

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC Leakage current Vdc = 27V DC

Rated peak single pulse transient current $8/20 \mu s$ waveform, +/- each 1 time induce

Capacitance 10/1000 μs waveform Insulation resistance after reflow soldering f = 1 MHz, Vrms = 0.5 V

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil: SUS, 120 μ m thickness Reflow soldering condition Pad size: 0.5 (Width) x 0.6 (Length)

0.5 (Distance between pads)

Soldering profile : 260 $\pm 5~^{\circ}$ C, 5 sec.

1-2 Electrical specification

Maximum allowable continuous DC voltage	27	V	
trigger voltage / Varistor voltage / breakdown voltage	21.6-32.4	V	
Maximum clamping voltage	50	V	Maximum
Rated peak single pulse transient current	1	Α	Maximum
Nonlinearity coefficient	> 12		
Leakage current at continuous DC voltage	< 0.1	μ A	
Response time	< 0.5	ns	
Varistor voltage temperature coefficient	< 0.05	%/℃	
Capacitance measured at 1MHz	40	pF	Typical
Capacitance tolerance	-50 to +50	%	
Insulation resistance after reflow soldering on PCB	> 10	$\mathbf{M}\Omega$	
Operating ambient temperature	-55 to +125	${\mathbb C}$	
Storage temperature	-55 to +125	$^{\circ}\!\mathbb{C}$	

1-3 Reliability testing procedures

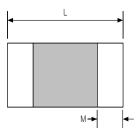
Reliability parameter	Test	Test methods and remarks	Test requirement
Pulse current	lmax	IEC 1051-1, Test 4.5.	$d Vn /Vn \le 10\%$
capability	8/20 μs	10 pulses in the same direction at 2 pulses per minute at maximum peak current	no visible damage
Electrostatic	ESD	IEC 1000-4-2	$dVn/Vn \leq 10\%$
discharge capability	C=150 pF, R=330 Ω	Each 10 times in positive/negative direction in 10 sec at 8KV contact discharge (Level 4)	no visible damage
Environmenta	Thermal shock	IEC 68-2-14	d Vn /Vn ≤ 5%
I reliability		Condition for 1 cycle Step 1 : Min. -40°C , 30 ± 3 min. Step 2 : Max. +125 $^\circ\text{C}$, 30 ± 3 min.	no visible damage
		Number of cycles: 30 times	
	Low temperature	IEC 68-2-1	d $ Vn /Vn \le 5\%$
		Place the chip at -40 ± 5 °C for 1000 ± 12 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	no visible damage
	High temperature	IEC 68-2-2	$dVn/Vn \leq 5\%$
		Place the chip at $125\pm5^{\circ}$ °C for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	no visible damage
	Heat resistance	<u>IEC 68-2-3</u>	$dVn/Vn \leq 5\%$
		Apply the rated voltage for $1000\pm48 hrs$ at $85\pm3^{\circ}\mathbb{C}$. Remove and place for $24\pm2 hrs$ at room temp. condition, then measure	no visible damage
	Humidity	IEC 68-2-30	$d \mid Vn \mid /Vn \le 10\%$
	resistance	Place the chip at $40\pm2^{\circ}\!$	no visible damage
	Pressure cooker	Place the chip at 2 atm, 120 ℃, 85%RH	d Vn /Vn ≤ 10%
	test	for 60 hrs. Remove and place for 24 ± 2hrs at room temp. condition, then measure	no visible damage
	Operating life	Apply the rated voltage for 1000 ± 48hrs at 125 ± 3 °C. Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage

Rev: 01.06.2015 2/5 www.leiditech.com

Mechanical Reliability	Solderability	$\frac{\text{IEC }68\text{-}2\text{-}58}{\text{Solder bath method, }230\pm5^{\circ}\!\!\!\!\!\!\text{C, 2s}}$	At least 95% of terminal electrode is covered by new solder
Resistance to soldering heat	Resistance to	IEC 68-2-58	d $ Vn /Vn \le 5\%$
	Solder bath method, $260\pm5^\circ\mathrm{C}$, $10\pm0.5\mathrm{s}$, $270\pm5^\circ\mathrm{C}$, $3\pm0.5\mathrm{s}$	no visible damage	
	Bending strength	<u>IEC 68-2-21</u>	d $ Vn /Vn \le 5\%$
	Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	no visible damage	
	Adhesive strength	IEC 68-2-22	Strength>10 N
		Applied force on SMD chip by fracture from PCB	no visible damage

2. Material Specification

Body ZnO based ceramics

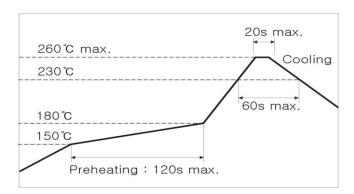

Internal electrode Silver – Palladium

External electrode Silver – Nickel – Tin

Thickness of Ni/Sn plating layer Nickel $> 1 \mu m$, Tin $> 2 \mu m$

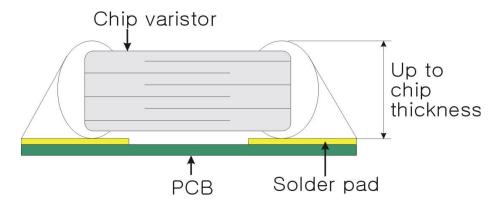
3. Dimension Specification

Size	L(mm)	W(mm)	T(mm)	M(mm)
0402	1.0 ± 0.10	0.5 ± 0.10	≤ 0.6	0.20 ± 0.10
0603	1.6±0.15	0.8 ± 0.15	≤ 0.9	0.35 ± 0.10


4. Soldering Recommendations

4-1 Soldering profile

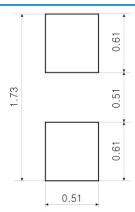
Rev: 01.06.2015 3/5 www.leiditech.com



4-1-1 Pb free solder paste

4-1-2 Repair soldering

- Optimum solder amount when corrections are made using a soldering iron


4-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

4-3 Solder pad layout

Rev: 01.06.2015 4/5 www.leiditech.com

5. Storage condit

- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.-

6. Description about package label

Type: MVR0402-270E400

MVR: Series name

0402 : Chip size -0402 (1.0 x 0.5 mm) size

270 : Maximum continuous working voltage – 27Vdc

E: Product function - E for ESD

400 : Capacitance value - means 40pF

Qunatity: 10,000 pcs

- Quantity of shipping chip varistor

Shanghai Leiditech Electronic Co.,Ltd

Email: sale1@leiditech.com Tel: +86- 021 50828806 Fax: +86- 021 50477059