shutdown mode, the output stays at about 50 mV from the lower rail, and the current drawn from the power supply is 0.2 µA (typical). This makes the LMV711 an ideal solution for power sensitive applications. For the LMV715 during shutdown mode, the output will be "Tri-stated".

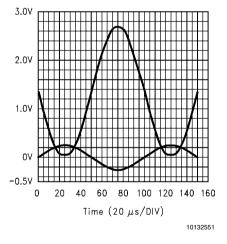
The shutdown pin should never be left unconnected. In applications where shutdown operation is not needed and the LMV711 or LMV715 is used, the shutdown pin should be connected to V+. Leaving the shutdown pin floating will result in an undefined operation mode and the device may oscillate between shutdown and active modes.

#### 3.0 RAIL-TO-RAIL INPUT

The rail-to-rail input is achieved by using paralleled PMOS and NMOS differential input stages. (See Simplified Schematics in this datasheet). When the common mode input voltage changes from ground to the positive rail, the input stage goes through three modes. First, the NMOS pair is cutoff and the PMOS pair is active. At around 1.4V, both PMOS and NMOS pairs operate, and finally the PMOS pair is cutoff and NMOS pair is active. Since both input stages have their own offset voltage (V<sub>OS</sub>), the offset of the amplifier becomes a function of the common-mode input voltage. See curves for  $V_{OS}$  vs.  $V_{CM}$  in curve section.

As shown in the curve, the V<sub>OS</sub> has a crossover point at 1.4V above V-. Proper design must be done in both DC and AC coupled applications to avoid problems. For large input signals that include the V<sub>OS</sub> crossover point in their dynamic range, it will cause distortion in the output signal. One way to avoid such distortion is to keep the signal away from the crossover point. For example, in a unity gain buffer configuration and with V<sub>S</sub> = 5V, a 3V peak-to-peak signal center at 2.5V will contain input-crossover distortion. To avoid this, the input signal should be centered at 3.5V instead. Another way to avoid large signal distortion is to use a gain of -1 circuit which avoids any voltage excursions at the input terminals of the amplifier. See Figure 1. In this circuit, the common mode DC voltage (V<sub>CM</sub>) can be set at a level away from the V<sub>OS</sub> crossover point.

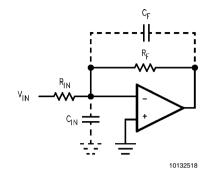


FIGURE 1.

When the input is a small signal and this small signal falls inside the V<sub>OS</sub> transition range, the gain, CMRR and some other parameters will be degraded. To resolve this problem, the small signal should be placed such that it avoids the V<sub>OS</sub> crossover point.

To achieve maximum output swing, the output should be biased at mid-supply. This is normally done by biasing the input at mid-supply. But with supply voltage range from 2V to 3.4V, the input of the op amp should not be biased at mid-supply because of the transition of the V<sub>OS</sub>. Figure 2 shows an example of how to get away from the V<sub>OS</sub> crossover point and maintain a maximum swing with a 2.7V supply. Figure 3 shows the waveforms of  $V_{IN}$  and  $V_{OUT}$ .



#### **FIGURE 2.**




#### FIGURE 3.

The inputs can be driven 300 mV beyond the supply rails without causing phase reversal at the output. However, the inputs should not be allowed to exceed the maximum ratings.

#### 4.0 COMPENSATION OF INPUT CAPACITANCE

In the application (*Figure 4*) where a large feedback resistor is used, the feedback resistor can react with the input capacitance of the op amp and introduce an additional pole to the close loop frequency response.

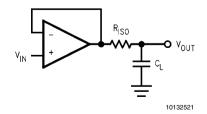


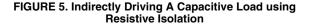
#### FIGURE 4. Cancelling the Effect of Input Capacitance

This pole occurs at frequency f<sub>n</sub>, where

$$f_{P} = \frac{1}{2\pi (R_{IN} || R_{F}) C_{IN}}$$

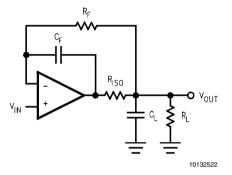
Any stray capacitance due to external circuit board layout, any source capacitance from transducer or photodiode connected to the summing node will also be added to the input capacitance. If  $f_p$  is less than or close to the unity-gain bandwidth (5 MHz) of the op amp, the phase margin of the loop is reduced and can cause the system to be unstable.


