
Cdust cev<It describes characteristics' advantage of MB6A, structure graphics, compliant to surge standard test system, electrical characteristics index, 6KV lightning surge comparing test and related application.

Mg{ y qt f u<SMB package, clamping voltage, comparing test, placement graphics

MB6A is a component of low profile package (SMB) and low capacitance instead of plated axial lead package SAC. It is easier for surface mounted using SMT machine. It has several advantages such as responding less than 1 picosecond, low clamping voltage and super low capacitance. Compared to TSS P0080SX series products which have disadvantage of high clamping voltage, MB6A can protect the next circuit directly.

MB6A's only disadvantage is that we should use two of them paralleled for bidirectional protection because it is unidirectional structure TVS.

Because MB6A responds very rapidly and lower clamping voltage, low capacitance, it is ideal for protecting communication I/O data line which has high frequency.

STRUCTURE GRAPHICS

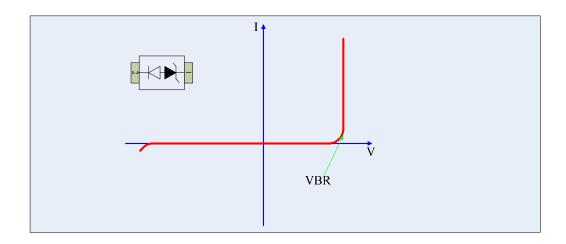
@ck '7UdUV**y**HJbVVž Gi dYf'@ck '7`Ua d]b['J c`HJ[Y HfUbg]Ybh'J c`HJ[Y'Gi ddfYggcfg

STANDARDS COMPLIANCE

Standard	Peak Surge Voltage(V)	Voltage Waveform	Required Peak Current (A)	Current Waveform	Minimum serial Resistor to meet Standard(Ω)
GR-1089 Core			150	2/10 µ S	
Intrabuilding			40	10/1000 µ S	
ITU-T-K20/K21	6000	10/700 µ S	100	5/310 µ S	40
ITU-T-K20	30000	1/30nS	ESD Contact Discharge ESD Air Discharge		
(IEC61000-4-2)	30000	1/60nS			
IEC61000-4-5	6000	10/700 µ S	100	5/310 µ S	40
IEC01000-4-5	2000	1.2/50μS	150	8/20 µ S	12
FCC Part 68			90	10/160 µ S	
rot rart 00			50	10/560 µ S	

SPECIFICATIONS

Part Number			I _{RM} @ MA							
	V	μA	V	μA	V	μA	V	μA	V	μA
MB6A	5	200	4	50	3	10	2.5	5	1.5	1

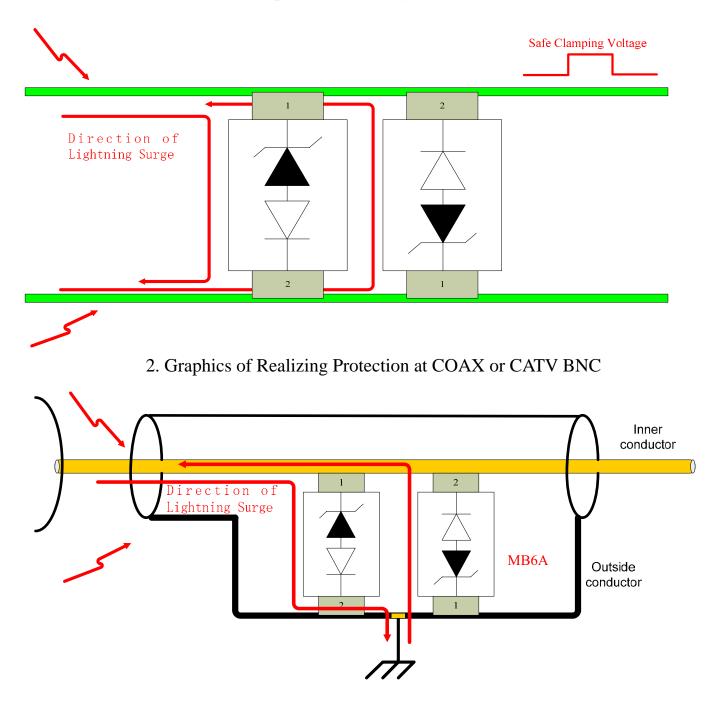

Part Number	V _{BR} Min @ I _t	\mathbf{I}_{t}	Vc @ I _{PP}	I _{PP}	Ctype
	V	mA	V	Α	pF
MB6A	6	1	15	40	35

Note:

Ќ _{RM}	Reverse Stand-Off Voltage or	Vc	Maximum Clamping Voltage
	Working Voltage		
Á _{RM} ####################################	Reverse Maximum Leakage	I _{ÚP} /₩	^{ww} Peak Pulse Current@10/1000μs Wave
V_{BR}	Breakdown Voltage @ 1mA	Ctype	Capacitance

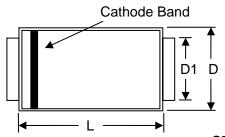
V-I CHARACTERISTICS

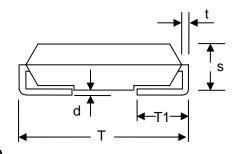
CLAMPING ABILITY


Compare OD8C and TSS P0080SX surge test, which is compliant with ITU K21 10/700 μ s 6KV lightning surge. Here are the results:

PART NUMBER	10/700µs 6KV lightning surge wave	Clamping Voltage Wave	Result
O D8C	Tek (#)⊥ -	Tek (₱): Ch1 #+ 12.2V Ch1 #+ 12.2V	Very low clamping voltage 13.2V, excellent clamping ability
P0080SX	Tek (学止 • U •	Ch1 # 1 Ch1	Clamping voltage up to 82V, if the protected circuit's withstanding voltage is not enough, the protected chip is easy to be damaged

Becawug"O D8C"tesponds very rapidly and lower clamping voltage, low capacitance, it is ideal for protecting communication I/O data line, which has high frequency, such as CATV, COAX, T1/E1, Line cards, I/O Interfaces Industrial and Consumer electronic applications.


1. Placement Graphics of Realizing Bidirectional Protection



A B6A Series

@ck '7UdUV**]**HUbVVž Gi dYf @ck '7`Ua d]b['J c`HU[Y HfUbg]Ybh'J c`HU[Y'Gi ddfYggcfg

PACKAGE DIMENSIONS

SMB/DO-214AA

Item	Millir	neters	Inches		
	Min.	Max.	Min.	Max.	
L	4.06	4.57	0.160	0.180	
D	3.30	3.94	0.130	0.155	
D1	1.95	2.20	0.077	0.086	
Т	5.21	5.59	0.205	0.220	
T1	0.76	1.52	0.030	0.060	
d	-	0.203	-	0.008	
s	2.13	2.47	0.084	0.097	
t	0.152	0.305	0.006	0.012	