To avoid this problem, make sure that  $f_p$  occurs at least 2 octaves beyond the expected –3 dB frequency corner of the close loop frequency response. If not, a feedback capacitor  $C_F$  can be placed in parallel with  $R_F$  such that


$$\frac{1}{2\pi R_{\rm F} C_{\rm F}} = \frac{1}{2\pi (R_{\rm IN} || R_{\rm F}) (C_{\rm F} + C_{\rm IN})}$$

The paralleled  $R_F$  and  $C_F$  introduce a zero, which cancels the effect from the pole.

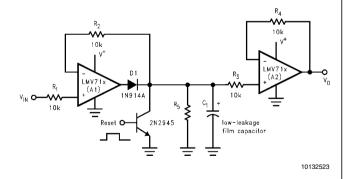
#### **5.0 CAPACITIVE LOAD TOLERANCE**


The LMV710/LMV711/ LMV715 can directly drive 200 pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers. The combination of the amplifier's output impedance and the capacitive load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, circuit in *Figure 5* can be used.





In *Figure 5*, the isolation resistor  $R_{ISO}$  and the load capacitor  $C_L$  form a pole to increase stability by adding more phase margin to the overall system. The desired performance depends on the value of  $R_{ISO}$ . The bigger the  $R_{ISO}$  resistor value, the more stable  $V_{OUT}$  will be. But the DC accuracy is not great when the  $R_{ISO}$  gets bigger. If there were a load resistor in *Figure 5*, the output would be voltage divided by  $R_{ISO}$  and the load resistor.


The circuit in *Figure 6* is an improvement to the one in *Figure 5* because it provides DC accuracy as well as AC stability. In this circuit,  $R_F$  provides the DC accuracy by using feed-forward techniques to connect  $V_{IN}$  to  $R_L$ .  $C_F$  and  $R_{ISO}$  serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Increased capacitive drive is possible by increasing the value of  $C_F$ . This in turn will slow down the pulse response.



#### FIGURE 6. Indirectly Driving A Capacitive A Load with DC Accuracy

#### 6.0 APPLICATION CIRCUITS PEAK DETECTOR

Peak detectors are used in many applications, such as test equipment, measurement instrumentation, ultrasonic alarm systems, etc. *Figure 7* shows the schematic diagram of a peak detector using LMV710 or LMV711 or LMV715. This peak detector basically consists of a clipper, a parallel RC network, and a voltage follower.



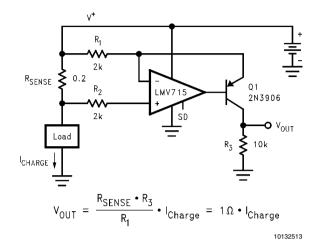
#### FIGURE 7. Peak Detector

The capacitor  $C_1$  is first discharged by applying a positive pulse to the reset transistor. When a positive voltage  $V_{IN}$  is applied to the input, the input voltage is higher than the voltage across  $C_1$ . The output of the op amp goes high and forward biases the diode  $D_1$ . The capacitor  $C_1$  is charged to  $V_{IN}$ . When the input becomes less than the current capacitor voltage, the output of the op amp A1 goes low and the diode

 $D_1$  is reverse biased. This isolates the  $C_1$  and leaves it with the charge equivalent to the peak of the input voltage. The follower prevents unintentional discharging of  $C_1$  by loading from the following circuit.

 $\rm R_5$  and  $\rm C_1$  are properly selected so that the capacitor is charged rapidly to  $\rm V_{IN}.$  During the holding period, the capacitor slowly discharge through  $\rm C_1$ , via leakage of the capacitor and the reverse-biased diode, or op amp bias currents. In any cases the discharging time constant is much larger than the charge time constant. And the capacitor can hold its voltage long enough to minimize the output ripple.

Resistors  $R_2$  and  $R_3$  limit the current into the inverting input of A1 and the non-inverting input of A2 when power is disconnected from the circuit. The discharging current from C<sub>1</sub> during power off may damage the input circuitry of the op amps.


The peak detector can be reset by applying a positive pulse to the reset transistor. The charge on the capacitor is dumped into ground, and the detector is ready for another cycle.

The maximum input voltage to this detector should be less than  $(V^+ - V_D)$ , where  $V_D$  is the forward voltage drop of the diode. Otherwise, the input voltage should be scaled down before applying to the circuit.

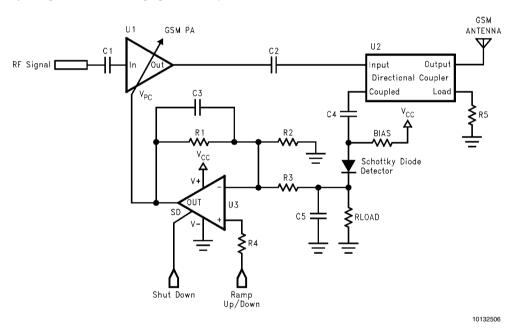
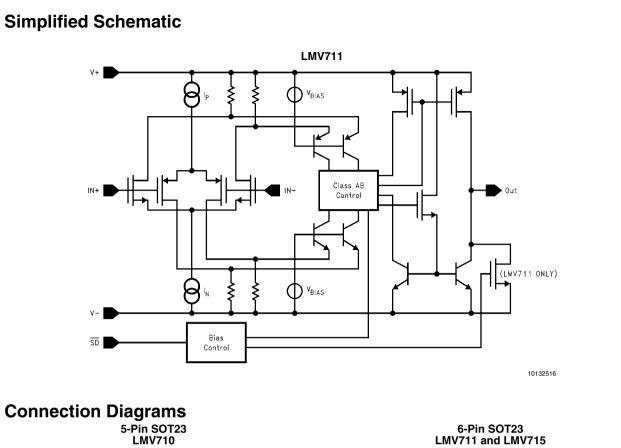
#### HIGH SIDE CURRENT SENSING

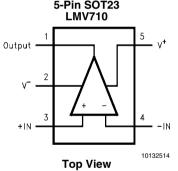
The high side current sensing circuit (*Figure 8*) is commonly used in a battery charger to monitor charging current to pre-

vent over-charging. A sense resistor  $\rm R_{SENSE}$  is connected to the battery directly. This system requires an op amp with rail-to-rail input. The LMV710/LMV711/LMV715 are ideal for this application because its common mode input range can go beyond the positive rail.



#### FIGURE 8. High Side Current Sensing



FIGURE 9. Typical of GSM P.A. Control Loop

#### **GSM POWER AMPLIFIER CONTROL LOOP**

There are four critical sections in the GSM Power Amplifier Control Loop. The class-C  $R_F$  power amplifier provides amplification of the  $R_F$  signal. A directional coupler couples small amount of  $R_F$  energy from the output of the  $R_F$  P. A. to an envelope detector diode. The detector diode senses the signal level and rectifies it to a DC level to indicate the signal strength at the antenna. An op amp is used as an error amplifier to process the diode voltage and ramping voltage. This loop control the power amplifier gain via the op amp and forces the detector diode voltage and ramping voltage to be equal. Power control is accomplished by changing the ramping voltage.

The LMV710/LMV711/LMV715 are well suited as an error amplifier in this application. The LMV711/LMV715 have an extra shutdown pin to switch the op amp to shutdown mode. In shutdown mode, the LMV711/LMV715 consume very low current. The LMV711 provides a ground voltage to the power amplifier control pin  $V_{PC}$ . Therefore, the power amplifier can be turned off to save battery life. The LMV715 output will be "tri-stated" when in shutdown.

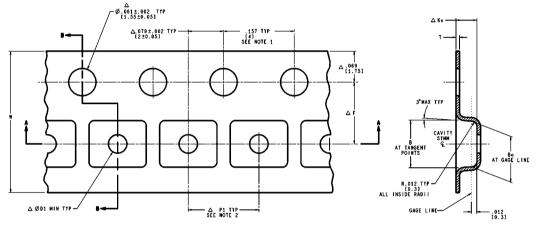


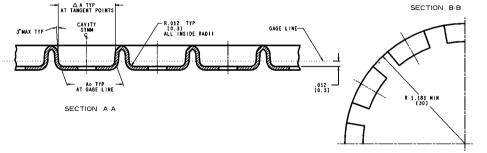


6-Pin SOT23 LMV711 and LMV715 Output V 2 V 2 + IN + IN Top View

# **Ordering Information**

| Package     | Temperature Range<br>Industrial<br>–40°C to +85°C | Packaging Marking | Transport Media        | NSC Drawing |  |
|-------------|---------------------------------------------------|-------------------|------------------------|-------------|--|
| 5-Pin SOT23 | LMV710M5                                          |                   | 1k Units Tape and Reel | MF05A       |  |
| 5-PIN 50125 | LMV710M5X                                         | A48A              | 3k Units Tape and Reel |             |  |
|             | LMV711M6                                          | A47A              | 1k Units Tape and Reel |             |  |
| 6-Pin SOT23 | LMV711M6X                                         | A4/A              | 3k Units Tape and Reel | MF06A       |  |
| 6-PIN 50123 | *LMV715MF                                         | A75A              | 1k Units Tape and Reel |             |  |
|             | *LMV715MFX                                        | A75A              | 3k Units Tape and Reel |             |  |


\*LMV715MF/LMV715MFX are not recommended for new designs with a last time buy date of 12/1/2009.


# SOT-23 Tape and Reel Specification

# **Tape Format**

| Tape Section | # Cavities | Cavity Status | Cover Tape Status |
|--------------|------------|---------------|-------------------|
| Leader       | 0 (min)    | Empty         | Sealed            |
| (Start End)  | 75 (min)   | Empty         | Sealed            |
| Carrier      | 3000       | Filled        | Sealed            |
|              | 1000       | Filled        | Sealed            |
| Trailer      | 125 (min)  | Empty         | Sealed            |
| (Hub End)    | 0 (min)    | Empty         | Sealed            |

# **Tape Dimensions**



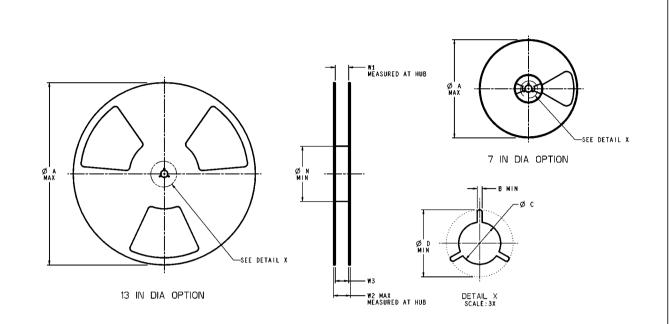


BEND RADIUS NOT TO SCALE 39-1481 (Rev R)

10132555

| TAPE SIZE | DIM<br>A | DIM Ao | DIM<br>B | DIM Bo | DIM<br>F     | DIM<br>Ko       | DIM P1 | DIM<br>T        | DIM<br>W    |
|-----------|----------|--------|----------|--------|--------------|-----------------|--------|-----------------|-------------|
| 8 mm      | .130     | .124   | .130     | .126   | .138 ± .002  | .055 ± .004     | .157   | .008 ± .004     | .315 ± .012 |
|           | (3.3)    | (3.15) | (3.3)    | (3.2)  | (3.5 ± 0.05) | $(1.4 \pm 0.1)$ | (4)    | $(0.2 \pm 0.1)$ | (8 ± 0.3)   |

Note: UNLESS OTHERWISE SPECIFIED


1. CUMULATIVE PITCH TOLERANCE FOR FEEDING HOLES AND CAVITIES (CHIP POCKETS) NOT TO EXCEED .008 IN /  $0.2 \rm mm$  OVER 10 PITCH SPAN.

2. THRU HOLE INSIDE CAVITY IS CENTERED WITHIN CAVITY.

3. SMALLEST ALLOWABLE TAPE BENDING RADIUS: 1.181  $\mbox{IN}/$  30mm.

4. DIMENSIONS WITH  $\Delta$  ARE CRITICAL. DIMENSIONS TO BE ABSOLUTELY INSPECTED.

# **Reel Dimensions**



39-1922 (Rev H)

10132554

| TAPE<br>SIZE | DIM A   | DIM B | DIM C           | DIM D  | DIM N | DIM W1          | DIM W2 | DIM W3<br>(LSL-USL) |
|--------------|---------|-------|-----------------|--------|-------|-----------------|--------|---------------------|
| 8 mm         | 7.00    | .059  | .512 + .020/008 | .795   | 2.165 | .331 + .059/000 | .567   | .311429             |
|              | (177.8) | (1.5) | (13 +0.5/-0.2)  | (20.2) | (55)  | (8.4 + 1.5/0)   | (14.4) | (7.9 - 10.9)        |

Note: UNLESS OTHERWISE SPECIFIED

1. MATERIAL:

POLYSTYRENE/PVC (WITH ANTISTATIC COATING).

OR POLYSTYRENE/PVC, ANTISTATIC

OR POLYSTYRENE/PVC, CONDUCTIVE.

2. CONTROLLING DIMENSION IS MILLIMETER, DIMENSIONS IN INCHES ROUNDED.

3. SURFACE RESISTIVITY: 10<sup>10</sup> OHM/SQ MAXIMUM.

4. ALL OUTPUT REELS SHALL BE UNIFORM IN SHADE.

5. PACKING OF REELS IN CONTAINERS MUST ENSURE NO DAMAGE TO THE REEL.

6. SURFACE FINISH OF THE FLANGES SHALL BE SMOOTH, MATTE FINISH PREFERRED.

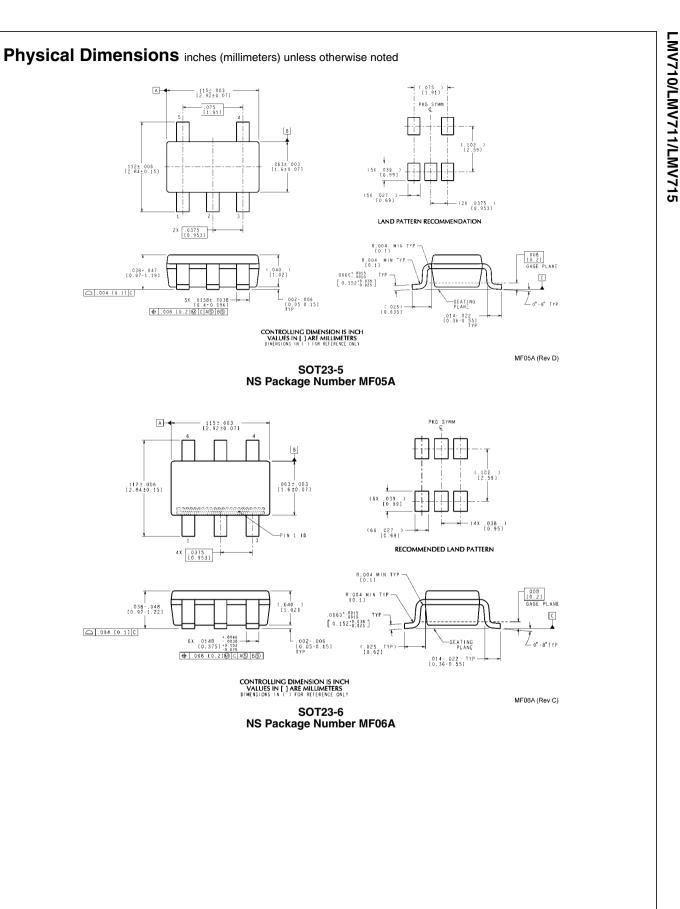
7. ALL EDGES, ESPECIALLY THE TAPE ENTRY EDGES, MUST BE FREE OF BURRS.

8. THE REEL SHOULD NOT WARP IN THE STORAGE TEMPERATURE OF  $67^\circ\text{C}$  MAXIMUM.

9. GLASS TRANSITION TEMPERATURE (T\_g) OF THE PLASTIC REEL SHALL BE LOWER THAN –20°C.

10. ALL GATING FROM THE MOLD MUST BE PROPERLY REMOVED.

11. NO FLASHES ARE TO BE PRESENT ALONG THE PARTING LINES.


12. ALLOWABLE RADIUS FOR CORNERS AND EDGES IS .012 INCHES/0.3 MILLIMETERS MINIMUM.

13. SINK MARKS THAT WILL CAUSE A CHANGE TO THE SPEC-IFIED DIMENSIONS OR SHAPE OF THE REELS ARE NOT AL-LOWED.

14. MOLDED REELS SHALL BE FREE OF COSMETIC DEFECTS SUCH AS VOIDS. FLASHING, EXCESSIVE FLOW MARKS, ETC.

 15. THERE MUST BE NO MISMATCH BETWEEN MATING PARTS.
 16. MOLDED REELS SHALL BE ANTISTATIC COATED OR BLENDED.

17. THE SOT23-5L AND SOT23-6L PACKAGE USE THE 7-INCH REEL.



For more National Semiconductor product information and proven design tools, visit the following Web sites at:

| Products                       |                              | Design Support          |                                |  |  |
|--------------------------------|------------------------------|-------------------------|--------------------------------|--|--|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH® Tools          | www.national.com/webench       |  |  |
| Audio                          | www.national.com/audio       | App Notes               | www.national.com/appnotes      |  |  |
| Clock and Timing               | www.national.com/timing      | Reference Designs       | www.national.com/refdesigns    |  |  |
| Data Converters                | www.national.com/adc         | Samples                 | www.national.com/samples       |  |  |
| Interface                      | www.national.com/interface   | Eval Boards             | www.national.com/evalboards    |  |  |
| LVDS                           | www.national.com/lvds        | Packaging               | www.national.com/packaging     |  |  |
| Power Management               | www.national.com/power       | Green Compliance        | www.national.com/quality/green |  |  |
| Switching Regulators           | www.national.com/switchers   | Distributors            | www.national.com/contacts      |  |  |
| LDOs                           | www.national.com/ldo         | Quality and Reliability | www.national.com/quality       |  |  |
| LED Lighting                   | www.national.com/led         | Feedback/Support        | www.national.com/feedback      |  |  |
| Voltage Reference              | www.national.com/vref        | Design Made Easy        | www.national.com/easy          |  |  |
| PowerWise® Solutions           | www.national.com/powerwise   | Solutions               | www.national.com/solutions     |  |  |
| Serial Digital Interface (SDI) | www.national.com/sdi         | Mil/Aero                | www.national.com/milaero       |  |  |
| Temperature Sensors            | www.national.com/tempsensors | Solar Magic®            | www.national.com/solarmagic    |  |  |
| Wireless (PLL/VCO)             | www.national.com/wireless    | Analog University®      | www.national.com/AU            |  |  |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

#### Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

|  | Products               |                                 | Applications                  |                                   |
|--|------------------------|---------------------------------|-------------------------------|-----------------------------------|
|  | Audio                  | www.ti.com/audio                | Communications and Telecom    | www.ti.com/communications         |
|  | Amplifiers             | amplifier.ti.com                | Computers and Peripherals     | www.ti.com/computers              |
|  | Data Converters        | dataconverter.ti.com            | Consumer Electronics          | www.ti.com/consumer-apps          |
|  | DLP® Products          | www.dlp.com                     | Energy and Lighting           | www.ti.com/energy                 |
|  | DSP                    | dsp.ti.com                      | Industrial                    | www.ti.com/industrial             |
|  | Clocks and Timers      | www.ti.com/clocks               | Medical                       | www.ti.com/medical                |
|  | Interface              | interface.ti.com                | Security                      | www.ti.com/security               |
|  | Logic                  | logic.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
|  | Power Mgmt             | power.ti.com                    | Transportation and Automotive | www.ti.com/automotive             |
|  | Microcontrollers       | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
|  | RFID                   | www.ti-rfid.com                 |                               |                                   |
|  | OMAP Mobile Processors | www.ti.com/omap                 |                               |                                   |
|  | Wireless Connectivity  | www.ti.com/wirelessconnectivity |                               |                                   |
|  |                        | a O a Al a a m                  |                               |                                   |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated